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Preface

We are pleased that this solution manual for the textbook! is now available. The authors hope that
the textbook readers find this manual useful as they proceed through learning and teaching advanced
mathematical statistics. For the student readers, it is expected the manual to be consulted after their
own earlier attempts to solve the problems. For the course instructors, it is hoped the manual to be
an aid in offering extra solved lecture examples and extra help.

These offered solutions are for the 110 odd-numbered problems to have a balanced situation. In one
hand, it helps those self-studying readers to get some help with content and, on the other hand it allows
the instructors to choose assignments and doctoral comprehensive exam questions from unsolved even-
numbered problems.

Throughout the solutions, the same notational conventions as those in the textbook have been used.
Furthermore, it has been heavily emphasized to the content of the textbook by frequent referral to
theorems, examples and pages numbers. The goal was to help the reader to learn the textbook content
by frequent referrals. In some areas, we put some gaps named “(Exercise !)” to make the readers
involved in the process of solutions. On some other cases, some references were used in the solutions
and were cited in the “Reference Section” at the end of manual.

This solution manual has modified some typos in the textbook content aimed to be addressed for the
second edition of the textbook. The solutions themselves may have some errors. In case of any potential
error, then please e-mail Professor Keith Knight in order to amend them as soon as possible. Finally,
extra solutions for the solved problems are welcomed for consideration in the subsequent editions of
this solution manual.

Mohsen Soltanifar,MSc, PhD(c)
Toronto, Canada. 2018
mohsen.soltanifar@mail.utoronto.ca

Professor Keith Knight,PhD
Toronto, Canada. 2018
keith@utstat.toronto.edu

"Knight, K. (2000) Mathematical Statistics, CRC Press, Boca Raton, ISBN: 1-58488-178-X
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Chapter 1

Introduction to Probability

Problem 1.1. Show that

P(AjU---UA,) = ZP ZZP(AmAj)

= ZZ > PAINA;NAL) = = (=1)".P(A NN Ap).
1<j<k

Solution. We prove the assertion by induction on n. For the case n = 1 it trivially holds. Assume for
the case n = N it holds (induction hypothesis). Then, using Proposition 1.1.(c) for A = Uff:l Ay and
B = An41 and two applications of induction hypothesis it follows that:

N+1
P(lJ a4 = U Ap) + P(Anyq) — U AN Any)
= kNl kNl
= P({J A4 + P(An+1) = P(|J (AN A1)
k=1 k=1

_ Z(_ Z P(Ay,N---NA)+ P(Ayi1)

k=1 11 <---<i

k=1 Z P(Ailm'--ﬂAikﬂA]\H_l)

i1 <<,

LY P(A NN Ay

1< <ip

N

- (1)
k=1

N+1

S -1k

k=1

proving the assertion for the case n = N + 1.

O

Problem 1.3. Consider an experiment where a coin is tossed an infinite number of times ; the prob-

ability of heads on the kth toss is exactly one head (1/2)F.

(a) Calculate (as accurately as possible ) the probability that at least one head is observed.

(b) Calculate (as accurately as possible) the probability that exactly one head is observed.

Solution. (a) First, let A (k > 1) be the event of head outcome on the k-th toss with P(Ay) = ik
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Second, let A denote the event of at least one head in infinite number of times. Then, using log(1+z) ~
x (Jz| < 1) it follows that:

. o C o0 . o 1 o
P(A) = 1-PA)=1-P([) k):l—HP(Ak):l—H(l—?k) — exp(log(JJ (1 -
k=1 k=1 k=1 k=1

1 1 .

= l—epobg k ~1—exp(—z2—k):1—e .

(b) First, let B (k > 1) be the event of observing one head on the k—th toss and no head in the other

times with - . - .
[Te2: (1= 5%) (i) _ [Tp2: (1= 5)
(1—55) 2k —1
1

(Sx
Second, let B be the event of exactly one head in infinite number of times. Then, using Z}gl SFq =
1.6067 it follows that:

=P(|JBy)=>_ P(Bs ZW:(HQ-&))(Z le_l)z1.6067e*1.
k=1 k=1

k=1 k=1 k=1

P(Bg) =

Problem 1.5. (a) Suppose that {A,} is a decreasing sequence of events with limit A; that is 4,41 C A4,

for all n > 1 with
(0.)
A=) A
n=1

Using Axioms of Probability show that
lim P(A,) = P(A).

n—oo

(b)Let X be a random variable and suppose that {x,} is strictly increasing sequence of numbers(that
is, &, > xp4q for all n)whose limit is z¢. Define A,, = [X < x,]. Show that

m Ay, = [X <z

and hence (using part (a)) that P(X, < z,) — P(X < ).
(c) Now let {z,} be strictly increasing sequence of numbers (that is, z, < x,4+1 for all n)whose limit
is zg. Again defining A,, = [X < x,] Show that

U 4n = [X < 2]
n=1
and hence that P(X,, < z,) - P(X < x9).

Solution. (a) Using Proposition 1.1.(d) for the increasing sequence {AS} it follows that:

lim P(A,) = lim 1 - P(A7) =1~ lim P(A7) = UA =P([) 4n) =
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(b) First, as x,, | xo and [X < xo] C [X,, < x| (n > 1) it follows that:
[X < zg] ﬂ Ay ()

Second, let w € (2| Ay, then X(w) < z, for all n > 1; and, consequently, X (w) < inf,>i(z,) =
limy, o0 T, = 2o implying w € [X < xp]. Hence:

ﬂ C [X < xg). ()
Now, by (%) and (*x) the assertion follows.
(c) First, as @y, T 20 and [X < z,] C [X < x| (n > 1) it follows that:

U n C[X < xo]. (s % %)

Second, let w € [X < zo], then X (w) < zo ; but, sup,,>;(2,) = lim,, o 2, = 2o and hence for some N
we have X (w) < zny < zg yielding w € [X <an] = Anx C U,— Apn. Thus,

[X < xo] C UA (3 s %)

Now, by (%) and (* * xx) the assertion follows.
O

Problem 1.7. Suppose that Fi(z),- -, Fi(z) are distribution functions.

(a) Show that G(x) = p1.Fi(z) + -+ + pi.Fi(z) is a distribution function provided that p; > 0(i =
1,- k)andpl—i-"-—l—pk:l.

( )If Fi(z), -+, Fx(z) have density (frequency) functions fi(z),- -, fr(x), show that G(x) defined in
(a) has den81ty (frequency) function g(z) = fi(z) + - + fr(x).

Solution. (a) It is sufficient to prove Of the distribution function for G. First, let
x <y then Fj(z) < Fi(y), (1 <i<k) implying: R:}

k k
=> piFi) <> piFiy) =Gy).
=1 =1

Second, as lim,|, Fj(y) = Fij(xz) (1 <i < k), it follows that:

lim G(y —hmZpl i( Zpl hmF sz i(r) = G(x).

ylx

Third, as limo Fi(y) =1 (1 <i < k), it follows that:

lim G(y —hmZpZ i( sz hmF szl—l

yToo yToo
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Finally, the case lim,| - G(y) = 0 is left for the reader as Exercise.

(b) First, let X be a continuous random variable. Then, as fi(z) > 0(1 < ¢ < k) it follows that
g(x) = Zle pi-fi(z) > 0 for all z. Next, let —oo < a < b < 00, then:

k k k
Psla< X <b) = G(b)—Gla) = ZPi-Fi(b) - ZPi-Fi(a) = ZPi-(Fi(b) — Fi(a))
=1 =1 1=
b
g(z)dz.

k k b
= pi-Pr(a <X <b)=)» pi. [ filr)dz= pz filx)dz =

Second, let X be a discrete random variable. Since f;(x) = Pp, (X =z) (1 <z < k) for all z it follows

that:
k k
9(@) = Y pifile) =) piPr(X = sz 3 ( —11{HF( Y))
=1 i=1
k k
— ;szz(fﬂ) - lylgcl;pzﬂ(y) =G(x) - Bgch( y) = Po(X = x).
O

Problem 1.9. Suppose that X is a random variable with distribution function F' and inverse (or
quantile function) F~!. Show that

if £(X) is well-defined.
- P
Ba. Definition d expected value. . X=I(A) EOCQ=F(A) &(T(Y=yD=Fy

Solution. It is sufficient to prove the assertion for X > 0 (Exercise). First, assume for some 0 < b < 0o
to have Fx(b) = 1. Then, an application of Charles-Ange Laisant formulae for function Fx : [0,b] —

[0, 1] yields:
1 . b Hais Thps"f{ay\

OR . Woe C[’\O\V\%Q o’i VorviableS. /0 F (t)dt+/(; F(l’)dx =1, I‘(: XZ0 ,+hoi

u_=Tx) or equivalently: F_ (¢ )< 1 "
1 b Jp

+hom glu= ;”(x)o\x /0 F—l(t)dt:/o (1 - F(x))dx. (+) . f:} SsF )

dX;_‘_aVéQ(‘I&\)the other hand, by definition: . J\‘, 1 Feyst cke
B ' R b Co b -
E00= [ cfoodx =[Flw f(Fw) W@@?) = [0 Fanas ooy JoFlwde = [ 1 o

and a comparison of (%) and (x*) proves the assertion for this case. Second, let for all 0 < b < oo to
= SF_llb\)[ilhaVe Fx(b) # 1. Consider an increasing sequence {z,} such that f;:(l — F(z))dz < 2 (n > 1) and

Ty T 0o, Define X, = X.1g,,] (n > 1), the by above conditions: J 5 dids
FXn(w) - FX(x)'l[O,xn] (l‘) + 1(90”,00)(37)7 n > 1 Fes)
1 00
/ (F'(t) — Fxl(t)dt = / (1— F(z))dz < % (n>1). = jb (-F(s)ds
0 Tn

= E(¥)
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Consequently, an application of the first case yields:

E(X) = lim E(X,)= lim F);i(t)dt:/lF);l(t)dt.
0

n—oo n—oo 0

Problem 1.11. Let X be a random variable with finite expected value F(X) and suppose that g(z)
is a convex function:

g(tz + (1 —t)y) < tg(x) + (1 —t)g(y)

for 0 <t <1.

(a) Show that for any xg, there exists a linear function h(x) = azx + b such that h(zg) = g(xo) and
h(z) < g(z) for all x.

(b) Prove Jensen’s inequality: g(E(X)) < E(g(X)).

Solution. (a) For any xg, the left derivative gl(xa ) exists and it is sufficient to consider the left tangent
line at xg given by h(x) = g (x5 ).(x — 20) + g(z0). Next, considering:

oy > UETTO=05) = (0= gloe _ g+ (=t =gl o

g(t.x + (1 —1t).x0) — g(zo)

N tr + (1 — t)zo — 20 (z —20) + g(20) (%)

and taking limit from both sides of (x) as ¢ | 0, it follows that g(z) > h(z).
(b) For h(x) = ax + b we have:

E(9(X)) = E(h(X)) = E(aX +b) = aE(X) + b = h(E(X)) = g(E(X)).

Problem 1.13. Suppose X ~ Gamma(a, \). Show that
(a) E(X") =T(r +a)/(NT(a))for r > —a;
(b) Var(X) = a/)\2.

Solution.(a)

; B [e'e) . B o) )\a‘xa—&-r—l e B F(r—{—a) o) )\a—i-r.xa—i-r—l s B F(r+a)
E(X") = /0 x .f(m)dx—/o W.e AL g = )\T.F(a)/o Tla+7) e dm-m.
(b)

) =) )= Bl e )

O

Problem 1.15. Suppose that X ~ N(0,1).
(a) Show that F(X*) =0 if k is odd.
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(b) Show that E(X*) = 2¥/20((k +1)/2)/T(1/2) if k is even.

Solution.(a) For odd k, the function g(z) = z*.fx () is an integrable odd function over real line and
hence, E(X) = [*_g(z)dz = 0.

(b) Let k = 2m. Since XTZ =W ~ Gamma(1/2,1), it follows from Problem 1.13(a) that:

L(L/2+m) _ unT((1+K)/2)

B(X") = B(X*T) = 2" E(W™) = 2" =g = (1/2)

Problem 1.17. Let m(t) = E[exp(tX)] be the moment generating function of X. c(t) = In(mx(t)) is
often called the cumulant generating function of X.

(a) Show that ¢/(0) = E(X) and ¢”(0) = Var(X).

(b) Suppose that X has a Poisson distribution with parameter A as in Example 1.33. Use the cumulant
generating function of X to show that E(X) = Var(X) = A.

(¢) The mean and variance are the first two cumulants of a distribution; in general, the k-th cumulant
is defined to be ¢¥)(0). Show that the third and fourth cumulants are

d@0) = B(X?) -3E(X)E(X?) +2[BX)P,
d(0) = B(XY) —4E(X*)E(X) + 12E(X?)[E(X)) - 3[E(X*)* — 6[E(X)]*

(d) Suppose that X ~ N(u,c?). Show that all but the first two cumulants of X are exactly 0.

Solution. (a)

’

roey o d ~ mx (1) _B(X)
¢ (0) = G Toglmx ()0 = 250 = 25 = BX),
» d? my (t)m —m/y (t)m' E(X?) - E*(X
c (0) — @log(mx(t))h:o — X( ) X(;)lg((t)X(t) X(t)‘t:O _ ( ) : ( ) _ VCLT(X).

(b) Since, cx(t) = log(mx(t)) = log(exp(\.(e! — 1))) = X.e’ — 1, by part (a) it follows that:

/

E(X) =c(0) = Ael|i=0 = A,

”

E(X)=c (0) = Xe'li=o = \.

(c) First, we have:

ot) = log(mx(1)),

W)y = mi ) m' @),

Aty = m@E)m (1) - (m§ (1) 2m ),

@) = mPe)md(t) — 3mP(0).ml (€)m2(t) + 2mi (£)>mP (1),

Oty = mPE)m ) - 4mPO)mP O).mE) - 3mP (1)2m(t)
2
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and using mg? (t) = E(X?"), (0 <1< 4) the assertion follows.

(d)Since ¢(t) = log(mx(t)) = log(exp(u.t + ”22't2 ) = pt+ ‘722't2, it follows that:

D)y =p+0o’t, D)y=02 ME)=0, (n>3) (%)

and letting t = 0 in (x) the assertion is proved.
O

Problem 1.19. The Gompertz distribution is sometimes used as a model for the length of human life;
this model is particular good for modelling survival beyond 40 years. Its distribution function is:

F(z) =1 — exp[—S(exp(az) — 1)] forx >0

where «a, 8 > 0.
(a) Find the hazard function for this distribution.
(b) Suppose that X has distribution function F'. Show that

E(X):eXp(B)/ooeXp(_ﬁ‘t)dt
1

o t

while the median of F' is 1
F7H(1/2) = azn(l +1n(2)/5).

(c) Show that F~1(1/2) > E(X) for all a > 0,3 > 0.

Solution. (a)

Az) = &b (x) _ B.a.exp(az) + exp[—f(exp(az) — 1)]
1—F(x) exp[—p(exp(azx) — 1)]
(b)First, using change of variable technique with ¢ = exp(«a.z) and dt = a.tdz it follows that:

B(X) = /OOO(IF(:c))d:c:

= p.a.exp(az). (x >0)

o0

explB(exp(as) — Dldz = exp(d) | " expl—A(exp(ox))]dz
0 0

= exp(p) /100 exp(—ﬂ.t)(%t = exp(f) /loo eXP(t_B-t)

t o

dt.

Second, solving equation F'(x) = %, one concludes:

log(1 + log(2)
log(2) < Med(z) = —g( l )
I} e

exp|—f(exp(azx) — 1)] = % S explar) —1=

(c) Fix o > 0, and define :

H(B) = a.(FY(1/2) - E(X))
= a-(;Zn(lJrln(Q)/ﬂ)_eXI;(ﬂ)/ exp(t—ﬁ-t)dt)

log(2) /OO e Pt
= log(1 - dt.
e B A

The following plot of H shows that it takes both positive and negative values. Hence, the given
inequality does not hold for all 5 > 0.
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Figure 1.1 Plot of function H(8) = log(1 + 10%(2)) — I Zfl't dt

O
Problem 1.21. Suppose that X is a non-negative random variable where E(X") is finite for some
r > 0. Show that E(X?) is finite for 0 < s <.

Solution. For given 0 < s < r, we have 2°~! < 2"~! (x > 1). Hence, by Problem 1.20(a) and the
given assumption it follows that:

00 1 e’}
E(X?®) = 8/0 CL’S_I(l — F(z))dx = s(/o ms_l(l — F(x))dx —|—/1 :138_1(1 — F(x))dx)
1 [e) 1 [e's}
= S(/O :1:8_1(1 — F(x))dx) + s(/1 xs_l(l — F(z))dx) < s(/o xs_ldx) + 7‘(/1 :L‘r_l(l — F(z))dx)
< 1 —I—r(/oo 2" N1 - F(z))dz) =1+ E(X") < .
0
O

Problem 1.23. Suppose that X is a non-negative random variable with distribution function F'(z) =
P(X < ). Show that

B(XT) = r/ooo 211 = F(2))da,

for any r > 0.

Solution. Using Fubini’s Theorem for 0 < x <t < co we have:

/0 T a1 - F@)de = /Ooor.xr_l( /f F(t)dt)dz = /0°° L”<r.xr—1f(t))dtdx

- /OOO /Ot(r.x’"‘lf(t))dxdt:/Ooot"f(t)dt:E(Xr).
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U

Problem 1.25. Suppose that X has a distribution function F(z) with inverse F~1(t).

(a) Suppose also that E(|X|) < oo and define ¢g(t) = E(|X — t|). Show that g is minimized at ¢ =
F~1(1/2).

(b) The assumption that E(|X]|) < oo in (a) is unnecessary if we define g(t) = E[|X — t| — | X|]. Show
that g(t) is finite for all ¢ and that t = F'~1(1/2) minimizes g(t).

(¢) Define po(z) = axI(z > 0) + (o — 1).x.I(z < 0) for some 0 < « < 1. Show that g(t) =
E[pa(X —t) — pa(X)] is minimized at t = F~!(a).

Solution.(a) Since:

t

o) = EQx—t)= [ o—tlf@ys = [

— —00

—(x —t)f(z)dx + /too(:c —t)f(x)dx
= —/too x.f(x)dx + t. /too f(ac)d:z:—i—/too z.f(x)dr — t/too f(z)dz,
we have:

%g(t) C O+ P 4t F) A EFE) — (1= F(8) — t.f(8) = 2.F(£) — 1 = 0,

and consequently t = F~1(1/2) minimizes g.

(b) First,
l9()] = |E(|X —t| = [X])| < E(]|X —t| - |X]]) < E(|X —t = X[) = [¢] < 0.
Second,
g(t) = E(X —t[—[X])= /_Z(|$ —t| = |z]) f(z)dx
_ /_ Z[_l(_m,t) ()@ — 1) + Loy () (& — 1) — (L ooy (2).2 + 10 o0y (2)-2)] f(2)dz
= /Z[x(_l(oo,t) (@) + L(t,00) (%) + L(—00,0) (%) = L0,00) (%)) + E(L(—00,ty (%) = L(t,00)(®))] f (2)d
- /_ Z[m(u 2oy (1)) + (2 ooy (1) — 1) 2oy (@) — 1] f(@)de
_ 2(/_(; o f(@)dz — /_too . f(@)dz) + £.2F (1) — 1),
vields:

4
dt?
and thus t = F~!(1/2) minimizes g.

(t) = —2t.f(t) + 2F(t) — 1 + 2t.f(t) = 2F(t) — 1 =0,

(c) Given %(pa(:n — 1) = palr))) = —a + 1o s (7), we may generalize the solution in part (b) as
follows:

Loy = B

= 2 (pa(X — 1) = palX)) = B(=a +1(_ay(X)) = —a+ F(t) =0,
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and hence ¢t = F~!(a) minimizes g.
(]

Problem 1.27. Let X be a positive random variable with distribution function F'. Show that E(X) <
oo if, and only if,

o
D P(X > ke)
k=1

for any € > 0.

Solution. First, to prove the necessity, let € = %, and consider [X] < X < [X]+ 1, then by rearrange-
ment of sums:

B(X)) = f:z.P([X] =)= ip(z <X <l+1)

=1

— ZZPk+m<X<k:—|—m+l :iPX>k:
k=1 m=0 k=1

- k
< ) P(X> 5) <o
k=1

and hence by F(X) < E([X]) + 1, the assertion follows.

Second, to prove the sufficiency, let € > 0, then :

iPX>k‘6 Si X>k.e):iP():>k):E([
k=1 k=1 k=1



Chapter 2

Random Vector and Joint Distribution

Problem 2.1. Suppose that X and Y are independent Geometric random variables with frequency
function f(z) =6.(1—-60)* for =0,1,2,---

(a) Show that Z = X + Y has a Negative Binomial distribution and identify the parameters of Z.
(b) Extend the result of part (a): If X;,---,X, are i.i.d. Geometric random variables, show that
S = X1+ ---+ X, has a Negative Binomial distribution and identify the parameters of S.

Solution. (a) Using C'(n, k) as the notation for binomial coefficient we have:

P(Z=z2) = PX+4+Y=2)

= Y P(X+Y =2y =y)P(Y =y)
y=0

= Y P(X=z-y)P(Y =y)
y=0

z

= Y P(X=z-y)P(Y =y)
y=0

z

= > (6.(1-0)7v.0.(1-6)Y)

y=0
= (24 1)0%(1 - 0)*
= C2+42—1,2).6%(1—-0).

So, Z ~ NB(2,0).

(b)We claim S,, ~ NB(n,6) (n > 1). For the case n = 1 as S; = X it trivially holds. Let it hold for
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the case n > 1(induction hypothesis). Then, for S, 11 = S, + X, 11 it follows that:

P(Spp1=35) = P(Spn+Xni1=35) =Y P(Sp+ Xn1=5Xps1 =2)P(Xps1 =)
=0

= ZP(Sn:s—a;)P ntl =) ZP Sp=s—z)P(Xp41 =2x)

= ZC(n +s—z—1,s—2).0".(1—-0)°"".0.(1-06)"
=0

= ZC(n—{—s—x—l,s—a}).H”“.(l—9)5
=0
= Cn+1+s5—1,5)0""1.1-0)° s5s=0,1,---.

where in the last equation, the equality > 5 (C(n+s—x —1,5s —x) = C(n + s,s) was used in
which can be proved by induction on s and Pascal’s rule for binomial coefficients. Consequently,
Sn_l,_l ~ NB(TL + 179)

O

Problem 2.3. If fi(z),- -, fx(x) are density(frequency) functions then

9(x) = p1.fi(x) + - + pg-fr(z)

is also a density (frequency) function provided that p; > 0(i = 1,--- ,k) and p; +--- +pxr = 1. We
can thin of sampling from g(z) as first sampling a discrete random variable Y taking values 1 through
k with probabilities p1,--- ,pr and then, conditional on Y = i, sampling from f;(x). The distribution
whose density or frequency function is g(x) is called a mixture distribution.

(a) Suppose that X has frequency function g(x). Show that

pi fi(z)

PY =iX=2)= (@)

provided that g(z) > 0.
(b) Suppose that X has a density function g(x). Show that we can reasonably define
pifi(z)

9(x)

PY =iX =2) =

in the sense that P(Y; =i) = E(P(Y =1i|X)).

Solution.(a) Using Bayes Theorem (Proposition 1.5.) it follows that:

P(X=alY =PV =i) _ filzhpi
PX=2) g >0

PY =i|X =z) =
(b)We prove the assertion for discrete random variable X :

E(PY =i|X)) = Zp —i|X = 2)P szfz
= pszz pi=PY =1) (1 <i<k).
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The proof for the continuous random variable X is similar by replacing sums in above by integrals.
O

Problem 2.5.Mixture distributions can be extended in the following way. Suppose that f(x;6) is a
density or a frequency function where 6 lies in some set © C R. Let p(f) be a density function on O

and define
= [ oo

Then g(z) is itself a density or frequency function. As before, we can review sampling from g(x) as
first sampling from p(#) and that given 6, sampling from f(z;6).
(a) Suppose that X has the mixture density or frequency function g(z). Show that

E(X) = E(E(X]0))

and

Var(X) =Var(E(X|6)) + E(Var(X|0))

where F(X|6) and Var(X|6) are the mean and variance of a random variable with density or frequency
function f(z;0).

(b) The Negative Binomial distribution introduced in Example 1.12 can be obtained as a Gamma
mixture of Poisson distributions. Let f(x;A) be a Poisson frequency function with mean A and p(\)
be a Gamma distribution with mean p and variance p?/a. Show that the mixture distribution has
frequency function

CT@+a), a .on
90 = ~irrar ()
for z = 0,1,2,--- . Note that this form of the Negative Binomial is richer than the form given in

Example 1.12.

(c) Suppose that X has a Negative Binomial distribution as given in part (b). Find the mean and
variance of X.

(d) Show that the moment generating function of the Negative Binomial distribution in (b) is

m(t) = (

o+ (1 —exp(t))

Solution.(a) First, using Fubini’s Theorem it follows that:

B(E(X|0)) = /Exye dH_/(/xf(m~9)dx) (6)df

/@/X(:c.f(ar;ﬂ)p( dxda_/ /fxe

)¢, for t <In(l+a/p)

Second, using E(Y) = E(E(Y|0)) for Y = (X — E(X))? we have:
Var(X) = B((X - B(X))*) = E(E((X - BE(X))?|0)) = E(E(X® - 2.E(X).X + E*(X)|0))
= b

)=

(

(B(X?|0) - 2.B(X.E(X )!9)+E2( )) = BE(E(X?|0) — 2B(X).E(X|0) + E*(X))
(B(X?]0) — E*(X]0)) + (B*(X]0) — 2E(X).E(X|0) + E*(X)))

(
(
(

I
S|

= F
= F
= F

E(X?|0) — B*(X|0)) + E((E(X|0) — E(X)))
Var(X|0)) + E((E(X|0) — E(E(X]0)))%)
Var(X|0)) + Var(E(X]0)).



14 (© 2018 by Chapman & Hall/CRC

T
rz+a—1
- x!r<a>/o ?u;a) iy
~ G, T R o/
S L e
@) 3 T
= () ()T e =01

w'F( ) a—i—,u a+p

E(X) = E(E(X|]A) = EQA) = p-

Var(X) =Var(E(X|\) + E(Var(X|\) = Var(\) + E(\) = /;2 + p.

(d)Using Poisson moment generating function and Gamma moment generating function we have:

Mx(t) = B(e"Y) = B(E(e"X|N) = E(Mxja(1) = B(Y)

«

1 otn
= My(e'=1) = (57" = ( o )¢
1—L(ef—1) (GE)A+5—5.€)
_a _a o
= (—tr e otn )% for t <In(l+ —)
A=) A= (- 20 "
(]
Problem 2.7.Suppose that Xi,--- are i.i.d. random variables with moment generating function

m(t) = E(exp(t.X;)). Let N be a Poisson random variable (independent of X;’s) with parameter A and
define the compound Poisson random variable

where S =0if N =0.
(a) Show that the moment generating function of S is

B(exp(tS)) = expA(m(t) — 1)).
(b) Suppose that the X;’s are Exponential with E(X;) =1 and A = 5. Evaluate P(S > 5).

Solution.(a)

Ms(t) = B(e"S) = B(B(e"5|N)) = B(B(et ZE % V)

N N
= B(E([]XIN) = B BXN))
=1 i=1

N
= E(H E(et'Xi)) _ E(m(t)N) _ E<elog(m(t)).N)

_ MN(log(m(t))) _ e}\_(eexp(log(m(t>)_1) _ €>\'(m(t)_1).
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(b) By Problem 1.14, S|N ~ Gamma(N,1) and P(S > s|N) = SNt e’ Then:

7=0 Vi
P(S>5) = B(lsss) = B(E(1ss5N) = B(P(S > 5N)
N-1 6_5 5] N-1
= B S B P =)

; J! :
3=0 =0
= E(P(N < N)) = E(0) = 0.
U
Problem 2.9. Consider the experiment in Problem 1.3. where a coin is tossed an infinite number of
times where the probability of heads on the k—th toss is (1/2)¥. Define X to be the number of heads

observed in the experiment.
(a) Show that the probability generating function of X is

p(t) = H(1 - QT)'

k=1

(b) Use the result of part (a) to evaluate P(X = x) for z =0,--- ,5.

Solution. (a) Let X = 2, 14, in which 14, ~ Bernouli(1/2%), (k> 1) and My, (1) =(1-3)+
(&)et, (k>1). Then:

2F
i b 1 1 gty T 1—t
px(t) = Mx(log(t)) = [ [ M, (og(t)) = [T((1 = o) + (55)e ) = [T - )
k=1 k=1 k=1
(b) Using Problem 1.18(c):
Px(X =2x) = L& =0,1,2,3,4
X( - '1:) - Eﬁp(t”t:o r = 07 ) 737 75'

Next, define u(t) = Y72, log(1 — %), then p(t) = e“*). Consequently:

PX=0) = (),

P(X=1) = %(u(l)(O).e"(O)),

POX=2) = S((u®0) +uV(0).c"),

POX=3) = S(@®(0)+3uD0)u)(0) + 1 (0)).c"0),

P(X =4) = %((u‘l(O) +3u®?(0) + 4u™M (0)u® (0) + 6uM*(0)u® (0) + uV*(0)).e*®),
P(X =5) = é((u@ (0) + 10.4®(0).u® (0) + 5.V (0)u® (0) + 154D (0)u®?(0)

104D (0)u®(0) + 104D’ (0).u®(0) + uD’(0)).e4®),

where in which «(0) = Y2, log(Ql;—;l), and u®(0) = 3222, % forx =1,2,3,4,5.
(]

Problem 2.11. Suppose we want to generate random variables with a Cauchy distribution. As an
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alternative to the method described in Problem 1.24, we can generate independent random variables
V and W where P(V =1) = P(V = —1) = 1/2 and W has density

2

— i <1.
T o=

g(x) =

(W can be generated by using the rejection method in Problem 2.10) Then we define X = WV; show
that X has Cauchy distribution.

Solution.For Z=1/W, an application of Theorem 2.3 with h=}(Z) = 1/Z implies fz(z) = ,2,-(11@;21)-

Consequently:

fx(@) = PWY =z)= (WV =2V =PV =1)+PWY =2V =-1)PV =-1)

B (ﬂ(lﬂz J(Laj<t + ap>1) 1
B 2 - om(1+22)

O

Problem 2.13.Suppose that X, -, X, are i.i.d. Uniform random variables on [0, 1]. Define S,, =
(X1 4+ -4+ X,) modl; S, is simply the “decimal” part of X7 + .-+ + X,,.

(a) Show that S,, = (Sp—1 + X,,) modl for all n > 2.

(b) Show that S,, ~ Unif(0,1) for all n > 1.

Solution.(a) By definition S, = {d 1" ; X} = >/~ Xi — [>_i~; X;]. Hence:

{Sn-1+Xn} = (Sn—1+Xn) — [Sn—1 + X5
= (2Xi—[iXi]+X nz_;le 2X1+X
= ZH;X - [21 Xi] - [Zn; Xl + [[21 Xi]]

(b) We prove the assertion by induction on n. As for n = 1, we have S; = X it trivially holds. Let
it hold for case n > 1(induction hypothesis). Then, by Part (a), Sp+1 = Sn + Xpn — [Sn + X»] and
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consequently:

n+1

= 3 P(Su+ Xng1 < [Sn + Xpsa] + £, [Sn + K1) = k)
k=0
n+1

= 3 P(Su+ Xnp1 Sk +t,k < S+ KXoy < k+1)
k=0
n+1
k=0

= PO<S,+ X1 <t)+P(1<S,+Xpp1 <1+1)
12 12

= —+(t——)=t if 0<t<1
5 T ( 5 ) if 0<t<

Also, by the first line above and the fact that [S,, + X,,+1] < Sp + X1 < [Sn + Xpt1] + 1, it is clear
that Fs, (t) =0if ¢t <0and Fg, ,(t) =1if ¢ > 1. Accordingly, Sy+1 ~ Unif(0,1).
|

Problem 2.15. Suppose X1, -, X, are independent nonnegative continuous random variables where
X; has hazard function X\;(z) (i =1,--- ,n).

(a) If U = minj<j<p(X;), show that the hazard function of U is A\y(z) = A\ (x) + -+ - + A\ (2).

(b) If V.= maxj<i<n(X;), show that the hazard function of V satisfies Ay () < min(A;(x),- -+, An(x)).
(c) Show that the result of (b) holds even if the X;s are not independent.

Solution.(a)Since:

Fy(z) = 1-Sy(z)=1—P({U >z)=1—P( min (X;) > )

we have:
fu(z) = % v(x) ==> (1 = Fx, (@) (=fx; @) =Y (][0 = Fx, (@) (fx,(2)))
j=1 j#i Jj=1 j#i
Hence:
fo@) 2ol = Fx@)(fx;(2) K fxgl) &
Mle) =g = [T7_,(1 - Fx, () =) Z:A](x)

(b),(c) We prove the assertion for cumulative hazard function A(x) = [ A(t)dt. By,
exp(—Av(z)) = Sv(z) = P(X > z) > P(X; > ) = Sx,(x) = exp(—Ai(2)),
and taking log it follows that Ay (z) < A;(z) (1 < i <n), and hence:

Ay(xz) < min A;(z).

T 1<i<n
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As a counterexample for the hazard function case, let n =2 and X; ~ exp()\;) (i =1,2) with A} < A
be independent and V' = max(X1, X2). Then:

Fy(x) = 1—exp(—A1.2) —exp(—A2.x) + exp(—(A1 + \o).z),

Sy(z) = exp(—A1.x)+exp(—A2.z) —exp(—(A1 + A\2).2),

fv(z) = A.exp(—=A1.2) + A2.exp(—A2.z) — (A1 + A2). exp(—(A1 + A2).z),

implying:

fv(x) _ AL exp(A2.2) + Ag.exp(A1.x) — (A + A\2)
Sy (x) exp(Aa.z) + exp(A1.z) — 1

Av(a?) = <A = min()\l(:v),)\g(x)),

and hence z < /\i log(-4~ )‘_2)\ ), a contradiction to unboundedness of range of x.
1 2 1
O

Problem 2.17. Suppose that X and Y are random variables such that both E(X?) and E(Y?) are
finite. Define g(t) = E((Y +t.X)?).

(a) Show that ¢(t) is minimized at ¢t = —%(())?2/)).

(b) Show that (E(XY))? < E(X?).E(Y?); this is called the Cauchy-Schwarz inequality.

(c) Use part (b) to show that |Corr(X,Y)| < 1.

Solution. (a) Since:
gt) = E(Y +t.X)%) = E(Y? + 2tX.Y + 2. X?) = E(X®)t? + 2E(XY)t + E(Y?),

it follows that g(M(t) = 2E(X?)t + 2E(XY) = 0, and hence t = —% minimizes g.

(b)Since (Y +t.X)? > 0, we have g(t) = E((Y +t.X)?) > 0, and consequently:
_B(XY)

0 < () = B )+ 2BV ) + BV
_ E*XY) 2F*XY) _ —E*(XY)+ E(X?*)E(Y?)
= By mae TP S B(X?) ’

implying: E?(XY) < BE(X?).E(Y?).

(c) First, assume E(X) = E(Y) = 0, then, by Cauchy-Schwarz inequality in Part (b):

Cov(X,Y) = E(XY)

Corr XY = | e X Var () EXDEQY?)

<1

Second, for the case of E(X) # 0 or E(Y) # 0, define X* = X — E(X) and Y* =Y — E(Y). Then,
Cov(X,Y)=Cov(X*,Y*), Var(X) = Var(X*) and Var(Y) = Var(Y*). Consequently:

Cov(X,Y)
VVar(X).Var(Y)

= Cov(X*,Y™)

Corr(X,Y)| = =
| ( = VVar(X*).Var(Y*)

| = |Corr(X*,Y™)| < 1.

O
Problem 2.19. Suppose that X and Y are independent random variables with X discrete and Y
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continuous. Define Z = X +Y.
(a) Show that Z is a continuous random variable with

P(Z < 2) ZPY<z—xP(X ).

(b) If Y has a density function fy (y), show that the density of Z is

= fy(z—)fx(x)

where fx(z) is the frequency function of X.

Solution.(a)
Fz(z) = P(Z<2)=P(X+Y<2)=)» P(X+Y <z X =uz)

= Y PX+Y<zX=2)P(X=2)=) P <z-2)P(X =)
= Y Fy(z-2)P(X =)

As'Y is continuous random variable, G, (z) = Fy(z — z) is continuous CDF and so is H,(z) = Fy(z —
x).P(X = x). Hence, F as the sum of continuous functions H, is continuous, as well.

(b) By Part (a):

Fi() = gmzxm(m):;(/:f( y)dy) fx Z/ (o () Fx () dy
- ¥ | vt = orpxtenir = [ (S Uty ) xtoiy
accordingly:
F() = () = Y (v — a)fx(a).
) :

Problem 2.21.(a) Show that
Cov(X,Y)=E(Cov(X,Y|Z))+ Cov(E(X|Z),E(Y|Z)).
(b) Suppose that Xi, Xo,--- be ii.d. Exponential random variables with parameter 1 and take Ny, Ny

to be independent Poisson random variables with parameters A;, Ay that are independent of the X/s.
Define compound Poisson random variables

Ny N2
Si=> Xi  SH=) X
=1 i=1

and evaluate Cov(S7, S2) and Corr(Sy,S2). When is this correlation maximized ?
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Solution. (a)

E(Cou(X,Y|Z)) + Cou(E(X|Z),E(Y|Z2)) = E(E(XY|Z)— E(X|Z)E(Y|Z))
E(E(X|2)E(Y|Z)) — E(E(X|2)).E(E(Y|Z))
(XYIZ)) E(E(X|Z)E(Y|Z))

( E(E(X|2)).E(E(Y|Z))

) —
XY) - ( ).E(Y) = Cou(X,Y).

m+ 1 + 1
—~ /tﬂ —~
&

(b) We have:
Cov(S1,52) = E(S1.52) — E(S1).E(S2). (%)

Using Theorem 2.8 the first term in the right hand side of (*) can be evaluated as follows:

E(Slsg) = Z E(5152|N1 = nl)P(Nl = nl)

= Z(Z E(Sl.SQ‘Nl = nl,NQ = n2)P(N2 = n?))P(Nl = nl)

00 o) niy no

= Y YO 1+ Cou(Xi, X)) P(Ny = n2) P(Ny = ny)

ni=1np=1 i=1 i=1

8

ny no

= Z Z ni. n2+ZZC’on X;))P(Ny = n2)P(N1 = nq)

ni=1no=1 i=1 1=1

= Z Z ni.ng +min(ny, n2))P(No = n2) P(N1 = nq)

ni=1no=1

= Y ) (n1na)P(Ny = ng) P(Ny = ny) Z Z (min(ny,n2)) P(N2 = n2) P(Ny = n1)

ni=1ny=1 ni=1ns=1
—  E(N1.Ns) + E(min(Ny, No))
AtA2 + E(min(Ni, No)|[Ni < Na).P(Ny < Np) + E(min(Ny, Na)|Ny > No).P(N; > No)
A1.A2 + E(N1).P + E(N2).(1 — P) (defineP = P(N; < Na))
= A A2+ AP+ X (1= P). (xx)

By Example 2.14 for u = 0% = 1 we have:

E(Sl) = )\1 Var(51)22.)\1
E(SQ) = )\2 VCL’I“(SQ):Q.)\Q. (***)

Accordingly, by (*), (**) and (***) it follows that:

Cov(S81,53) = A.P+Xp.(1—P): P=P(N; < Np) = ZFNl ).fn,(n). (1)
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Next, using (1) it follows that:

COU(Sl,SQ) B )\1.P+)\2.(1—P)
\/VaT Sl VaT(SQ) 2\/ )\1-)\2 .

Finally, to find the maximum value of Corr(S1, S2) using (1) we define:

Corr(Sy,S2) =

(1)

AP+ X2.(1 - P)
2V xe

A simple calculus for the bivariate function H in (f 1 1) shows that max(H) = 3, (Exercise!).
O

Problem 2.23. The mean residual life function r(¢) of a nonnegative random variable X is defined to
be

H(\,he) =

(F771)

r(t) = B(X — t|X > t).

(r(t) would be of interest, for example , to a life insurance company.)
(a) Suppose that F'is the distribution function of X. Show that

1_1F(t)/too(1 _ F(2))da.

(b) Show that r(t) is constant if, and only if, X has an Exponential distribution.
(c) Show that

r(t) =

B(X?) = 2/00 r(t)(1 — F(t))dt.
0

(d) Suppose that X has a density function f(x) that is different and f(z) > 0 for = > 0. Show that

: L f(@t)
tllglor(t) N tllglo(_f’(t) )
(e) Suppose that X has a Gamma distribution:
_ 1 a, a—1 _
f(z) = F(a))\ T exp(—A.x) forx > 0.

Evaluate the limit in part (c) for this distribution. Give an interpretation of this result.

Solution. (a) By Fubini’s Theorem:

dF(z) [ [T dydF (x)

r(t) = E(X—t\XZt):/too(x—t)P

(X>t) - 1-F(t)
T dF () dy) ft _ F(y))d
1— F(t) — F(t)
(b)
r(t)=c & ¢(1-F(t)) :/too(l— F(x))dx & —c.f(t) = F(t) — 1
= 1L—f(Ft)(t) _%‘:”(m)_%
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BE(X? = /0 22 f(z dx_/ /2tdtf d:c_/ /Qtf )dtdz:
= / / 2t.f (x)dxdt = / Qt/ f(x)dz)dt = / 2t(1 — F(t))dt
— /U (2/Ods)(1— dt—2/ /1— dsdt—2// (1 — F(t))dtds

= 2/0 r(s)(1 — F(s))ds = 2/0 r(t)(1 — F(t))dt.
(d) Using L’Hospital’s Rule it follows:

- (1 -F d d/dt [°(1-F d
lim T'(t) __definition lim j;f ( (JJ)) €L _LHR lim / ft ( (.%)) £

t—00 t—00 1—-F(t) t—00 d/dt(1 — F(t))
L PO i O ) )
tooe —f(t) tmoo d/di(—f(t))  tmoor f1()”
(e) By Part (d) we have:
fm () = lim( £(t) )= —ﬁ)f“ta_l exp(—\.t)
theo VT R A1) T e reg At Zexp(—At) (o — 1 — At)
t 1 1

= lim—(— " Y= = E(X).
fm —(C ) =y T o P

The mean residual life function of Gamma distribution is asymptotically proportional to its mean.
O
Problem 2.25. Suppose that Xi,---, X, are i.i.d. continuous random variables with distribution

function F'(x) and density function f(x); let X1y < X(9) <--+ < X(;) be the order statistics.
(a) Show that the distribution function of Xy is

=Y Cn,j)F(z)/ (1 - F(z))" .
=k
(b) Show that the density function of X, is

n!

(@) = iy P T (- P ),

Solution.(a) For S = Y7} | I'x, <) ~ Binomial(n, F(x)) we have:

Gu(e) = P(Xgy <2)=P(S=2 k)= P(S=j)= ZC(?%J')F(:UVO — F(x))"™.
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(b) As C(n,j+1).(j +1) =C(n,j).(n — j), from Part (a) it follows:

() = TGl

= ) Cnj)(iF () (1= F(x))".f(z) — (n— j)F(2)’(1 - F(x))" 77" f(x))
j=k

= O(n,k).(kF(2)* (1 = F(2))"".f (z))

n

+ Y O )HGF(@) M1~ F2))" f(2))

j=k+1

n—1
— > Clnj)(n—i)(F(zy (1 - Fx)" 77" f(x))
j=k

n! _ .
= Rt @ T A F@) T (@)
n—1
+ Y Clnj+ 1)+ D(F@) (1= F2))" 77 f(x)
j=k
n—1
- C(n.j)(n — j)(F(z)' (1 = F(2))" 77" f(x))
j=k
P (1 P @) ()
(n—k)!(k—1)! ’
O
Problem 2.27. Suppose that Xi,---, X1 be i.i.d. Exponential random variables with parameter
Aand define

k
Uy, = ;ZX fork=1,---,n
1=1
where T'= X1 4+ -+ + Xy41.
(a) Find the joint density of (Uy,---,Uy,T). (Note that 0 < Uy < Uz < --- < Uy, < 1.)
(b) Show that the joint distribution of (Uy,--- ,U,) is exactly the same as the joint distribution of the
order statistics of an i.i.d. sample of n observations from a Uniform distribution on [0, 1].

Solution. (a) Since U.T' = Zle X; we have:

k k—1
Xp=> Xi—> Xi=UpT—-Up1.T=Up—Up1).T. (1<k<n)
=1 i=1

Defining Uy = 0 and U, 41 = 1 there will be an extension of above equality to :
Now, define transformation h via:

(U1> T 7Un7T) = h(Xb tee 7Xn7Xn+1)-
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Then, by Theorem 2.3. we have:

f(UL... Un,T) (uh e U, t) —

(b) By Part (a):

fwn vy (un, -

O

f(Xl,-" ,Xn,Xn+1)<h71<u17 Ty Un, t))|J(h71(u17 crr oy Un, t))’

foxi o X X)) (U1 —uo)t, (ug —ur)t, -+, (un — un—1)t, (Ung1 — un)t)
d( X1, -, Xn, Xnt1)
| d(uy, -+ ,up,t) |
+t 0 te 0 0 Ul — ug
n+1 —t +t --- 0 O Ug — U
1T £ (i = wia)t).det( | -+ - )
i=1 0 0 -+ —t 4+t Up—Up_1
0 o --- 0 -t 1—u,
n+1

(H A'€_>\(Ui_Uiil)t)'tn'10<ul<"-<un<1(ul) e 7un)
=1

n+l —Ain
A -€ t '10<ul<"'<un<1(u17 T ,Un).

7un) = /0 f(U17-~~,Un,T)(u1a" ’ 7unat)dt

o
= 10<U1<"'<un<1(u1’ T vun) / )‘n—‘rl'e_)\.ttndt
0
= F(n + 1) 10<u1<-~-<un<l(u17 T aun)
= n! 10<u1<~~~<un<1(u17 te 7Un)~

Problem 2.29. Suppose that X and Y are independent Exponential random variables with parameters
A and p respectively. Define random variables

T =min(X,Y) A=1if X <Y,0 otherwise.

Note that 7" has a continuous distribution while A is discrete. (This is an example of type I censoring
in reliability or survival analysis.)

(a) Find the density of T" and the frequency function of A.

(b) Find the joint distribution function of (7', A).

Solution.(a) First,

fr(t) = %FT(t) = %(1 — Sp(t)) = _%ST(t) _ _%P(T -
= _%(P(X >t)P(Y >t) = —%(Sx(t).Sy(t)) - _%(ef(AJru)t)

= (A p)(e” 0,
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and hence, T' ~ exp(\ + p). Second,

P(A=1) = P(X<Y)://X YAe—“.M.e—ﬂ-yd:cdy
<

/ / e M e “ydydx—/ Ae” x(/ e *Ydy)de

A
_ )\—)xx BT J — /
/0 e x = ()\+ )

implying A ~ Bernoulz(%)

(b) Since:
fra(t,l) = Pmin(X,Y)=¢t,X <Y
= Px(X:t).Py(t<Y) =
= e AWt
and

fra(t,0) = Pmin(X,Y)=tX>Y
Py(Y =t).Px(X >t
— u.e_(’\+“)t,

it follows that:
fra(t,8) = (X + (1 = 8).u).e” At

O

= p.e Hle

()\ + M)e—()\—ku).xdw

)=P(X=tt<Y)
Ne M et

)=P(Y =t,X > 1)
-t

6=0,1, 0<t.

Problem 2.31.Suppose that X has a Beta distribution with parameters « and (.

(a) Find the density function of Y = X (1 — X)L

(b) Suppose that @« = m/2 and f = n/2 and define Y as in part (a). Using the definition of F

distribution, show that nY/m ~ F(m,n).

Solution.(a) Define Y = h(X) = %, then X = h~1(Y) =

By Theorem 2.3:

1+Y
o) = P N2 = e )
N B(;,ﬁ)(y-ykl)al(y}rl)ﬁl((ljw)
- B(;ﬁ) Yy + 1) (0 <y < )
(b) Let U =% x*(m) and V =7 x2(n) be independent . Then, ¥y =2 B(%, %) and F = T =4
F(m,n). Consequently:
nY n X X/m YU g

=4 F(m,n).

m ml-X (1-X)/n YU~

n

V/n
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U

Problem 2.33. Suppose that X ~ x?(n).

(a) Show that E(X") =2"T(r +n/2)/I'(n/2) if r > —n/2.
(b) Using part (a), show that E(X) =n and Var(X) = 2n.

Solution. (a)

r _ ° r _ > T 1 nja—1,—x
E(X") = /0 x fx(a:)dzv—/o x (Ww 12=1e=2/2) g
F(n/2+7,)2n/2+r 00 xn/2+r—1€—m/2 B F(n/2+r) .
T(n/2)2772 /0 T(n/2 1 r)2n/ze xr = T(n/2) 2" if r+n/2>0.
(b)
 T(/2+1) . (n/2T(n)2) ,
EX) = e 2T Ttm) iT
~ T(n/2+2) , (n/2+1)(n/2)I'(n/2) o
E(X?) = F(n73) 22 = T (n/2) 2% = (n+2)n.
Var(X) = E(X?) — FE*X)=2n.
(]

Problem 2.35. Suppose that W ~ F(m,n). Show that

Q)TF(T +m/2)T'(—r +n/2)

BWh = T(m/2)0(n/2)

if —m/2 <r <n/2.

Solution. As for two independent U,V with U =¢ yx%(m) and V =% x%(n) we have W =4 [{//% =d
F(m,n), two applications of Problem 2.33(a) imply:

U/m T n T T —-Tr n T T bt

TR = (Y BUVT) = () BBV )

vl (r+m/2) 0 o T(=r+n/2)

"y " T

SL(r+m/2)L(—r +n/2)
PN TE)

EW") = E((

=

=

if —m/2<r<n/2.

Il 33

O

Problem 2.37. Suppose that X ~ N,(u,I); the elements of X are independent Normal random
variables with variances equal to 1.

(a) Suppose that O is an orthogonal matrix whose first row is u”/||u|| and let Y = OX. Show that
E(Y1) = ||u|| and E(Yy) =0 for k > 2.

(b) Using part (a), show that the distribution of || X||? is the same as that of ||Y||? and hence depends
on p only through its norm |||

(c) Let 6% = ||u||?. Show that the density of V = ||X||? is

© exp(— 2 2 k
frte) = Y SPEEELEE )

k=0
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where for () is the density function of a x? random variable with 2k 4+ n degrees of freedom. (V has
a non-central x? distribution with n degrees of freedom and non-centrality parameter 62.)

afy ---af, X1
Solution.(a) Let O = e and X = [ --- | Then:

a£1 o agn Xn

X1 ,U
le(a?lv"' aln ZalzX ZHZHX
n
and hence:
IINH |l [

Next, as (a}y, -+ ,al ) =Y, L Y1 = (u1,-++ ,pun) (k> 2) it follows that:

n n n
=B ah.x) =Y ahBEX) =Y afim =0
i=1 i=1 i=1

YII?P=YTY = (0X)T.(0X) = XT.(0T.0).X = XxT.X = | X|*

(c) First, V = ||X||2 HY||2 SE L YE=YE4+ 3", V2 =U+ W such that U = Y2(V; =4 N(0,1))
and W =", Y2 =4 x%(n — 1). Furthermore:

_ /2 OVE | —O0VE —t/2
fult) = W(e +e ).e (t>0), (%)
and
H(n—1)/2-1 ,—t/2
fw(t) = (t>0). (*x)

2(=D/2T((n — 1)/2)
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Second, using (*) and (**) it follows that:

foie) = [ fute)fwte - v
_ /0 x(%@m +e Ve ) (@2(—”?1(;1;/(2(:i(;/—;)’ &
‘392/2'(/:(6M S \/ﬂfé@tl);g_rl()gi D/2)
692/2'(/;(,2 R e s
T L Yt VN S

)dt

)2

il (BB y/2m2(n=1)/2=kD((n — 1) /2)
00 2 7ok (2k+n)/2—1

—62/2 (0 /2) x —z/2

c '(kzzo( P 2@k+1)/2T((2k + n)/2) ))e

i (o /D" z(3ktn)/2-1 e—o/?)

ST TR CERT((2k + n)2)”

2 g2y (02/2)F

S (e O e,

k=0 ’

O

Problem 2.39. Consider the marked Poisson process in Example 2.22 where the call starting times
arrive as a homogeneous Poisson process (with rate A calls/minute) on the entire real line and the call
lengths are continuous random variables with density function f(x). In Example 2.22, we showed that
the distribution of N(¢) is independent of t.

(a) Show that for any r,

Cov(N(t),N(t+r)) = )\/OO xf(x)dx = N|r|(1 = F(|r])) + /00(1 — F(x))dz]

7 u

and hence is independent of ¢ and depends only on |r|.

(b) Suppose that the call lengths are Exponential random variables with mean u. Evaluate Cov(N (t), N (t+
7)). (This is called the autocovariance function of N(t).)

(c) Suppose that the call lengths have a density function

flz)=azt if o> 1.

Show that E(X;) < oo if, and only if, @ > 1 and evaluate Cov(N(t), N(t + r)) in this case.
(d) Compare the autocovariance functions obtained in parts (b) and (c). For which distribution does
Cov(N(t), N(t +r)) decay to 0 more slowly as |r| — co?
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Solution. (a) Fix r > 0, then:

o0 o0
Coo(N(t),N(t+7)) = Cov(d_ Iis,<tacsi+Xi<tir) + O LS, <titresitx0);
i=1 i=1

oo o
Y Lsictitr<siixiy T O lu<si<tiniir<siix,)
=1 =1

o o0
= COU(Z I(SiSt,t+T§Si+Xz‘)7 Z I(Siét,t+7‘§S¢+Xi))
=1 =1

o0 o0
= Cov(Y  I(s,<ti<sitXitx, o) 2 L(Si<t4<54 X, 1x,5,))
=1 =1

oo
= VC“"(Z I(Sigt,tgs,-+xi.1xi>T))
i=1

o0
= E(Z [(Si§t7t§51+Xi~1Xi>r))
=1

= MNEX1lxs,) = A /OO T 1psy f(x)dr = A. /OO z.f(z)dz.
0 r

(b)
AFi(r) = Cou(N(t),N({t+7r))=A(r[.Sx(|r|) + lTOSX(x)d$)
— A(re [T e
(Ir|.e /r| e x)
] el 1
Alr|.e (|7”\+M)
(c)First,
E(X):/ m.fX(:v)da::/ %d:ﬂ<oo<:>oz>1.
1 1

Second,

AFy(r) = Cou(N(t),N(t+r)) = )\./OO x.f(x)dx

7

® o a
= \ —dz = \——(1/|r)>L.
[ e =20/

r| &
(d)First, as

AF A lrl.e=trl(p] + L 1 a a—1
LCAR() Al “‘*):nm(” y(lrl 11l
r—00 AFQ('/“) r—00 )\_ﬁ_(l/|r|)a*1 r—oo. etIr]

it follows that AF} = o(AF,) and AF» tends to 0 slower than AF}.

Second, define:

) =0,

_def AFl(r) — (a — 1)(|r‘a + ‘T’ail/’/i’)
AF5(r) o etlr]

Then, lim, 1+, G(r) = 0 = lim,,0 G(r) and G(r) > 0 (—oo < r < o00). Furthermore, G takes its

(a=Dty (a2;1)2+4(a_1), (Exercise!). Hence: AF; < G(rg).AF;.

G(r)

—o0 < r <o

maximum value at rg =

O
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Chapter 3

Convergence of Random Variables

Problem 3.1. (a) Suppose that {XT(LU} {X } are sequences of random variables with Xy, QRN —p 0
asn — oo for each i =1,---, k. Show that

max | X —p 0

1<i<k
as n — oo.
(b) Find an example to show that the conclusion of (a) is not necessarily true if the number of sequences
k =k, — oo.

Solution. (a) We prove the assertion by induction on k. For k = 1, it trivially holds. Let it hold
for £ > 1, (induction hypothesis). Then, for € > 0, as lim, o P(maxi<i<g ]XT(LZ)| <€ =1=
limy,ye0 P(IXETY| <€), it follows that:

= lim P(max |[X{| <€) < lim P(( max XD < e u (x| <€) <1,

n—00 1<i<k n—o00 1<i< -

and consequently:
lim P((max [X0] < U (XD <) =1 (x)

n—00 1<i<k

Now, using (*) and another application of above assumptions and Proposition 1.1.(c), it follows that:

lim P( max |XW|>¢€ = lim P(max( max IX@| | XFFD]) > €
n—r00 1<i<k+1 n—00 1<i<

= 1 lim Plmnax(max | X, [XE) <

n—

= 1— lim P((max |[XW| <e)n (| XFD| <))

n—o0 1<i<k

= 1— lim [P(max |X7] < ) + P X <)

n—o0 1<i<

— P((max X < U (XS] < )

= 1-(1+1-1)=0.

(b) Fix 1 <4, and define {X }°° = {}°2,. Then, lim,_,o x{P =ro (1 < ). Furthermore, for

k(n) = n?, we have max;<;<}, (n) |X7(l | =1, and consequently, limy, o max; <j<p(n \X( )] =P1+£0.
O
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Problem 3.3. Suppose that Xy, --- , X, are i.i.d Exponential random variables with parameter A and
let M,, = max(Xy,---,X,). Show that M, —In(n)/\ —4 V where

P(V < z) = exp[— exp(—Az)]

for all z.
Solution.
~ In(n) - In(n) R In(n)
nh—>n<}o P(M N = x) nh—{%o P(M, < h\ + ) nh—{goHP(X’ < + )
= lim |[(1- e—A(l"§”)+x))) — lim (1 — ¢~ (n()+A2)
. —e AT n

= Jim (1-——)" = exp(—exp(-Ax)) —o0<w <.

O

Problem 3.5. Suppose that Xx has a Hyper-geometric distribution (see Example 1.13) with the
following frequency function

C(MN,:L‘)C(N—MN,TN—.T)
C(N,TN)

fy(z) =

for = max(0,7y + My — N),--- ,min(My,ryn). When the population size N is large, it becomes
somewhat difficult to compute probabilities using fy(z) so that it is desirable to find approximations
to the distribution of X as N — oo.

(a) Suppose that Ry — r(finite) and My/N — 6 for 0 < 6 < 1. Show that Xy —4 Bin(r,0) as
N — oo.

(b) Suppose that ry — oo with ryMy/N — X > 0. Show that Xy —4 Pois(\) as N — oc.

Solution. (a) Using Stirling’s formulae we have:

lim —>T—N—>0fN()
C(Mpy,z)C(N—Mpy,rn— z) _

llmTN%r,”TNae C(NaN)
( My ) (N—Mpy)! )
lim M (M —a)lz!l !\ (N— MN (ry—o)'(ry —a)! _
rN =T, —0 (m)
lim ! My !(N=Mp)|(N=ry)!

oy, 220 30 Gy 211 (W 21N My~ )N =
(M N2 (N = M) V= MN L) (N —r )N TN 12 _
C( ). hm N MTHO (Mn— x)levv TH/2)(N— My —(ry—2)) V- MN-ON=2)F1/2)(NNF1/2) —

O(T’x)'hmrN—M‘,MTN%Q[(M]\I{Iix)MN (%)1/2 * (WJ\%)UZ % ((Mfo)wUz];%JX]}(;fo))TN—z) .

(NYVTN)N % (N;\;"N)]./Q % (N—J\ilvN_—]\?&—x))N_MN] —

Clrya).dim, oy [e7 5 L L (R0)7 (R we " w Lxel ) =

N—r N—ry
C(r,x).0%.(1—0)—*.
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(b) Using Stirling’s formulae as in part (a) we have:

C(Mpy,x).C(N — My,ry —x)

lim In(z) = lim
TN—>oo,rNMTN—>)\ TN—>oo,rNMTN—>)\ C(N7 TN)
. e 'rie" My e (N — My)"™N"%e'™N"%
= 1m
rNﬁoo,rN%—))\ NTNern
1 b (M N My
! rNﬁm,rN%—))\ N N
M
1 . NN
= A% lim (1-— N_yrn
£ TNﬁoo,rNM—I\f\’—))\ N
— i A 6—)\

O

Problem 3.7. (a) Let {X,,} be a sequence of random variables. Suppose that E(X,) — 6(where 6 is
finite) and Var(X,) — 0. Show that X,, —, 0.
(b) A sequence of random variables {X,,} converges in probability to infinity (X, —, oco) if for each
M >0,

lim P(X, < M) = 0.

n—oo

Suppose that E(X,) — oo and Var(X,) < k.E(X,,) for some k < co. Show that X,, —, cc.

Solution. (a) Given € > 0, then by Theorem 3.7:

2
lim P(|X,, — 0] >¢) < lim E((Xn2 %)°)
n—oo n—o0 €
;2
—  lim Var(X,)+ (f(Xn) 0)
n—00 €
= 0,

implying: lim, o P(|X,, — 0] > ¢€) = 0.

(b) Given M > 0, then there is N > 1 such that for any n > N we have M < (1 — M+H)E(Xn)
Consequently, for € = M%rl an application of Theorem 3.7 yields:

lim P(X,, < M) < lim P(X,<(1-¢E(X,))= lim P(X, — E(X,) <—-cE(X,))

n—oo n—oo n—o0

. . E(|X,— E(Xn)]?)
< nll)nolo P(|Xn — E(Xy)| 2 .E(Xn)) < nh_{rolo 2. E2(X,)

‘ k
s Sy~

and consequently, lim,, ., P(X,, < M) = 0.
O
Problem 3.9. Suppose that Xi,---, X, are i.i.d. Poisson random variables with mean A. By the
CLT, B
VX, — ) —q N(0,N).
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(a) Find the limiting distribution of \/n(In(X,) — In(\)).
(b) Find a function g such that

Solution. (a) By Theorem 3.4. for a,, = v/n, g(z) = In(z) (¢'(z) = 1) and X, instead of X,, we
have:

lim V/n(In(X,) = In(A) =*

(b) One non-trivial answer is g(z) = 2/ (¢'(z) = ) :

n—oo

lim \/ﬁ(z\/i —2V\) =4 \15 (0,A) =% N(0,1).

O

Problem 3.11. The sample median of i.i.d. random variables is asymptotically Normal provided
that the distribution function F' has a positive derivative at the median; when this condition fails, an
asymptotic distribution may still exist but will be non-Normal. To illustrate this, let Xi,---, X, be
i.i.d. random variables with density

1
f(z) = 6|ggr2/3 for|z| < 1.

(Notice this density has a singularity at 0.)
(a) Evaluate the distribution function X; and its inverse (the quantile function).
(b) Let M, be the sample median of X, .-, X,. Find the limiting distribution of n3/2M,,.

Solution. (a) As,

Fx(z) = P(X < 2) = 1y (2)-(—

)+ 1(1,00)(2)-
it follows: F~1(t) = (2t — 1) (0<t<1).

(b) First, for Uy, --- ,U, ~ Unif[0,1] with E(U;) = 1/2 and Var(U;) = 1/12 as application of Theorem
3.8 yields:
VAT —1/2) 54 N(0,1/12). (%)

Second, by Problem 3.10(c) for k > 1:
1
b (0(X2) — 9(0)) —a 10D (O)2° ()

Now, in (*) and (**) take g(8) = F~1(#). Then, ¢ (1/2) = ¢ (1/2) = 0, and ¢ (1/2) = 48 # 0.
Consequently:

(Vn)2(F~YU,) — F71(1/2)) =4 %4823, (% * %)

and by F~1(U,) = M,, and F~1(1/2) = 0 it follows from (***) that:
n32M, —482%: Z ~ N(0,1/12).

O
Problem 3.13. Suppose that Xi,---, X, be ii.d. discrete random variables with frequency function

x
f(x)—ﬁ for £ =1,2,---,6.
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(a) Let S, = > 54 k.Xj. Show that

(Sn — E(Sn))

Var(Sy) —a N0, 1)-

(b) Suppose n = 20. Use a Normal approximation to evaluate P(Sa > 1000).
(c) Suppose n = 5. Compute the exact distribution of S,, using the probability generating function of
Sy (See Problems 1.18 and 2.8).

Solution. (a) As E(X) = E and Var(X) = E it follows that Var(S,) = 2 > h_q k*. Hence, by

Theorem 3.9 for X} = X’“Zio(/)g’“) in which E(X*) =0and Var(X}) =11t follows that:

lim M —  lim Ek 1 kX — (22:1 k. Xk)

n—=oo \ /Var(Sy) n—00 20/ ZZ L k2

I EE

=1 N(0,1).

(b) As E(S,) = 2n(n+1) and Var(S,) = $2n(n+1)(2n+1) (n > 1), it follows that:

So9 — E(Sa) - 1000 — (13/6).20.21

P(S20 > 1000) = P( VVar(Syw) — +/(10/27).20.21.41

)= P(Z >1.127) ~ 0.13.

5 5

5 6
Ps,(t) = ][] Pex.(t) H B = T[O_@” ;1)
k=1 1 o=1

k= k= X
5 6 6 6 6 6 . 5
B (i)E) H(Z N tk,;p) B lezl Zx2:1 Zzg:l Zx4:1 sz:l(:El“,L,Q‘1.3‘x4'$5)tx1+2.x2+3.x3+4.x4+5.xo
N ‘ N 215 ’

k=1 z=1

it follows that:

k
i B Pés)(o) . Za:l+2.x2+3.x3+4.x4+5.x5:k:1§xi§6($1'x2‘x3'x4"r5)
P(Ss = k)= 5 = = .

O

Problem 3.15. Suppose that X1, X2, -, X, are independent Bernoulli random variables with
parameters 0,1, - - , Onn respectively. Define S, = X1 + Xpo + -+ + X

(a) Show that the moment generating function of S, is

n

mn(t) = [ [(1 = 6 + i exp(t)).
1=1

(b) Suppose that

n
E Opni > X>0 andlmax Oni — 0
. <i<n
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as n — oo. Show that
In(mn(t)) = Mexp(t) — 1] + rn(t)

where for each t, r,(t) — 0 as n — oo.
(c) Deduce from part (b) that S, —4 Pois(A).

Solution. (a)

mn(t) E( tSn) _ E( t.Z?IIXm) _ HE( tXm) _ H((l _em) +9m‘.€t).
i=1 i=1
(b) By definition:
. . ot
nh_}rgoln(mn(t)) = nh—>Holo 1ln(1+9m(e 1))
. "= —1k_19m'6t—1 k
i 3 U e -
i=1 k=1
N (o o~ (1R (Ol — 1))
= 7};{20'2(0,”.(6 1)+Z 2 )
=1 k=2
noox k I(Qni(et—l))k
= T}L%Z"me—HZZ A )
i=1 k=2
= (e —1)—|—nh%rrolorn(t),
in which
. . > 9m et—l k
T ()] < tim 33 Cmlle =
i=1 k=2
o (Onil(ef = 1)1
< nh_)r{.lo Zem* ; 2 " —1])]
00 k=1
< > g (3 Psien Gl DI ey,
e k=2
o0 k-1
= i (>0 i (3 G E DIy
i k=2

= Ax0=0,
or limy,, o |rn(t)| = 0.
(c) As

nh_>120 mg, (1‘;) = nlj_}ﬂ(;o(e/\(eXP(t)_l).ern(t)) — e)‘(eXP(t)_l) = Mpois(\) (t) —00 <t < o0,

by second method described on page 126, it follows that:

lim S, =4 Pois()).

n—oo
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O

Problem 3.17. Suppose that X, ---, X,, are independent nonnegative random variables with hazard
functions A1 (x),- -, A\p(x) respectively. Define U, = min(Xy, -+, X,,).
(a) Suppose that for some a > 0,

1o o
nh—%lona;)\i(t/n ) = Ao(t)

for all £ > 0 where [ )\0 t)dt = co. Show that n®U, —q V where P(V > x) = exp(— [ Xo(t)dt).
(b) Suppose that X7, -- X are i.i.d. Weibull random variables (see Example 1.19) with density
function

f(z) = A2 Lexp(=A.2?) (z > 0)
where A\, a > 0. Let U,, = min(Xy, -, X,,) and find « such that n®U,, —4 V.

Solution. (a) By fundamental relationship between survival and hazard functions in page 28 it follows:

lim Spey, () = 7111—{201_‘[5”0")("(15) :nh_{gol_llsxi(t/n )

t/n™ n t
= n]ggonexp / Ai(u)du) = Jin;oexp(—;/o Ai(u/n%)du)
= exp(—/0 nh_)rglo Wdu) = exp(—/o Ao(u)du) = Sy (t). (0 <t < o0)

(b) By Part (a) it is sufficient to find @ > 0 such that lim, o == 37 | Ai(t/n®) = Ag(t) in which
Jo7 Ao(t)dt = co. But by Example 1.19, A;(t) = A.8.t°~1 (¢ > 0), and furthermore:

lim —Z)\ (t/n*) = lim

n—oo N n—»00 no
= lim M\.AB.771 !
T oS T ne-B—1
1
= ABP ifa==.
B
Note that, fooo A.B.tP71dt = 0o, hence we may take \g(t) = A.B.t9~1 (¢ > 0).

U

Problem 3.19. Suppose that {X,,} is a sequence of random variables such that X,, —4 X where F(X)
is finite. We would like to investigate sufficient conditions under which E(X,,) — E(X) (assuming that
E(X,) is well-defined). Note that in Theorem 3.5, we indicated that this convergence holds if the X s
are uniformly bounded.

(a) Let § > 0. Show that

BIX[%) = (1+0) [ 2P > )
0

(b) Show that for any M > 0 and § > 0,

1 o0
/P|X>:z)da:<E(\X| /P|X]>x)da:+M6/ O P(|Xp| > 2)d
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(c) Again let 6 > 0 and suppose that F(|X,|'*°) < K < oo for all n. Assuming that X,, —4 X, use
results of parts (a) and (b) to show that F(|X,|) — E(|X]|) and E(X,,) — E(X).

Solution. (a) This follows from Problem 1.20 with replacing X with | X,| and r =1+ ¢.

(b) Given M > 0. By definition in Page 33, we have:

M 00
/ P(|X,| > x)dz < / P(|X,| > x)dx = E(|X,])
0 0

M
= / P(|X,| >z
0

M
<M<z / P(| X, > =
0

)d:L‘—I—/ P(|X,| > x)dz

M

)dw—i—/ (ZVP(|X| > 2)da
M M

(c) Fix, M > 0 and n > 1. Then, by Part (b):

M M 1 0o
/ P(|X,| >x)dz < E(|X,]) < / P(|X,| > x)dx + e / 5P(|Xn] > z)dx
0 0

M 146
E(|X,

/ P(‘Xn| >:E)d$+(|Jw(|;)

0

IN

IA

M K
/0 P( Xl > 2)da+ 175 (+)

Taking limit as n — oo from three sides of (*) it follows that:

/0 P(IX| > 2)de < lim (B(|X,])) < /0 P(IX| > 2)de + 5. (++)

Next, taking limit as M — oo from three sides of (**) it follows that:
/ P(|X]| > z)dx < le (1Xnl)) / P(|X| > x)dx. (** %)
0 n

Consequently, by (***) and definition E(|X|) = [;* P(|X| > z)dx, the assertion follows. Finally, the
later assertion follows by considering |E(X,,) — E(X)| < E(|X, — X|) (n > 1) and applying the first
assertion for the case X =X, — X (n>1).

O

Problem 3.21. If {X,,} is bounded in probability, we often write X,, = Op(1). Likewise, if X,, —, 0
then X,, = op(1). This useful shorthand notation generalizes the big-oh and little-oh notation that is
commonly used for sequences of numbers to sequences of random variables. If X,, = Op(Y,,) (X, =
op(Yy)) then X,,/Y,, = Op(1) (X,,/ Y, = op(1)).

(a) Suppose that X,, = Op(1) and Y;, = 0p(1). Show that X, + Y, = Op(1).

(b) Let {ay} and {b,} be sequences of constants where a,, /b, — 0 as n — oo (that is, a,, = o(b,)) and
suppose that X,, = Op(ay). Show that X,, = op(by,).

Solution. (a) Given € > 0, by assumption there is N > 1 and M, > 0 such that:

P(Xa] > €) < % (n>N), P(|Ya]>M)< % (n>1).
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Then:

P(IXp,+Y, > M. +e) < P(|Xn|+|Ynl > M:+e)
= P(|Xn|+|Yn| > Mc+en|X,| >€) + P(|Xn| + Vo] > Mc+en|X,| <e)
< P(|Xn| > €) + P(|Yn| > M)
< €/24+¢€¢/2=¢. (n>N)

Next, for 1 <n < N, take M, > 0 such that P(| X, + Y| > M, ) < e. Finally, take

M} = max( max M, ., M+ ¢),
1<n<N
then:
sup P(| X, + Y| > M) <e
1<n<oco
(b) Given € > 0. There is M, > 0 such that sup;<,<oo (|§:] > M) < e. Then, there is N > 1 such
that for any n > N we have: |32 < 3. Accordingly,

X X X,
P(|J|>6)=P(|J! ) < P57 > M) <e (n>N).
bn an (| n/b ) an
O
Problem 3.23. Suppose that Aj, Ao, -+ is a sequence of events. We are sometimes interested in

determining the probability that infinitely many of the A} s occur. Define the event:

It is possible to show that an outcome lies in B if, and only if, it belongs to infinitely many of the Aj s
(a) Prove the first Borel-Cantelli Lemma: If )7 P(Ay) < oo then

P(Aj infinitely often) = P(B) = 0.

(b) When the A} s are mutually independent, we can strengthen the first Borel-Cantelli Lemma. Sup-

pose that
> Pl =
k=1

for mutually independent events {Ay}. Show that

P(Aj infinitely often) = P(B) = 1,
this result is called the second Borel-Cantelli Lemma.
Solution.(a) By definition:

0< P(B) = P(N2, U, Ap) < }éfl P(UR, Ap) < g; P(Ap) =0,
=n

as y poy P(Ag) < oo. Hence, P(B) = 0.
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(b) Given the assumption > ;2 | P(Ay) = oo we have > ;2 P(Ag) =00 (n > 1) and hence:

0 < P(BY) =P M2, A7) < Y P, AD) = Y (TT(1 - P(4w))
n=1 n=1 k=n
< S (] exp(=PA0) = 3 exp(= 3 P(4) = S0 =0,
n=1 k=n n=1 k=n n=1

implying P(B€) =0 or P(B) =
O

Problem 3.25. Suppose that X1, X, -+ are i.i.d. random variables with E(X;) = 0 and E(X}') < oo
Define:

1 n
:H;Xi.

(a) Show that E(|X,|*) < k/n? for some constant k.
(b) Using the first Borel-Cantelli Lemma, show that

X7n —wpl 0.

(This gives a reasonably straightforward proof of the SLLN albeit under much stronger than necessary
conditions.).

Solution. (a) By Problem 1.21, E(X?), E(X3) < co. Next, by Cauchy-Schwartz inequality in Problem
2.17 it follows:

E(IX.|) = £ > Xl = ﬁE(Z SN X XX, Xi,)
i=1

i1=11io=1143=1144=1

1 n n n n
= a2l 2. 2. > X XiXiX)
11=112=1143=114=1
1
= lc(.2) S B(X?.X2) +ZE
1102
+C(47 1) Z E(Xi1Xi2Xi3Xi4)
i1#i2=1i3=14
+C(47 2) Z E(Xi1Xi2Xi3Xi4)
i1 #£ia=1i3714
+ Z E<Xi1Xi2Xi3Xi4)]
i1A90Fi3 A0
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1

m[C(‘L 2n’E(X}H) +n.E(X})

+C(4,1) > E(Xi)E(Xi,Xi, X))
11 Fi2=13=1i4

+C(4’ 2) Z E(Xl1)E(X12X13)E(XZ4)
i1F£1Ia=13714

+ ) B(X:,)E(Xi,)E(X3,)E(X,,)]

i1 Ai0F i3 Al
2 4
< 2.0(4,42).n E(X;l) _ 2.C(4, 2)2E'(XZ )7
n n

and hence for k = 2.C(4,2).E(X}) the assertion follows.
(b) Referring to discussion of Page 159, it is sufficient to prove that for any € > 0, we have
P(MiZy U2y, [ Xkl > €) = 0. (%)

To do so, let A = (|Xi| >¢€) (k> 1) and take g(x) = 2* in Problem 3.8. Then:

B 1 k.2
a 2.2 =g <o
k*=1

€

iP(Akz) < iﬂ‘iw) <
k=1

k=1

and the (*) follows by the first Borel-Cantelli Lemma.
(]
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Chapter 4

Principles of Point Estimation

Problem 4.1. Suppose that X = (X3,---,X,,) has a one-parameter exponential family distribution
with joint density or frequency function

f(@;0) = exp[0.T(x) — d(6) + S(x)]
where the parameter space © is an open subset of R. Show that
Eplexp(sT(X))] = exp(d(0 + s) — d(0))

if s is sufficiently small.

Solution. Fix 6 € ©. Given open © C R, there is € > 0 such that for the open ball B(f,¢€) we have
B(6,¢) C ©. Consequently, for any s € B(f,¢) :

Eyleap(sT(X))] = / exp(sT (). f(z; 0)da = / exp(sT(x) + 0.T(x) — d(6) + S(z))dz

~ / cxp((s + 0)T(x) — d(0 + s) + S(a))dz)exp(d(d + s) — d(6))

= (/ f(z; s+ 0)dx)exp(d(8 + s) — d(0))
= exp(d(f + s) —d(9)).

O
Problem 4.3. suppose that Xy, .-, X, are i.i.d. random variables with density

f(x;01,02) = a(01,02)h(x) for 0; <x <60y 0, otherwise

where h(z) is a known function defined on the real line.
(a) Show that

02
a(fy, ) = (/ h(z)dz)™L.

01
(b) Show that (X(1), X(9)) is sufficient for (61, 02).

Solution.(a) As

02 02
a(91,02)./ h(m)dx—/ a(91,02).h(m)da:—/f(x;01,92)dx—1,

01 01 X



44 (© 2018 by Chapman & Hall/CRC

it follows that: a(61,602) = 1/(f,> h(z)dx).

(b) Using Theorem 4.2 for the joint density function of X = (Xy,---, X,) it follows:

n n

F(x:601,605) = ] flais61,02) = [[(a(6r,02)-h(w:)- 19, 0, (1))
=1 =1

= (a(01,02)"1jp, 1o0) (X (1)L (00,00 (X ())-(] [ 1))

=1
= g (X, Xn)); (01,62)).h"(x),

and accordingly, (X (1), X(2)) is sufficient for (61, 62).
O

Problem 4.5.Suppose that the lifetime of an electrical component is known to depend on some stress
variable that varies over time; specifically, if U is the lifetime of the component, we have

lAii%iP(x <U<a+AlU>z) =\ exp(B.6(2))
where ¢(z) is the stress at time x. Assuming that we can measure ¢(z) over time, we can conduct
an experiment to estimate A and 3 by replacing the component when it fails and observing the failure
times of the components. Because ¢(x) is not constant, the inter-failure times will not be i.i.d. random
variables.

Define non-negative random variables X; < --- < X,, such that X; has hazard function

A(@) = A exp(B.6())
and conditional on X; = z;, X;+1 has hazard function
Aiv1(z) =0 if z <x;; Aexp(B.¢(x)), if x> x;

where ), 5 are unknown parameters and ¢(z) is a known function.
(a) Find the joint density of (X1, -, Xp).
(b) Find sufficient statistics for (X, 3).

Solution. (a) Using fundamental relationship between density function and hazard function (page
29), it follows that:

n—1 n—1

o fX1,~'~7Xi+1(:E17" ) 7xi+1) .

fX1,~~~,X7L(x1a"' 7'7;77,) - ZIZTO( fX17...7X,L-($1,"' ,xi) ) - E)in+lX17M7Xi($z+1‘x1’”. 7$Z)

n—1 Tit1

= H[)‘XH_lXl,u-,Xi(xi-i-l)exp(_/ AX ;i1 |X0, X, (E)dt)]
i=0 T
n-l Tit1

= H[)\-l[xi,oo)($i+1)-€9€p(5¢(wi+1))-€iUP(—/ AXi 11X, X (D)dt)]
1=0 x;

= lo<czi<o<a, (1, ,a:n).)\".exp(z ﬂ.(l)(xi)).emp(—)\.Z/ exp(B.¢(t))dt)

i=1 i=1 Y %i-1

= lpcarcoca (@10 20) A erp(3 0 (Bd() — A /0 " cap(Bo(t))dt).

=1
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(b) Using Theorem 4.2 for the joint density function of X = (X, -, X,) we have:

le,"' Xn (1’1, e a:L'n) = A”emp(Z(ﬁqﬁ(mZ)) - >‘/0 ' exp(ﬁ¢(t))dt)'10<z1<---<xn (:Ela o 7$n)

i=1

= g*(<z ¢<$Z),l’n)7 (57 /\))'h*(xlv T 7'%'71)7
=1

and, thus (3°1" | ¢(x;), zy) is sufficient for (5, ).
U

Problem 4.7. Suppose that Xi,---, X, are i.i.d. Uniform random variables on [0, 6] :
1
f(z;0) = g for 0 <z <4.
Let X1y = min(Xy,- -+, X;,) and X,y = max(Xq, -+, Xp).

(a) Define T' = X (,,)/ X(1). Is T' ancillary for 6 ?
(b) Find the joint distribution of 7" and X(,,). Are T" and X(,,) independent ?

Solution. (a) First, let X;,---, X,, be a random sample from a population with CDF Fx and pdf fx.
then, for the ordered statistics X(;) < -+ < X(,,) and 1 <i # j < n we have (Casella & Berger, 2002):

! fx (u).fx(v).Fx(u)' ' (Fx(v) = Fx(u))~'7'(1 = Fx(v))"7

».¢ = Jycn(u,
T, (1, 0) (i—DIG—1—9)(n—j) <o(t:0)
Thus, for our case of i = 1 and j = n it follows that:
nn—1) v—u,,_ n(n —1)(v —u)"2
fX(l),X(n) (u,v) = (O.n )( n ) *Lo<ucv<o(u, v) = ( )én ) Lo<u<v<o(u, ).

Consequently:
Fr(t) = P(<t)=P(X <tXo) = [ [ P Xy (1 0) i
Xmst-Xa)

O v onn—1)(v—u)"2? Lin—
_ / / ( )(n ) dudv.l[l,oo) (t)=010-=-)" 1'1[1700) (1),
0 Ju/t 0 !

implying: ; X -
frt) = Srp(ny = T 0. )

Thus, the density of T is independent of # and hence T is ancillary statistics for it.

Xn . _ W _ _d(X 7Xn)_—W
Slf)ﬁ Take 23— X((l)) and W = X(,); then, Xq) = 77, X(,) = W, and J = % = . Now, by
eorem 2.3:
w n(n —1) W, ,_g W
frw(tw) = fxqxe (ow) = = (w- )" 5 leqy,
n(n—1 _ 1, o1 nn—1) w L (t—1)"2
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Thus:
[ee] . n—1 00 —1). _1n72 . n—1
= [ prawwgar = [T Z DA <) e
1 ’ o ) tn on
Finally, by (), (s*) and (x * %) it follows that frw(t,w) = fr(t).fw(w), and thus W and T are inde-
pendent.
U

Problem 4.9. Consider the Gini Index §(F') as defined in example 4.21.

(a) Suppose that X ~ F' and let G be the distribution function of ¥ = aX for some a > 0. Show that
0(G)=0(F).

(b) Suppose that F, is a discrete distribution with probability p at 0 and probability 1 —p at « > 0.
Show that 0(F, )—>0asp—>0and9( ») = lasp— 1.

(c) Suppose that F' is a Pareto distribution whose density is

fz;a) = g(x)*o‘ U for 2 >29>0 a>0,
rog X0

(This is sometimes used as a model for income exceeding a threshold z(). Show that 8(F) = (2.a —
1)~! fora > 1. (f(x;q) is a density for a > 0 but for a < 1, the expected value is infinite.)

Solution. (a) Referring to pages 191-192 we have:

1 Lt p=1(s\ds
G(FX):1—2./O qFX(t)dt:1—2./0 (M)dt. (%)
o Fx (s)ds
Fyl(s) =inf{z : Fy(z) > s} = inf{x: FX( )>s}—a 1nf{f Fx(= )>s}:a.F§1(s). (xx)

Now, by (%) and (xx) it follows that:

Ly [Ny e Fx (s)ds
O(Fy)=1-2. / (fo )dt =1-2. / (f01 a.F);l(s)ds)dt =0(Fx).
(b)Using (%) in part (a) and considering Fp_ (s) = z.1(1)(s) it follows that:
o (Ml (s)ds L Jo Loaney(s)ds
6(F,) =1—2. / (f0 o1 (5)ds Ydt =1—2. /0 ( fol Lo ()5 Ydt. (1)

Next, two times usage of (1), it follows that:

s)d 1
1im9(Fp):12/ lim fo 0461 )S)dt:12./ tdt=1—-1=0,
pﬁo 0 pHO fO pl) 0

1 1 1
lim 0(Fp) =1—-2. / hm(fo 040(.1
p—1 p—1 fO

]( )d B b _
Yt =1-2. ] 0dt=1-0=1.
(1) ( 0

o.xd Zo
F(:U;a):/ =1~ (2)° Ly



2018 apman a 4
@ by Chap & Hall/CRC 7

it follows that:

F_l(s) =inf{zx: F(z) > s} =inf{z:1— (%)O‘ > s} =x0.(1 — s)_é,

implying:

/tF_l(s)ds:/tacg.(l—s)_clvdSZ:L'o. al.[l—(l—t)l_i], 0<t<1). (1)
0 0

Finally, by (*) and ({1) we have:

Ugg=2 1 — (1—¢) = 1
9(F):1—2./(“a1[ (a ) ])dt:1—2[1— S, .
0 T0-5-7 2.0 -1 20 —1

O

Problem 4.11.the influence curve heuristic can be used to obtain the joint limiting distribution of
a finite number of substitution principle estimators. Suppose that 61(F),--- ,0,(F) are functional
parameters with influence curves ¢1(z : F), -+ ,¢r(x : F). The if Xy, -+, X, is an i.i.d. sample from
F, we typically have:

Vn(0;(F,) — 0;(F)) = \}EZ%(Xi;F) + Rnj (1<) <k)
i—1

where R,j —, 0 (1 <j<k).

(a) Suppose that X1, -, X, are i.i.d. random variables from a distribution F with mean p and median
0; assume that Var(X;) = o2 and F'() > 0. If [z, is the sample mean and 6, is the sample median ,
use the influence curve heuristic to show that

N (’;f B g) —4 N5(0,C)

and give the elements of the variance-covariance matrix C.

(b) Now assume that the X/s are i.i.d. with density

p p
F(a:0) = g sean(—le o1

where 6 is the mean and median of the distribution and p > 0 is another parameter (that may be
known or unknown). show that the matrix C in part (a) is:

c_ <F(3/P)/F(1/P) r'2/p)/p >
r@2/p)/p  [Q/p)/p)

(c) Consider estimators of the 6 of the form 0, = s.on + (1 — s)GAn For given s, find the limiting
distribution of \/n(6, — 0).

(d) For a given value of p > 0, find the value of s that minimizes the variance of this limiting distribution.
For which value(s) of p is this optimal value equal to 0; for which values(s) is it equal to 1 7
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Solution. (a) Take

Then,
//L; — M 1 . ¢1(X17F) Rnl 1 . * * * *
~ = —. =— ) X/ +R, =5 +R
\/ﬁ<9n_0> \/ﬁ;<¢2(Xin) * Ry \/ﬁ; i T = O
in which R;, —, <8) . But, by Theorem 3.12, S;; —4 N2(0, C) in which C;j; = Cov(¢1(X; F), p2(X;; F)) (1 <
i,7 < 2). Hence, by Theorem 3.3.

vn (/;AZ : g) —4 N2(02x1, Caxo) : Cij = Cov(d1(Xi; F), p2( X3 F)) (1 <4,5 <2).

To compute the entries of the matrix C, using Example 4.28 and argument in page 200, we have:

Ca = Var(oa(x:F) = Var(* 5 0 — [~ (e BN @) = s, (60 =6)

Ci1 = Var(¢p1(X; F)) =Var(x —0(F)) = /_OO (x — O(F))2dF(z) = 0%, (0(F) = p)
Ciz = C2=Cov(¢1(X;F),¢2(X; F)) = /OO(

—0o0

sgn(X —0).(X — p)
2.F'(0)

sgn(z — )
2F"(0)

).(a — p)dF(z) = B )

giving the following form of the variance-covariance matrix:

sgn(X—0).(X—
C= < (XUQG) (X—p) . (E-F’)(e(ix M))> .
BT ) (2.F’1(9))2
(b) Using answer given in part (a) it follows that:
Cn c“=E(X—-0)") /_OO 3T(1/p) |z —0]°.e dz

B P N2 (w0, _ D /OO op —y Ay
= — r—0).e dzr = ey
) @) T Jo U gl

JS v/ levdy  T(3/p)

I'(1/p) - T(/p)’
O — 1 _ 1 _ 1 :(F(l/p))2
- 2.F'(0))2  (2.f(6:0)2  (p/T(1/p))? p
Cr = BSOSO psguix - ).0x - )

_ ITQ/p) [~ p
= ) /_Oo[pr(l/p)exp(\x —0|P).sgn(x — 0).(x — 0)|dz

= /9 (@ — 0).exp(—( — 0))di = /O Ty ey

p,yl—l/P
1 [ 1
= / Y2 /Pl e Vdy = —1(Z).
P Jo p

T
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(¢) By Theorem 3.2. for continuous function g(<€_>) =sU+(1—5).V, 0, = s.im+ (1 — s).0,, and
parts (a) and (b) we have:
lim Vn(0, —0) = lim Vo + (1= )0, — (s.0+ (1 - 5).0))
= lim [s.(vn(tm — 0)) + (1 = 9)-(Vn(0n — 0))]
—4 5 N0, 28Dy 1) (o, (HER ey

I'(1/p) p
= s.X(p)+(1-9).Y(p),

in which X (p) =2 N(0, F(3/g)) and Y (p) =2 N(0, ( (1/p)) ), may have non-zero covariance.
(d) Define:

Vary(s) = Var(s.X(p)+ (1-15).Y(p))
= Var(X(p)).s* + Var(Y(p)).(1 — 5)* + 2.Cov(X (p), Y (p))-s.(1 - s)
= (VC””( (p)) + Var(Y (p)) — 2.Cov(X(p),Y (p)))-s*
+2.(Cov(X(p), Y (p)) — Var(Y(p))).s + Var(Y(p))
= (Var(X(p) = Y(p)))-s*
+2.Cov(X(p) —Y(p),Y(p)).s+ Var(Y(p))
= ap.8°+bps+cy:
ap = Var(X(p) - Y(p)),
by =2.Cov(X(p) — Y (p), Y (p)),
& = Var(Y (p)).

Then:
d —by, _ Cov(X(p) =Y (p),Y(p))
—V 0 = min = L= , )
ds arp(s) $min(P) 2.ap Var(X(p) —Y(p))
smin(p) =0 = Cov(X(p) =Y (p),Y(p)) =0,
smin(p) =1 = Cov(X(p) =Y (p),X(p)) =0
O
Problem 4.13. Suppose that Xi,---, are i.i.d. non-negative random variables with distribution

function F' and define the functional parameter

o) - U dF@)?
Jo 22dF(x)

(Note that (F) = (E(X))?/E(X?) where X ~ F.)

(a) Find the influence curve of 6(F).

(b) Using X3, - -+, X, find a substitution principle estimator, Oy, of O(F) and find the limiting distri-

bution of f(HA —0).
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Solution. (a) Let 6;(F), and 62(F) have corresponding influence curves ¢1(z; F') and ¢o(z; F), re-
spectively. Then (Exercise !):

(1) Poyuty (25 F) = 01(F) * do(x; F) + ¢1(x; F) * 02(F),
_ (@ F) * 02(F) — 01(F) x ga(z; F)

(i) G (x:F) = - )

By results of page 200 for hy(z) = x and ha(z) = 2% we have:

2 2
0(F) = 25 = G = (P« £L4). (o

Considering ¢1(z; F) =  — 1 and ¢o(z; F) = 22 — po, an application of equations in () and equation
(k) yields:

01(F)
02(F)

¢91*(%)(x;F) = ¢p,(5; F). +01(F).¢%(x;F)

(x — p1).po — M1($2 — [12)
2
Ko

= (=)«
12

2 2
#.ﬁ + Q.ﬂ.x — &.
125 H2 K2

(b) Let in solution to part (a), ¢91*(h)($§F) = A(u1, p2).2% + B(py, po).x + C(u1, pe) in which
)

2 2
A(pr, p2) = M—’él, B(uy, po) = 2.% and C(uq,pe) = —%. then, by the argument on page 200, we
have:

—~

V(0(F,) = 0(F)) —a N(0,0%(F))

where:

o} (F) = /OO ¢*(z; F)dF (x) = E((A(p1, p2)- X? + B, p2). X + Cpn, p12))?)

= B(A(u, p2)* X" + B, 12)? X2 + C(pun, p2)?
+2.A(p1, ) B, po) X2 + 2. A(pa, pa)-Cpua,s ). X2 + 2.B(pa, pia)-Cpa, pia). X)

= B(A(p1, p2)® X" + 2. A, p2) - B(pn, p2)- X + (B, p2)® + 2.A(p1, p)-Cpa, pa))- X
+2.B(p, p2)-Cpn, p2)- X + C(pa, p2)?)

= A, p2)? E(X*) + 2. A(u1, p2) B, p2) - B(X?) + (B(p1, p2)® + 2. A1, o). Cpan, o)) E(X?)
+2.B(ju1, p12).C 1, p2)-E(X) + C 1, pa)?

= A, p2)® pa + 2. A1, p2) B, pa)-ps + (B, p2)® + 2.A(p1, p2).Cpa, o))
+2.B(p1, p12)-C(pa, p2) g + Cpa, p2)?

_ (lﬁ)?uz; + 2.(;15)-(2&)#3 +(@222 2.(_—‘@).(—“—%))#2

13 py T e 12 py o e
2 2
M1 [ad} M2
+2.(2.7—=).(—=).pu1 + ()%
@A) (B g 4 (- H)
O
Problem 4.15. Suppose that Xi,---, X, are i.i.d. Normal random variables with mean 0 and

unknown variance o2.
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(a) Show that E(|X;|) = 0./2/m.

(b) Use the result of (a) to construct a method of moments estimator, ,, of ¢. Find the limiting
distribution of \/n(a, — o).

(¢) Another method of moments estimator of o is:

1 n
7= (L3 x2)2,
G2

Find the limiting distribution of \/n(c,, — o) and compare the results of parts (b) and (c).

Solution. (a)

1 2 o 2 2
E(|X; = —22/2.0? dr / T /2.0 d
(1%:]) 27r0/ [2le \/27T0 0 e v

- / 2.2 (02 /2.6%) = 0.\ /2. / etdt = 0.\/2r.
0 0

2o

(b) As 0 = \/5.E(IX]|) = /5. [T |z|dF(x), it follows that:

—~ 1 O
‘f 2wl (21

Next, by Theorem 3.8, for X = |X;[,(1 <i < n), p* = a.\/g and 02 = (1 — 2).02, (Exercise !) we

2/m) —q N(0,1), or equivalently:

have:

T—2

Vvn(o, — o) =4 N(0, 02). (%)

2

(c)By Theorem 3.8 for X = X2,(1 <i < n), pu* = 02 and 0*? = 2.0* (Exercise') we have /n(X2 —
02) —4 N(0,20%). Then, by Theorem 3.4. for g(z) = /7, and ¢'(z) = gf’ it follows that:

N o?

Vn(o, — o) —q 5,7 N(0,2.0%) = N(0, 7) (%)
Finally, by (*) and (x%) we have:
=2 52
ARE, (0p,0p) = 25— =71 —2> 1.
2

Thus, o, is more efficient than o,

O

Problem 4.17. Let Uy,--- ,U, be i.i.d. Uniform random variables on [0, f]. suppose that only the
smallest 7 values are actually observed, that is the order statistics Uy < Ugy < --- < Ugy.

(a) Find the joint density of Uy, Uay, -+, Uy and find a one-dimensional sufficient statistics for 6.
(b) Find a unbiased estimator of § based on the sufficient statistics found in (a).

Solution. (a) Let Xi,---,X, be iid. continuous random variables with p.d.f f(x) and survival
function S(z). Then, for the smallest r values X(;) < --- < X(,y we have (David, 1981):

fX(l)f" X(r) (x(l)’ e ,l‘(,,)) = T!'C(nv T)[H f(x(i))]'[S(x(r))]n_r'lz(1)<---<x(r>' (*)
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Consequently, for f(z) = 1.1[0,9] (z) and S(z) = (1 — 7).1j0,4 (x) it follows from (x) that:

- 1 U(r n—r
fU(1>7... 7U(r) (u(1)7 e 7u(r)) = r!.C(n, T)[H 5.1[079] (U(z))] [(1 — (9)).1[079] (U(r))] .1u(1)<“.<u(r)
i=1

1=

rl.C(n,r). 1.0 (u()) (0 — ugy)" ™"
- [ 04 07(1) ") ] * [1U(1)<“'<U(r)]

= g (u@);0) % (u@y, s up)),

thus, by Theorem 4.2. T(U(yy, - -+ ,U,y) = Uy, is sufficient statistics for 6.

(b) Using Problem 2.25(b), we have fx , (z) =r.C(n, r).F(z)"~t.S(z)"".f(z), and therefore:

’ Uyr— un—rl 0 U, Usp—p ;U
EUg) = /0 u.r.C(n,T).(E) L1 - 5) .gdu :/o 0.r.C(n, r)(g) (11— 5) d(g)
1 1
= 0.r.C(n,r).2".(1 —2)" "dx = G-T-C(n,r)-/ 2 (1 — )y
0 0
= 0or.C(n,r).B(r+1,n—r+1). (xx)

Accordingly, by (), 6= e XD Blé;il Y is a unbiased estimator of 6.
O
Problem 4.19. Suppose that Xi,---, X, are i.i.d. random variables with a continuous distribution

function £ It can be shown that g(t) = E(|X; —t[) (or g(t) = E(|X; —t[ — |X;])) is minimized at ¢ = ¢
where F() = 3 (see Problem 1.25). This suggests that the median 6 can be estimated by choosing 6,
to minimize

gn(t) =D |1Xi —t|.
i=1

(a) Let X1y < X(9) < ... < X(y,) be the order statistics. Show that if n is even then g, (t) is minimized
for X, p <t < Xy4y/2 while if n is odd then g,(t) is minimized at ¢ :/)\((nﬂ)/Q.
(b) Let F\n(x) be the empirical distribution function. Show that F, ' = Xny2) if n is even and

—

Fn_l = X((n+1)/2) if n is odd.

Solution. (a) As

n i

g(t) =Y 1Xe —t1 =D [Qi—n)t =) X+ > Xp)llxexe®, )
=1

i=1 j=1 j=i+1

it follows that g, is a piecewise linear function of ¢ that each linear piece is decreasing for i < n/2 and
increasing for i > n/2. Let n be even, then g, (t) = 2i — n = 0 if and only if i = n/2 with condition
Xnj2 << X4/, giving X, /o < ¢ < Xy /5 as the minimizing points for g,. Next, let n be odd,
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then using (x):

(n—1)/2 n
Gn(Xniny2) = —Xepn— 2, Xp+ D, Xy
Jj=1 j=(n+1)/2
(n—1)/2 n
< Xnwp— Y, Xt Y, X
=1 j=(n+1)/2

= gn(X(n-1)/2),
implying that ¢ = X(;,,41)/2 is the minimizing point of g,.

—

(b) Referring to page 204, we have Fil= Xy if % <t < L. Hence:

i
n

11 ) o
n=2m : “—<-<iem<i<mt+loi=m=2=F"'=X,,
n 27 n 2
71— 1 4 2m+1 . 2m+3 . 2m+2 n+1 ]

Problem 4.21. Suppose that Xi,---, X, are i.i.d. random variables with distribution function. the
substitution principle can be extended to estimating functional parameters of the form

0(F) = E[h(X1, -, X)]

where h is some special function. (We assume that this expected value is finite.) If n > k, a substitution
principle estimator of 6(F) is
Zz’1<---<ik h(Xil’ T 7Xik)
C(n, k)
where the summation extends over all combinations of &k integers drawn from the integer 1 through n.
The estimator Qis called a U-statistics.
(a) Show that 6 is a unbiased estimator of 0(F).
(b) Suppose Var(X;) < co. Show that

/6'\:

Var(X;) = [B((X1 — X2)*))/2.

How does the ” U-statistics” substitution principle estimator differ from the substitution principle esti-
mator in Example 4.237

Solution. (a) As s are i.i.d. it follows that fro any permutation (i,--- ,i) of (1,--- , k) and any h,
we have E(h(X;,, - ,X;,)) = E(M(X1, -+, X)) = 0(F). Thus:

~ Zi1<~~-<ik E(h(lev o ,sz)) . Zi1<“'<ik H(F) . C(n,k)G(F) .

EB() = Cln k) == Ck Ok )
(b) First, let u = E(X;) (i = 1,2), then:
B((X1— X)) = B(((X1— 1) — (Xo — w))) = B((X1 — ) — 22 — )(Xa — ) + (X2 — )

= Var(X1) —2(E(X1) — p).(E(X2) — p) + Var(Xz2) =2.Var(X;),
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implying:
X1 — Xy)?
Var(X;) = E(h(X1,X2)) : h(X1,Xs) = (122') (%)
Second, by (%) we have:
(Xiy —Xi5)?
G(F)U—Statistics = 1<C2'(7”L,2)2 . (**)
Comparing () with
o(F) =" (4% %)

given in Example 4.17 and Example 4.23 we observe that the one given by (**) is a unbiased estimator
of § = o2, while the other given by ( %) is a biased estimator of it.
O

Problem 4.23. Suppose that Xi,---, X, are i.i.d. random variables and define an estimator ) by

> (X -0
=1

where ¢ is an odd function (¢)(x) = —(—z)) with derivative 1’
(a) Let 6_; be the estimator computed from all the X/s except X;. Show that:

(b) Use approximation ¢ (X; — 0_;) ~ ¢(X; — 5) + (5— @)wl (X; — 5) to show that

I
S ¥ (X —0)

~

(c) Show that the jackknife estimator of Var(f) can be approximated by:

~

n—1 Zz 11/}2( f)
(T Y (X - 0))?

Solution. (a) By definition,
> o w(Xi—0-5) =0. (%)
7]

Adding (X, — 973) to both sides of (x) yields the assertion.

(b)As ¥(X; — 6?/_\]) ~ (X —0)+ (6 — 0_;).0 (X; —0) (1 <i<n), it follows that:

S ux Z +@-0) 3 W (X —8), (+x)
i=1 =1 =1

and, by part(a) and assumption it follows from (xx) that:

22
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implying

~

S~ (X -0) (X -0)
(9 9*]) ~ n P ~ ~ n ; ~
D v (Xi—0) YL (X —0)

or equivalently the assertion.

(c)By definition on page 222 and result part (b) and given assumption in the problem it follows that:

Oe = % S 0/:7, ~f o Lm0 0, and; by another application of the result in part (b) we have:

Sy (X—0)
Var(d) = — D (05— 0a)° ~ - > (0-,-6)
j=1 j=1

n-1s -0 )
n Z(Z?zlw'<Xj—5))) no (S (X —60)2

12

J=1



56

(© 2018 by Chapman & Hall/CRC




Chapter 5

Likelihood-Based Estimation

Problem 5.1. Suppose that Xi,---, X, are i.i.d. random variables with density
f(x;01,02) = a(01,02).h(z) for 6 <x <6, 0, otherwise
where h(x) > 0 is a known continuous function defined on the real line.

(a) Show that the MLEs of 61 and 62 are X(;) and X, respectively.
(b) Let 01, and 65, be the MLEs of 6; and 6, and suppose that h(6;1) = A; > 0 and h(fa) = Ay > 0.

Show that e
n. eln _/0\1 —d <Z1)
o — 02, Zy

where Z; and Zy are independent Exponential random variables with parameters A;.a(f,62) and
A2.a(61, 02) respectively.

Solution. (a) As f;f a(b1,02)h(z)de = 1, it follows that: a(61,62) = 1/( 9912 h(z)dzx). Consequently,
substituting it in the following likelihood equation it follows that:
L(61,02x) = ] f(wi; (61,62))
i=1

= (@01, 02) % n(w:) % 1(_ g2, (61) * Lz, 4o (62))
=1

= a(01,02)" x ([ (@) * L—ooe) (01) * Lag, 400 (62)
=1

7 (T A0 # L1610 # i o0y (02 ()

Accordingly, by (x) we have:

Oy fived (91 Tox a(&l, 92) Tox L(Ql, 92) T) = MLE(Ql) = X(l),
01 fZZEGd : (02 Jox a(01, 92) Tox L(Ql, 02) T) = MLE(QQ) = X(n)'

(b)Let u(n) = u,(x,0) be a differentiable function of n such that lim,_,~ u, = 0. Then(Exercise !),

i’Ll, n
d( D). )

lim (1 4 up)" = exp( lim

n—oo n—o0
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Accordingly, three times usage of () yields:

. T .. _ 01+ .
Jim (Sx(6+ D))" = Tim (1 - /9 F(t:01.0)de)
. a(01,02)(57)h(01 + )
= exp(lim — B )
= exp(—a(bh,02).h(61).7)
fo—
Jim (Fx (6, L) = lim (14 /9 £(t:01,02)dt — 1)"
o a(01,02)()h(02 — L) /([ a(01,09)h(t)dt)
= exp( hﬁm — )

= exp(—a(fy,02).h(02).y) !
lim (Fx (62 — %) — Fx(6y + %))” = exp(—a(f1,05).h(01).x — a1, 02).1(02).y), (Exercisel). (s)

n—oo

Next, considering P(A°N B¢) =1— (P(A) + P(B) — P(AN B)), from (xx) it follows that:

hm F )( 7y)

o0 M(O1n—01),1(02—0n2

hﬁm P(n(ﬁln — 91) <z, n(02 - 9712) < y) =

lim P01, < 61+ —, 00— 2 < 0p2)
n—oo n n

lim 1= [P(1 > 01+ =) + P(0 = £ > 65) = P(1n > 61+ —, 0, — 2 > G,5] =
n—00 n n n

. n " n y n " v
nh_}H;Ol—[HP(X1291+ﬁ)+HP(Xi§92—ﬁ)—HP(91+EZXz'Z@z—ﬁ)}—

1 i=1 1=1
D"+ (Fx (62 = 2)") = (Fx (62— £) = Fx(6: + )" =
(01).x) + exp(—a(b1,02).h(02).y) — exp(—a(b1, 02).h(01).x — a(0y1,02).h(62).y)] =

i

lim 1—[5 ((91+

T
n—o00 n
h

1 — [exp(—a(0y,062).
(1 expa16)01)-0) (1= xplalfr )82 ) =
Fz ()% Fgz,(y), for all x,y.

O

Problem 5.3. Suppose that Xy, -+, X,, Y1, - ,Y, are independent Exponential random variables
where the density of X; is fi(z) = Nf.exp(—X;.0x) for x > 0 and the density of Y; is g;(z) =
Ai.exp(—A;x) for x > 0 where Ay, -+, A\, and 0 are unknown parameters.

(a) Show that the MLE of # (based on Xy, -+, X,,Y1,---,Y},) satisfies the equation

where R; = X;/Y;.
(b) Show that the density of R; is

fr(x;0) =01+ 60.2)"2 for x >0,

and show that the MLE for 6 based on Ry, -+, R, is the same as that given in part (a).
(c) Let 6,, be the MLE in part (a). Find the limiting distribution of \/n(6,, — ).
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(d) Use the data for (X;,Y;),i = 1,---,20 given in Table 5.7 to compute the maximum likelihood
estimate of 6 using either the Newton- Raphson or Fisher scoring algorithm. Find an approximate
starting value for the iterations and justify your choice.
Table 5.7 Data for Problem 5.3.
X y X y X y X y
0.7 3.8 20.2 2.8 1.1 2.8 15.2 8.8
11.3 4.6 0.3 1.9 1.9 3.2 0.2 7.6
2.1 2.1 0.9 14 0.5 8.5 0.7 1.3
30.7 5.6 0.7 0.4 0.8 14.5 0.4 2.2
4.6 10.3 2.3 0.9 1.2 14.4 2.3 4.0

(e) Give an estimate of the standard error for the maximum likelihood estimate computed in part (c).

Solution. (a) As

L0 A, A) = fyi0,00, M) = ([ ] fx. (@i 0 ny yi; 0

=1
- (H()\i'g'e—kiﬁ-xi» * (H( ;e zyz H)\ o i Aiewi0—300 Aol
i=1 i=1
it follows that:
log(L(O0, A1, , An)) = 2. Zlog + n.log(f) — (Z Ai.xi).0 — Z Xi-Yi (%)
Consequently, by (x) it follows that dlog(L(%ij’"' An)) /\% —z;.0—y; =0, (1<i<n),orequivalently,
X—L (1 <i<n). (xx)
Comb+y ==

Finally, another usage of (*) and substituting (%) in the equation yields:

_ leg(L(ev)\h ) n n
0 = 9 0 ZA i
_noy Emm 3 M
B —wift+y 0 ZZlH(J:Z/y,)+1
_noy 2R
é\ i— é\RZ—i-l
(b) First:
d d d o] rY
10) = —Fg(r;0)=—(P(X <rY))=— 0.7 X e M dud
Falri0) = Pa(i0) = (P(Y <) = ([ [T ane e ey

d > -y —)\9ry d A -2
dr(/o Ae MY(1 — )dy = dr(l >\+>\'9.T) 0.(1+60.r)"" forr>0. (xx*x)
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Second, using (x * x) it follows that:
L(0;r) = [[(falri:0)) = [[6-(L+6r)72) = 6" [ [+ 6.0)) 2 (1)

=1 =1 =1

Accordingly, it follows from (1) that:

d d -
0 = —5log(L(0;r)) = - [n.log(0) - 2;log(1 +60.14)]
n " r;
= = =32 — .

(c) All conditions A1-A6 page 245 are satisfied (Exercise !). Next, by Theorem 5.3 we have:

1(6)
J2(0)

”

Vil — 0) —a N(0, ) 1(0) = Varg(l' (x:0)), J(0) = —Ey(l (x30)),

in which

I(x;0) = log(fr(x;0)) =log(h) — 2.log(1 + 6.2)

[@:0) = 5= oo Bl (#360)) =0,
U(2;0) = ;—21 + (131;2.:75)2’
10) = Bo((t(z:6)%) = /000(9.3119&2))2‘ (1 +09.x)2d” - 912/000 8 n Z;zdy N 3%2
10 = - /000(2(9'(361)1_9.(9@1);092@2)((1 +He.x)2)d”” - ;71 /000(2?}2(1_?54”2)@ - %<_?1) - ﬁ

Accordingly:
V0, — 0) =4 N(0,362).

(d) Using data in Table 5.7 we may calculate R; = X;/Y; (1 <i < 20), in which:

Calculated Data for Problem 5.3.
X y r X y r X y r X y r
0.7 3.8 0.184 || 20.2 2.8 7.214 || 1.1 2.8 0.393 || 15.2 8.8 1.727
11.3 4.6 2.457 || 0.3 1.9 0.158 || 1.9 3.2 0.594 || 0.2 7.6 0.026
2.1 2.1 1.000 | 0.9 1.4 0.643 || 0.5 8.5 0.059 || 0.7 1.3 0.538
30.7 5.6 5.482 || 0.7 0.4 1.750 || 0.8 14.5 0.055 || 0.4 2.2 0.182
4.6 10.3 0.447 || 2.3 0.9 2.556 || 1.2 14.4 0.083 || 2.3 4.0 0.575

Next, plotting S(6) = E?ﬂl( 91;"9".7(;1'2 ), in which {r;}2%, are given by above table we have:
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-40 -20 0 20 40

]

Figure 5.1 Plot of function S(6) = Y72, (572%)

20249
This suggests to take starting value 6y > 0. On the other hand, H(f) = ;—gS(@) = 2?21 S A

(9+7‘i.92)2
Thus, the Newton-Raphson algorithm (page 270) takes the following form:
~ 20 1-00) 7,
k . —_
glk+1) — gk) 4 S(QA( ) — k) 21_1(91’”-#7“1'-(9““)22) (k>0). (1)
H(Q(k)) 220 (—Ti~(9(k>)2+2~7“¢~9(’“)+1 -
i=1 0) ;. (0())2)2
Finally, using R software and 6y = 2.9000 in (ft) we have:
01 = 1.2208, 05 = 1.6431, 03 = 2.0184, 6 = 2.0246, 05 = 2.0246.
(e)As:
— 1 1 3~
s.e.(0,) = — = — = \/;.|c9n], (n>1)
Vnd@) o\ G)
it follows that 5.¢:(f5) = 1/3/5 * 2.0246 = 1.5683.
O
Problem 5.5. Suppose that X1, , X, are i.i.d. discrete random variables with frequency function

f(z;0) =6, for z=—1, (1—0)2.6" for z=0,1,2,---

where 0 < 6 < 1.
(a) Show that the MLE of § based on Xy,---, X, is

2y i I( X =-1)+>0, X
2n + Z;;l X;

~
n

and show that {971} _is consistent for 6.
(b) Show that v/n(6, —8) —4 N(0,0%(0)) and find the value of o(#).
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Solution. (a)
0=
i 10g(L(0;)) = (9 6% 1o
g log (L1 log(f(2::0))) = e 1
Z?:l(d%log(f(xi;@))) = 9L e * (p@)lﬁxc 170 s Gﬁ(rn( -0) Ly
S (D 10g(8. 11 + (1 — 0)2.6% 1,,50)) = e
Zy:l(%’lxlf_l + 0—% + %)1%’:—1) =
(5)- (it Lav=—1) + (527)- (i1 Lui>0)) + (5)- (zf (@i1g,50)) = Tye-!
(5)-(2i 1x1——1)+(%)-(2?:1(1 Lo=—1)) + 5 2im («’Uz( — ly=1)) =
SIS et + (2 520) 21— Lo 1) S0y (1~ L)
- 91 2 _ _E?:l Ly=—1+ D i @i (1= 1g=—1)
61 Do (1= 1g=—1)
or, R
o-1_ 2im (I —1x,——1)
2 Y e - i (1= Lemm1) = 2200 (1= Lgmma)

or,

é\: 2 Z?:l 1&%‘:—1 — 2?21 X

S xi+2n '

~ Lx;=—1 =1 Xi

Next, as B(lx—1) = P(X = 1) = 0,6, = 2=l imm s et 6,570 %0,
24 Zi=170

( by Theorem 3.6), for X} = (Uy,,Vy) = 0o, x=—1 S &y and g(X*) = g(U, V) = UV

n i=1 n 24V an
application of Theorem 3.2 it follows that:

é;L = g(UnaVn) —7p 9(070) =0.

(b) One may easily check that the conditions A1-A6 hold (Exercise !). Thus, by Theorem 5.3, it follows
that v/7(0n — 0) —a N(0, 73%)-
Next, let f(x;0) satisfies

c%(E@(d%log Zj flog (x:6))).£(x 6)],

then (Exercise!):
2

0B (1 0)))?) = ~ Fiy( s low(f(x: 0)- (+

Consequently, as Ey(I' (6)) = 0, and the required condition for (x) holds (0 in both sides), an application
of (x) yields:

Ey((

’

10) = Varg(l'(0)) = Eo(('(0))) =" —Eo(l" (0)) = J(0). (%%

But,
J(0) = —Ey(l(9))
-2 2 2 1
= PG ) e e e
-9 2 2 1
= @ +rae? aep g
- L (% * *)

0.(1—0)
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Finally, by (%) and (% * %) it follows that o2() = =

Vil ) g 30, 220

O
Problem 5.7. Suppose that X = (Xy,---,X,,) has a k— parameter exponential family distribution
with joint density or frequency function:

F(x:0) = exp[Y_ ci(0)Ti(x) — d(9) + S(x)]

i=1

where the parameter space © is an open subset of R* and the function ¢ = (c1,---,ck) is one-to-one
on ©.
(a) Suppose that Eg[T;(X)] = bi() (i =1,--- k). Show that the MLE 6 satisfics the equations

-~

T(X)=0b;(0) (i=1,-- k).

(b) Suppose that the X/s are also i.i.d. so that T;(X) can be taken to be an average of i.i.d. random

variables. If 6, is the MLE, use the Delta Method to show that \/ﬁ(GAn —6) has the limiting distribution
given in Theorem 5.4.

Solution. (a) Note that ¢: © — RF for § = (6y,--- ,0;) has the form

0(915"' )ak) - (Cl(el)"' 79k))"' 7ck(917"' 70143))

and the matrix (gg’;)”j:l is invertible. First, given (l/(X§é;z))1><k: = 01y in which (l/(X;é;L))lxk =

2

X0 dl(X;0,,
( (d01 )7"' ) (dek ))’ we have:
di(X; 0,) =0. (1<j<k) (%
do; o
But,
~ k
di(X: 0,) dei(9) 4a) '
db; ; ag, g 1ETER )

Thus, by (x) and (xx) it follows:

k
S 990 iy = 9O <k (e

Second, taking expectation from both sides of (% x %) and using the given assumption Fy[T;(X)] =
bi(0) (i=1,---,k), we have:

~

k
: J

Third, a side by side subtraction from equations (x * %) and (* * %) implies:

~

50 (1x) -~ bi@) =0, 1<j<h)

Indle
.

8,

>
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or equivalently:

Cag; = X (1K) = 6B iap = Or- (1)

Finally, as the matrix (d?gj ))ﬁjzl is invertible the only solution for (t) is (7;(X) — bz(a))ﬁxk =0,
proving the assertion.

O
Problem 5.9. Let Xi,---,X, be iid. Exponential random variables with parameter A. Suppose
that the X/s are not observed exactly but rather we observe random variables Y1,---,Y,, where Y; =

k.o if ké < X; < (k+1)d for k=0,1,2,--- where § > 0 is known.

(a) Give the joint frequency function of Y = (Y1,---,Y},) and show that » ;" , Y; is sufficient for .
(b) Find the MLE of A based on Y7,---, Y.

(c) Let An be the MLE of A in part (b). Show that

V(A = A) —=a N(0,0%(),9))

where 02(\,6) — A% as § — 0.

Solution. (a)

PY1,---,Yn(y17"' 7yn) = PX1,---,Xn(y1§X1<y1+57”' 7yn§Xn<yn+6)
n
= JIPx. (v < Xi < i +0))
=1

n n

_ 1—[(/‘1“‘s e M) = T[(e (1 — )

1=1 =1
= (T (L= e M) (1) = g7 (T(y); A) * 1 (y).

*

Thus, by Theorem 4.2, T'(y) = >, Y; is sufficient statistics for .

(b) As () =log(LO\; 91, -+ 5 un)) = =X 30 Vi 4+ n.log(1 — e=*9), it follows that:

-4 - 1 5
ZY T )\n:5.10g(1+ﬁ).
(¢) By Theorem 5.3, v/n ( —A) —q N(O, fg(()‘/\))). Next, using equalities

22
Zx Znaz 1—:5 Zn " 1—x)2+(1—$x)3’ lz] <1,
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we have:
1) = log(P(Y = k.5;)) = log(e ™*.(1 — e ) = —\.0.k +log(1 — ™) (k> 0),
') = —5k+%,
” _52. -4
()‘) - (1_6—)\.6)2’ &
ExI'(V) = 0,
2 e/\.é

I = Vand () = X O = 75—

. 52 -0 52 A0
JA) = —Ex(t (V)

A8 2
implying: o4(A, 0) % :%)\) = (52 M) Finally:
i 0%(1, ) = A2 (S 12 a2 (e, o)1 — 2
07 0 W) nel T A g le=0) = A

O

Problem 5.11. The key condition in Theorem 5.3. is (A6) as this allows us to approximate he
likelihood equation by a linear equation in /n(6,, — #). However, condition (A6) can be replaced by
other similar conditions, some of which may be weaker than (A6).

Assume that 0, —p 6 and that conditions (A1)-(A5) hold. Suppose that for some § > 0, there exists a
function Ks(x) and a constant > 0 such that:

1P (@3 t) =1 (@:0)] < Ks(x)|t —6]°

for |t — 0] < § where Ep[Ks(X;)] < co. Show that the conclusion of Theorem 5.3. holds.

Solution. The given condition implies that |13 (z;t)| < 1) (z;0)| + Ks(x).|t — 6]%, for all [t — 0] < 0.
Next, returning to the proof of Theorem 5.3.(page 253) for any 0 < §* < 6,0 < 6} < 0,, and |6, — 0] <
0* < 0 we have:

|Rn’ - Zl(g) i) n

5* 3
o Z 1O (X 6%)]

IA

5*"

o D 1P (50)] + Ky (). |t - 6]°]
i=1

IA

o i )]+ D K] (57)°)

0" |l(3)( :0)] + (0%)+! diey ’K6(Xi)|‘ (+)

IN

. T .
2 2 n

Next, by Theorem 3.6.
n
- | Ks(X;
L O, k() < 0. (o)
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Now, for given € > 0, by () and (*x*) there is sufficiently small 6* > 0 and N; > 1 such that:

P(|Rn| > €10, — 0] < 6")=. (> N1) (s %%)

€
5"
In addition, there is No > 1 such that:

P(Ry| > €,|00, — 0] > 6°) < P(|, — 0] > 6*)) < <. (n > Na) (% %)

DN

Take N = max (N1, Na2), then by (x * ) and (& % *x):
P(|Ru| > €) = P(IRy| > €, |0n — 0] < 6%) + P(|Rn| > €, 0n — 0] > 6*) < %—F%:e. (n > N)

Accordingly: R, —, 0.
O

Problem 5.13. The same approach used in Problem 5.12 can be used to determine the limiting
distribution of the sample median under more general conditions. Again, let Xy,---, X}, be i.i.d. with
distribution function F' and median p where now

lim /n[F(u+s/an) — F(p)] = ¢(s)

n—oo

for some increasing function 1 and sequence of constants a, — oco. The asymptotic distribution of
an(fty, — p) will be determined by considering the objective function

Zn(u) = A E [ Xi — p/an| — X — pl]-
vn
=1

(a) Show that U,, = an (1, — p) minimizes Z,,.
(b) Repeat the steps used in Problem 5.12 to show that

(Zn(ul)v T 7Zn(uk)) —d (Z(ul)v' o 7Z(uk>)

where Z(u) = —uW 42 [;'¢(s)ds and W N(0,1).
(c) Show that ay,(ji, — i) —q ¥ ~HW/2).

Solution. (a) Referring to Problem 4.19, we have:

Zutw) = (X=X ) = =
i=1 m

= \}E(Z lan(Xi —p) —ul — Z |an(Xi — p)]) = \}ﬁ(gZ(u) —¢): X =2 a0, (X;—p). (%)
=1 i=1

i=1

By (%), arg(min(Z,)) = arg(min(g*)) and by Problem 4.19, arg(min(g*)) = p&. But, i, = an. (1 — ).
Hence, arg(min(Z,)) = an.(ftn — 1).

(b) By Theorem 3.8, for X = sgn(X; — p),pu* = 0, and ¢* = 1, and by Theorem 3.6 for X* =
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IXZ.SMJF% — Ix,<, it follows that:

an U
lim Z(u) = lim “2(3 (X —p— |~ | X —
lim Z,(u) = lim n(m(l pe = X = )
— lim “—”(f (— sgn(X u)+2/“11(x 1< s) = I(X; — < 0)ds))
Ap e, — 2 (¢
— lim 2 (sgn(X -+ — [ I(Xi—p < )= I(X; —p < 0)d
T S (s =)+ = [ 106 =< 2= 10— < )

n

= Jim —E (Y (sgn(Xi Z / < )~ I(X — < 0)ds))

=1
— : Zz 1 X* *%
= nh_)rgo —U. Z X ds

X**
= —u.W—i—Q/ lim I(E’ 1 )ds
0

n—o0

W2 /0 " lim VR(F (e + 22— Flu)ds

= —u.W+2./ P(s)ds
0

(¢) By Theorem 3.2 for X} = Z,, and ¢*(X™*) = arg(min(X™*)) and part (b) in which Z,(u) —4 Z(u)
it follows that:

w
2

an-(fon — ) = arg( min  Z,(u)) =g arg( min  Z(u)) = (—=).

—oo<u<oo —oo<u<oo
U

Problem 5.15. In Theorems 5.3. and 5.4, we assume that the parameter space © is an open subset
of RP. However, in many situations, this assumption is not valid; for example, the model may impose
constrains on the parameter 6 which effectively makes © a closed set. If © is not an open set then the
MLE of 6 need not satisfy the likelihood equations as the MLE 6, may lie on the boundary of ©. In
determining the asymptotic distribution of 6,, the main concern is whether or not the true value of the
parameter lies on the boundary of the parameter space. If # lies in the interior of © then eventually
(for sufficiently large n) 6,, will satisfy the likelihood equations and so Theorems 5.3 and 5.4 will still
hold; however, the situation becomes more complicated if # lies on the boundary of ©.

Suppose that X7,---, X, are i.i.d. random variables with density or frequency function f(x;#) (Sat-
isfying conditions (B2)-(B6)) where 6 lies on the boundary of ©. Define (as in Problem 5.14) the
function

= In[f(Xi;0+ u/v/n)/ f(X;;0)]
=1

and the set
Cn={u:0+u/\/nec 0O}

The limiting distribution of the MLE can be determined by the limiting behaviour of Z,, and C,.
(a) Show that v/n(6, — ) maximizes Z,(u) subject to the constraint u € C,,.
(b) Suppose that {C},} is a decreasing sequence of sets whose limit is C. Show that C' is non-empty.
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(c) Parts (a) and (b) (together with Problem 5.14) suggest that \/E(HAn — 6) converges in distribution
to the maximizer of

Z(u) = ul W — %uTJ(G)u

(where W ~ Np(0,1(6))) subject to v € C. Suppose that Xi,---,X,, are i.i.d. Gamma random
variables with shape parameter o and scale parameter A\ where the parameter space is restricted so
that a > A > 0 (that is, E(X;) > 1.) If @ = A, describe the limiting distribution of the MLEs.

Solution. (a) As:

) S D 1(X30 4+ ) ~ n(F(Xi30))] = 3 =t (X330 + ) =0,

du ~ du NLD — Vn vn
it follows that 6, = 6 + =, or U= V0, —6).
(b) Since C; D --- D Cp, D - -+, it follows that C = lim,,_,oc Cp, = NS, C),. Next, since O is closed and

6 lies on its boundary,f € ©, and hence, 0 € C),, (n > 1). Accordingly, by former result, 0 € C' and
C # .

(c) By Problem 5.14(b); and considering the fact that X; is a two-parameter exponential family we
have:

V(0n — 0) =4 J1(0).No(0,1(0)) = No(0, J1(0).1(6).J71(8)) = N2(0,1(6)) : 6 = (c, \).

Hence, by Example 5.15 for &« = A = ¢, we have:

Vn(a, —a) =4 N(0, W)
— 02 ’ d2
\/ﬁo\n — ) =4 N(0, W) D)= ) log(I'(c))

O
Problem 5.17. Let Xj,---, X, be 1.i.d. random variables with density or frequency function f(x;0)
where 6 is a real-valued parameter. Suppose that MLE of 6, 0, satisfies the likelihood equation

> U (Xi:0) =0
=1

where ['(z;0) is the derivative with respect to 6 of In f(;6).
(a) Let 6_; be MLE of 0 based on all the X;’s except X;. Show that
— = I(Xp6
> (X35 0)
(if n is reasonably large). R
(b) Show that the jackknife estimator of 6 satisfies

' (X;;0)

no(S U (XG50)2

. IR 2
Var(0) ~ n-1 Z]n:l ]
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(c) The result of part (b) suggests that the jackknife estimator of Var(g) is essentially the ”sandwich”
estimator; the later estimator is valid when the model is misspecified. Explain the apparent equivalences
between these two estimators of Var(6).

Solution. (a) By given conditions:

0= 3 I(Xuby)

%

> X0+ (05 -0). > I'(Xi6) (+)

1<ji<n 1<jAi<n 1<jAi<n
0 = Z '(X;,0). (%)
1<jAi<n

Take 6 = 6 in (*), and add I'(X;; 5) to both sides of it and then use (*x*) to get:

(9/;—5) Z 1(X5,8). (% %)

1<j#i<n

['(X;:0)

&Q

But as n 1 oo, we have } 2,0, " (X, 5) N D 1<i<n " (X, HA) Consequently, using the later result in
(% * *) it follows that:

U(X550) ~ (-5 —0). > 1"(X:,0). (5 %)
1<i<n
And (* * *x) is equivalent to L(X;:6) = 9/_? — (9\, and the assertion follows.

Sicica l(Xi0)

(b) First, an application of Part (a) and the given condition in the problem yield:

~

29_3,\,9—1— ZZJ ll((X ?):0- (1)
7=1

Second, using (1) and another application of Part (a) it follows that:

o —

= n—1 e~ — n—1 e~ —
Var(f) = — D (0 —0.)°~ - D> (0-5—0)
=1 i=1

)

Cb

n—1§":( I'(X;;0) )QZn—lzﬂ[( A)]

" ‘j=1 Z1§j§nl”(Xja§) n (ZJ 1l ( 10))? '

(c) As d is the solution for the equation Y ", XZ7 0) = 0, it follows that 0 is the substitution principle
estimator of the functional parameter 6(F') defined by:

Q

o, -~ 1 ¢
Uz 0(F)dF(z) =0: F(z) ==Y Iy <a,
| laornara EEFPILE
in which the influence curve of §(F) is:

I'(z;0(F))

¢(z; F) = [V (2:0(F))dF (z)

Consequently:
— S (s 0(F))2dF ()
/25 U (23 0(F))dF ()]

o? = /_OO ¢*(z; F)dF (z) =
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and therefore: ) ~
6_\2 m Z?:l[l (XZ 0)]
SPE(Q) - [Z:L:l l// (X“ é\)]Q : (-H-)

Next, by () and Part (b):

52 (9
lim ( J’“Q>=1. (t11)

"m0 53 (0)

Finally, the results in (f f 1) shows that the the jackknife estimator and the substitution principle
estimator of Var(#) are asymptotically equal.

O

Problem 5.19. Suppose that X = (Xi,---,X,) has a joint density or frequency function f(x;0)
where 6 has prior density 7(6). If T = T'(X) is sufficient for 6, show that the posterior density of 6
given X=x is the same as the posterior density of 6 given T' = T'(x).

Solution. By Sufficiency of T' = T'(X) it follows that fxgr(z(0,t) = fxr(z[t) for all z,t = T(x).
Thus:

o (6lz) = Ix|o(|0) _ Ixo.0(210,1). fr)9(t]0)
o Jo Fx10(@10)m(0)d0 — [o Fxio.(xl0,1). frio(t]0)m(6)dO
Ixir(z|t). frio(t0) Jro(t0)

Jo Fxr(@lt). frig(t10)m(8)d0 — [o fria(t]0)m(0)do
= 7o r(x)(0|T(z)), for alld.

O
Problem 5.21. The Zeta distribution is sometimes used in insurance as a model for the number of
policies held by a single person in an insurance portfolio. the frequency function for this distribution is

p—(a+1)

forx =1,2,3,--- where a > 0 and
oo
()= k.
k=1

(The function ¢(p) is called the Riemann zeta function.)
(a) Suppose that X1, -, X, are i.i.d. Zeta random variables. Show that the MLE of « satisfies the
equation

1 & "(am + 1

=3 (X)) = _%

n C(an +1)
and find the limiting distribution of /n(a, — ).
(b) Assume the following density for « :

L 5

m(a) = e exp(—a) for a >0

A sample of 85 observations is collected; its frequency distribution is given in Table 5.8.
Table 5.8 Data for Problem 5.21.

Observation 1 2 3 4 5

Frequency 63 14 5 1 2
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Find the posterior distribution of a. What is the mode (approximately) of this posterior distribution ?
(c) Repeat part (b) using the improper prior density

1
m(a) = — for a > 0.
«

Compare the posterior densities in part (b) and (c).

Solution. (a) First,

(@) = log(f( x; @)

n

= > [Flog(¢(a+1)) = (a +1).log(x;)] = —n.log(¢(a +1)) = (a+1). ) log(:)

=1 =1
implying:

d@)  (la+l) ~ooo o e (@)

o T G 2 =02 0 =gy

Second, as f(x) = ﬁ.x_(‘"“) = exp[—(a + 1).log(z) — log({(cer + 1))], it follows that X has an
exponential family density with c¢(a) = —(a + 1), T(x) = log(x), d(a) = log({(a + 1)), and S(z) =

Hence, by Example 5.6, and theorem 5.3 it follows that /n.(a, — o) —4 N(0, ﬁ) in which

@) = d(a)—c (a d(a)
lo) = d'(0) = ¢'(a).
(et )t - (et ))?  de
= Clat 1) —0T
_ lat)gat1) — (¢ (at1)?
Cla+1)?
Thus: )
V(@ — ) —a N(0, = (Cla+ 1)) )

S Tt Diat D) - (Clat D)

o foo(o UPNICTELE

IS (fla)m(@))da — [T, flaila)m(a))da

I s sz A
f;°<m+yﬁ)da

And,
Aotl ( (Oz—i— 1)) —85 042.670‘/2
mi(alx) IR (AT (C(a+ 1) %.a2.c/2)da
_ exp((a+1)(log(A) — 1) + 2log(ar) — 85.1og({(a + 1)))
fooo(exp((a +1)(log(A) — 1) + 2log(a) — 85.log(¢(a + 1))))da”
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Second, L7 (a|z) = 0 yields (log(A) — 1) + 2 — 85 %((5:11)) = 0, or equivalently:

(log(A) —1).a.C(@+1)+2.(@+1)—85.a.C (@+1)=0.
(c) First,

AT (Gla+ 1) .4
fOOO(AO‘H.(C(a + 1))*85.éda
exp((a + 1)log(A) — 85log(¢(a+ 1)) — log(a))

fooo(exp((a +1)log(A) — 85log(¢(a + 1)) — log(a)))da

m2(afx)

Thus, %71‘2(0[|X) = 0 implies log(A) — 85%((5:11)) — 1 =0, or equivalently:

log(A).a.¢(@+1)—85. (@+1).a—C(@a+1)=0.

Second, to compare posterior densities in parts (b) and (c) define a function H via:

Hio) — malx) e, o’
 mlalx) el e

o = /O " (exp((or+ 1) log(A) — 85log(C(a + 1)) — log(a)))da

e = [ expl(a+ )1og(4) ~ 1) + 2log(a) — 85.og(¢(a+ 1))))do

It is clear that lim, 0 H(a) = 0 = limy— 00 H(«). Furthermore, H attains its maximum at o = 3

(Exercise !). Consequently:

m(ah) < (55 D)mal).

O

Problem 5.23. The concept of Jeffreys priors can be extended to derive "non-informative” priors for

multiple parameters. Suppose that X has joint density or frequency function f(x;6) and define the
matrix

1(6) = Ep[S(X;0)ST(X; T)]

where S(x;6) is the gradient (vector of partial derivatives) of In f(x;#) with respect to 6. The Jeffreys
prior for @ is proportional to det(I(6))'/2.

(a) Show that the Jeffreys prior can be derived using the same considerations made in the single
parameter space. That is, if ¢ = ¢g(f) for some one-to-one function g such that I(¢) is constant then
the Jeffreys prior for 6 corresponds to a uniform prior for ¢.

(b) Suppose that Xi,---, X, are i.i.d. Normal random variables with mean p and variance 2. Find
the Jeffreys prior for (u, o).

Solution. (a) By assumption, 7jefirey(0) = c1./det(1(0)) (c1 > 0). Also:

dlog(L) dlog(L) )P
dGZ d9] bj=1
dlog(L) dlog(L) )P
dgi dp;

1(0) = (Es

I(¢) = (Eu(
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Now, by Theorem 2.3 for ¢ = g(0), it follows that:

do;
d¢ )7,] 1|

= c1.\/det(1(0)).| det(%)ﬁjzl|

= cl.\/det(I(O)).|det(jZ )i j=1l?

= \/d t((jjf)m 3 det((Ea(dl(;iiL)dlzgefm))%l:l)-det((;lz;)?jzl)

dOy. dlog(L) dlog(L) do
= Jdet E¢Z - ( )7l>)€,j:1)

7rJeffrey(¢) = 7rJeffrey( ) | det(

Ao do,  df, do;
= 01-\/det((E¢(dIZi(iL) dlZiiL) )ij=1)
= ca.Vdet(I(¢)). (%)

But, I(¢) = constant, and hence:

det(I(¢)) = ca, (c2 >0). (xx)

Consequently, by () and (*x) it follows that:

WJeﬂrey(¢) = C1.C2,

that is, the Jeffrey prior for 6 corresponds to a uniform prior for ¢.

(b)As log(f(z|(n,02))) = constant — % log(s?) — ("71)'83522'@7“)2, using E(X) = p, BE(n(X —p)?) = o2,
and E((n —1).52) = (n —1).02 it follows that:

%105;@) Mz log(L)
I((n,0%) = (djdjdulog(L) d(d) log(L)>

~ ~E(Z%) —p(E)y
- S 2 S 2
—p(mEmny g, - (lstnXon)”y

204 o6

Consequently:

L
Tyeffrey (1, 0 \x =c W \/ f EEEY

Now, for g(z,y) = (x,./y), it follows from (* * *) that:

0_2
sty (1, )E) = Tatvey (1,02 ). |det<d((“ f)\
¢ V2.n c*
= o_\gi * 20 = o2 - 0_2 (—'-)
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Note that a direct calculation yields:

/ ¢ .\/n@2n—4 c*

Ry (1. 0)[z) = ¢ r/Aei(T (o)) = SV =D - gy
And, finally, both (1) and (1) show that Tjefey((1t, o)|x) is proportional only to 1/02.
U



Chapter 6
Optimality in Estimation

Problem 6.1. Suppose that X = (X1,--- , X,,) have joint density or frequency function f(x;6) where
0 is a real-valued parameter with a proper prior density function m(0). For squared error loss, define
the Bayes risk of an estimator § = S(X) :

Riu(8.0) = /@ Eol(@ — 0)217(0)do.

The Bayes estimator minimizes the Bayes risk.

(a) Show that the Bayes estimator is the mean of the posterior distribution of 6.

(b) Suppose that the Bayes estimator in (a) is also an unbiased estimator. Show that the Bayes risk
of this estimator must be 0. (This result implies that Bayes estimators and unbiased estimators agree
only in pathological examples.)

Solution. (a) By f(z|0).7(0) = w(0|x).f(z), we have:

Rp(0,0) = /E9 (6 —0)? (9)d9—/(/(0/(\95)—9)2f(x|0)dx)7r(9)d9:/@/((9/(\33)—9)2f(93|0)7r(9)dxd0
X X

- // m(0)z).f(x )da;de:/x(/e(e’(;)—0)2w(9\x)d9)f(x)dw- (%)

Now, by (%) the Bayes risk is minimized when the posterior expected loss f@(é@ — 0)%7(0|2)do is

minimized and it is minimized at 9/(\x) = E(0|x).

(b) First, given Ey(6|6) = 6, it follows:

-~

Ep((0—0)°) = Eo(0)° — 260+ (0)°) = Bo((0)°) — 2.E(00) + Bo((0)")
= Ey((0)°) — 2.E5(Eg(0.-616)) + Eo((6)°) = Eo((8)*) — 2.E9(6-Ep(6]6)) + Eo((9)°)

~ ~

= Ep((0)*) — 2.Bo((0)*) + Eo((0)*) = E((0)*) — Eo((6)*). ()

Second, given E@(0|0) =0, it follows:

Eo((6-9)2) = Ee<<§>2—2.5ﬂ+<a>> Ey((6)?
= E((0)*) — 2.Eo(Es(0.08)) + By

~ ~ ~

= Ep((0)%) — 2.E9((6)%) + Eo((0)*) = —Eo((0)) + Ep((6)). (% =
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Now, comparing (%) and (* * %) it follows that Eg((a— 6)?) = 0, and hence:

33(5,0):/60 7()df = 0.

O
Problem 6.3. Suppose that Xy, -+, X,, are i.i.d. Poisson random variables with mean 6 where 6 has
a Gamma (o, ) prior distribution.
(a) Show that
at i X
B+n
is the Bayes estimator of 6 under squared error loss.
(b) Use the result of (a) to show that any estimator of the form aX + b for 0 < a <1 and b > 0 is an
admissible estimator of # under squared error loss.

0=

Solution. (a) By Problem 6.1, R
0 =FE0x). (%)

Also:
n 679. ; o a—1
) F(x|0)m(0) [T () i —eap(—5.0)
7r x xT « (e
Jo Fltm(B)dt — Jo< T, () Bt Tep(— Bty
o Rmmtenl AR (g 4 g)limmite griciwita=l o=(tH)0 (1)

Jootimmitarl e=(ibigt — T3 wi+ )
Consequently, by (*x) it follows that 0|x ~ Gamma(}_}_; x; + a,n + () implying:

E(0]x) = M

e ( * %)

Finally, a comparison of () and (* * %) proves the assertion.
(b) As § = nXta — Y+

e PR 745 fix n > 0 and write n/(n + 8) = a and a/(n + 8) = b. Then,
=n(b/a), and = ( —a)/a). Accordingly, taking

0o = Gamma(n(b/a),n((1 — a)/a))

implies E(6p|x) = a.X +b.

U

Problem 6.5. Given a loss function L, we want to find a minimax estimator of a parameter 6.
(a) Suppose that 6 is a Bayes estimator of 6 for some prior distribution 7 (6) with

~ ~

Rp( ):SggRe( )-

Show that @ is a minimax estimator. (The prior distribution r is called a least favourable distribution.)
(b) Let {m,,(0)} be a sequence of prior density functions on © and suppose that ,, are the corresponding
Bayes estimators. If 6y is an estimator with

sup Rg(6p) = lim [ Ry(6,)mn(6)dO
ISE) n—oo Jo
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show that OAO is a minimax estimator.
(c) Suppose that X ~ Bin(n,#). Assuming squared error loss, find a minimax estimator of 6.

Solution. (a) Given arbitrary estimator 8 of 6. Then:

~ -~

supRo(®) = Rp(d) = / Ry (@) (0)d0
0cO ©

< /@ Ry(0)7(6)do < / sup(Rg(0))7(0)do

0 0co

= (sup(Ro(9))). / 7(6)d6 = sup(Ry(3)).
0O €] 0cO

Accordingly, 0 is a minimax estimator of 6.

(b) Let 6 be an arbitrary estimator of 6. Then by:

/ Ry (0,)mn(0)df < / Ry(0)m,(0)d6 (n > 1),
C)

(S
we have:
sup Ro(B) = lim | R(6)mn(6)d0 < sup( / Ro(02)mn(0)d6)
0co n—oo Jo neN Jo
< sup( [ Raf@m0)d8) < sup( [ (sup(Ro(@)m (0)a0)
neN JO neN JO 00

— sup[( / 7a(0)d0). (sup(Rg(8)))] = sup(Ro (D).
() 0cO 0cO

neN

Thus, 6j is a minimax estimator of 6.

(c) Take 6 ~ Beta(a, ). Then, by Problem 6.2. @(X) = ij:gfn and

—

o o n.0.(1 — a— 0« 2
Rp(Oap(X)) = Var(fas(X)) + Bias*(0ap(X)) = 0.1—-6)  (a—6(a+p))

(a+B8+n)*  (a+p+n)?
(e + B)? = n).6% + (n — 2a(a+ B)).0 + c(a, B,n)

= (oz—i—,B—i—n)Q :d(a757n)
if and only if a = 8 = 4 Consequently, for:
= X va
g n++n
we have:
Rp(yn ya(X)) = / Ry(0 ym v (X))7(0)dO = / d(a, B,n)m(0)d0 = d(c, B,n) = sup(Rg(0 vz v (X))),
2 072 ) 272 ) 0cO 2072

—

and by Part (a) , 0 = v (X) is a minimax estimator of 6.
272
U
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Problem 6.7. Suppose that X = (Xy,---, X,,) are random variables with joint density or frequency
function f(z;60) and suppose that T = T'(X) for 6.
Suppose that there exists no function ¢(t) such that ¢(7') is an unbiased estimator of g(6). Show that
no unbiased estimator of g() (based on X) exists.

Solution. Let for some S = S(X), to have Ey(S) = g(#). Then, for ¢(T") = Eg(S|T") we have:
Eg(¢(T)) = Eg(Ep(S|T)) = Eg(S) = 9(0),

a contradiction to the assumption for g(@).

O

Problem 6.9. Suppose that X = (X3,---,X,,) have a joint distribution depending on a parameter
where T' = T'(X) is sufficient for 6.

(a) Prove Basu’s Theorem: If S = S(X) is an ancillary statistic and the sufficient statistic 7" is complete
then T and S are independent.

(b) Suppose that X and Y are independent Exponential random variables with parameter A. Use Basu’s
theorem to show that X +Y and X/(X +Y) are independent.

(c) Suppose that Xi,---, X, are i.i.d. Normal random variables with mean x and variance o2. Let
T =T(X1, - ,X,) be a statistic such that

T(X1+a,-, Xp+a)=T(X1, -, Xp) +a
and E(T') = pu. Show that
Var(T) = Var(X) + E[(T — X)?).

Solution. (a) Fix given —oo < s < oo and define:
g(t) =P(S(X)=s|T(X)=t)— P(S(X)=s5) —oo<t<o0.

Then in the right hand side of above equality, considering sufficient T'(X) (for the first component) and
ancillary S(X) (for the second component), it follows that g does not dependent to #. Furthermore,
another usage of ancillary assumption on S(X) yields:

[e.9]

Ey(g(T)) = / o(t)dPs (1)

—00

= [P0 = ST = 0dR(T(X) = 1) = PS(X) = )

—00

= [ RS0 = ST = 0dRT(X) = 0) - PS(X) = 5)

— B(S(X) =)~ P(S(X) = s)
= P(S(X)=s)—P(S(X)=s)=0, for all 6. (%)

Next, by completeness of T" it follows from (x) that:
g(t) =0, —oco<t<oo (xx)
and (xx) is equivalent to :
PS(X)=s|T(X)=t)=P(S(X)=3s), —o0<s,t<o0

or equivalently S, T" are independent. This proves the Basu’s Theorem for continuous random variables.
For the discrete random variables one may simply substitute the integrals in above proof with sums.
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(b) As . X, \.Y ~ exp(1) , Xfy = )\_)?f&_y and Z ~ exp(1l) does not depend to A, it follows that
S = XLJFY is an ancillary statistics. Next, using likelihood and an application of Theorem 4.2 show

that X + Y is sufficient statistics for A. On the other hand, T'= X + Y ~ Gamma(2, %) with density
(Exercise !):

fxiy(t) =Ate ™. (t>0)
Now, let E(g(T)) = 0 for all . Then, [;°t.g(t).e”*!dt =0 for all A > 0. A change of variable e~ = x
yields:
1. 1 1o
/ Liog(L)glog(2))]zrde = 0 for all A> 0. (+#+)
0 T x x

Now an application of Stone-Weierstrass Theorem for the case of polynomials on (x+x) yields 1 log(1)g(log(1))
=0 (0 <z < 1) implying g(log(%)) =0 (0 <z < 1) or equivalently: g = 0. Consequently, T is
complete. Finally, by Basu’s Theorem in Part (a) it follows that S and T are independent.

(c) As a special case of Example 6.9, X is a complete sufficient statistics for y with 0 known. Next, we
show that T— X is ancillary statistics for u with o known. To see this, as X;—u ~ N(0,02) (1 <i<n)
is ancillary for p with o known, it follows that:

n n n

(X X)X = (T, X)) (D0 X p) = Tty X pt) = S (X,
=1 =1 i=1

is ancillary statistics for p with o known. Now, by Basu’s Theorem X and T'— X are independent.
Accordingly, by E(T — X) = u — p = 0, we have:

Var(T) = Var(T — X) + Var(X) = E(T — X)?) + Var(X).

O
Problem 6.11. Suppose that X1, -+, X, are i.i.d. Poisson random variables with mean A.
(a)Use the fact that
o
ch.xk =0 for all a<z<b
k=0
if, and only if, ¢g = ¢; = --- = 0 to show that T'= 3" | X; is complete for \.

(b) Find the unique UMVU estimator of A\2.
(c¢) Find the unique UMVU estimator of A" for any integer r > 2.

Solution. (a) Suppose E)(g(T)) = 0 for all A > 0 where T' = > | X; =¢ Poisson(n)). Then, by

assumption:
oo
W
k=0

Now, take £ = n\ in the given assumption, then by above equation:

—0, for all A > 0.

= g(k)
Z& =0, for all x> 0.

|
k=0

Hence, &f) =0, 0<k <oo,implying g = 0. Accordingly, T is complete statistics.
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n

f(x, )‘) = H(e_A

=1

A%

1 . *
) = ¢ (T A)h ()
by Theorem 4.2, it follows that 7' = >_1 | X; is sufficient for A as well. Next, by Theorem 6.1. and

Theorem 6.4 it is sufficient to find a function g such that E(g(7)) = A", or Z;iog(k)wiy’\)k ="
or equivalently:

) = (e A=)

i(@nk))\k _ oAy i (n)‘)k)\r _ i( nkr .)/\kz’

| | —r)!
k=0 k! k=0 k! kep (k T)
implying:
g(k) 4 _ . _
WTL = 0 k—O,--',r—l
9(k) nkr
— : k f— [P
g (k—1)! h
and hence:
1.C(k
g(k‘):r ( ’r)*l[roo)(k): k:071727""
n’ ’
O

Problem 6.13. Suppose that X = (X1,---, X,) has a joint distribution that depends on an unknown
parameter 6 and define

U={U:EyU)=0,Ey(U?) < o0}

to be the space of all statistics U = U(X) that are unbiased estimators of 0 with finite variance.
(a) Suppose that T = T(X) is an unbiased estimator of g(f) with Varyg(T) < oo. Show that any
unbiased estimator S of g(6) with Varg(S) < oo can be written as

S=T+U

for some U € U.

(b) Let T' be an unbiased estimator of ¢g(#) with Varg(T) < oco. Suppose that covg(T,U) = 0 for all
U €U (an all ). Show that T'is a UMVU estimator of g(6).

(c) Suppose that T is a UMVU estimator of g(). Show that Covg(T,U) = 0 for all U € U.

Solution. (a) Let U = S — T Then:

Ey(U) = Ep(S)— Ey(T) =g(0) — g(0) =0,
Eo(U?) = Varg(U) =Varg(S —T) = Varg(S) — 2.Covg(S,T) 4+ Vary(T)
= Varg(S) — 2.Corryg(S,T).\/Varg(S).Vare(T) + Vare(T)

< o©oQ.

Accordingly: U € U.

(b) Let S be another estimator satisfying Fy(S) = g(0) = Ey(T). Then, by Part (a), S —T € U and ;
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furthermore:

Varg(S) = Varg(T+(S—-T))
= Varg(T)+2.Covg(T, (S —T)) + Vare(S—1T)
= Varg(T)+ Varg(S—T)
> Varg(T).

Thus, UMVU(g(0)) = T.

(c) Let for some U € U, Covg(T,U) # 0, say Couvg(T,U) < 0, (for the case Covg(T,U) > 0, the proof
is the similar by replacing —U instead of U.). Define Sy = T + A.U. then:

Ep(Sx) = Eo(T)+AEU) =g(0) + 1.0 =g(0),
Vare(Sy) = Vare(T) + 2.X.Covg(T,U) + XN2.Vare(U).

—2Cov (U,V)

Now, for A € (0, Vare(D)

) we have:

Varg(Sy) < Varg(T),

implying UMVU(g(6)) = S\, a contradiction.

O
Problem 6.15. Suppose that X1, -, X, are i.i.d. Normal random variables with mean 6 and variance
62 where 6 > 0. Define:

PO " (X~ Xn)? = X

G = Xp(1 4 2zl Ko

3 Z?:l(Xi - X7n)2

where X, is the sample mean of Xy, --, X,,.

(a) Show that O —p 0 as n — oo.

(b) Find the asymptotic distribution of \/ﬁ(GAn —0).1s 6, asymptotically efficient?

(c) Find the Cramer-Rao lower bound for unbiased estimators of 6. (Assume all regularity conditions
are satisfied.)

(d) Does there exist an unbiased estimator of 6 that achieves the lower bound in (a)? Why or why
not?

Solution. (a) We have

Next, by Example 4.19, S? —p 6%, by Theorem 3.6., X, —p 0, and by Theorem %Xinz —p 2.
Accordingly, applying these results in (x) it follows that «9An —p 0.
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(b) First, by X,, —, 0, S2 —, 6%

_ I
\/ﬁ(‘gn - 9) = \/E(Xn[l + %] - '9)
= Vn.(X,-0)
~ 2 2y L\ -1 n2 0? 3X7§12
_\/E(Xn —0 )(7)( 2 Ln)

— 1_—»
=1 \/ﬁ((Xn - 370Xn ) - (9 - 370))

+\/ﬁ(3i953 - 31—902)) (n = 00). ()

Next, using Example 5.14 for = 6 and 02 = 62 we have:

— 62
VX, —0) =4 N(0,6%), +/n(S, —6) —4 N(0, 5),
(with independent limits) and an application of Theorem 3.4, for g1(z) = 2 — 552 and g2(z) = 2% on
the last result yields:

R 62 62 1o 1,9 2.6

V. (Xn = 20 20

(with independent limits). Accordingly, by (xx), (* % %), and an application of Theorem 3.3 it follows
that:

~ 62 2.62

1
=1 N30 ()
Finally, considering (1) with 0%(¢) = 16? ,and I(0) = Var(l'(z;0)) = Varg(—0~' +073.X2 - 072.X) =
% (Exercise!) we have:
|
)= —>—=—+.
O =35>0 1w

Consequently, this sequence of estimators is not asymptotically efficient.

(c) First, let X ~ N(0,6?%) then, E(X) = 0, E(X?) = 20, E(X?) = 4.6%, BE(X*) = 10.6*. Second,
referring to Pages 324-325 let X1, --- , X, be i.i.d. random variables with pdf f(x;#) from exponential
family. Then, for Ey(T) = g(6):

= (1)

CRLBy(T(X)) = 0g(f(x;0))2)  n.Varg(Llog(f(z;0)))

(9'(9))? (9'(9))?
1

In particular, for g(9) = 0, T with Ey(T) = 0, log(f(z;0)) = —1(log(2m) +1) —log(f) — 3.0 22+ 6 L.z
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and d% log(f(x;0)) = =0~ +03.2%2 — 9= 2.2 it follows from ({1) that:

1
CRLBy(T(X)) = n.Var(—0—1 +60-3.X2 — 62.X)
1/n .
= E !
WL xI L x) (Crercisel)
[
T 1162
92
T 1

(d) Here, by Example 4.6.:

~1 1 < n
log(f(x;0)) = 55 D @i + 5. > wi — 5 (1 +2.log(6) + log(2m))
=1 i=1

is a two parameter exponential family. Hence, as the one parameter exponential family representation
in page 324 does not exist; and, it follows that there is no unbiased estimator T' achieving the Cramer-
Rao lower bound.

O

Problem 6.17. Suppose that Xi,---, X, are i.i.d. random variables with frequency function
f(z;0) =6, forxz=—1, (1—0)2.6° forxz=0,1,2,---

where 0 < 6 < 1.
(a) Find the Cramer-Rao lower bound for unbiased estimators of 6 based on X, -, X,,.
(b) Show that the maximum likelihood estimator of 6 based on X,---, X, is

7o 2 I =)+ 55, Xi
" 2n+ >0 X,

and show that {OAn}Ais consistent for 6.
(c) Show that /n(0, —0) —4 N(0,0%(0)) and find the value of ¢(0)). Compare %(#)) to the Cramer-
Rao lower bound found in part (a).

Solution. (a) By Page 327 for ¢g(0) = 6 and T with Eyp(T) = 6 we have:

(g'(9))? 1
CRLBy(T) = = o ()
n.Varg(id log(jéx’e)) ) n.Varg(id lOg(({é‘T’@)) )
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Next, we have:

log(f(z;0)) = log(6).1x=—1 + [2.1og(1l — 0) + z.log(A)].1 x>0,

dlog(g‘;x;e» = (%).1)(:_1 + (& + %).1)(20,
B(DELE ey (o B0+ B+ (g — (o - )0
B IS S B A
6-1 " 0-18 "21-6" (9172
2
T 0.(1-0)
Eg(W) 0,
dlog(f(x;0)) dlog(f(#;0)) o\ o dlog(f(z:0)), 2

Varg(

Thus, by (%) and (sx) it follows that CRLBy(T') = 9‘(;;9).

(b) Refer to the solution of Problem 5.5(a).

(c) Refer to the solution of Problem 5.5(b). Also:

6.(1—-0) S 0.(1—-0)
2 - 2n

() = = CRLB(T) (n>1).

O
Problem 6.19. Suppose that Xi,---, X, be ii.d. Bernoulli random variables with parameter 6.

(a) Indicate why S = X1 + --- 4+ X, is a sufficient and complete statistics for 6.
(b) Find the UMVU estimator of 6.(1 — ).

Solution. (a) As f(x;60) = exp(log(8/(1 — ).z —log(1/(1 —0))), (0 < < 1) it follows that:
F(x;6) = exp(log(8/(1 — Zx, log(1/(1—-10))), (0<6<1)

and the assertion follows from Theorem 6.3. for k = 1, ¢1(0) = log(0/(1 —0)), Tv(X) = >, Xi,
d(9) =n.log(1/(1 —6)), and C = (0,1).

(b) Let S ~ Bin(n,#), then by Theorem 6.1 and Theorem 6.4. it is sufficient to find h such that
Ep(h(S)) =60.(1-6), (0<6 <1). Next, let n =2 in the equation

Zh Cln, k).0F.1—-0)""=0.1-0), (0D<6<1.

Then, after re-arranging powers of 6 it follows that h(0) = 0,h(1) = 1/2,h(2) = 0. Hence, for this
special case: h(S) = S‘(22_S). Now, let n > 2 and set S* = I(X; = 0, X2 = 1) implying:

Ey(S) = P(X; = 0).P(X; = 1) = (1 — 0).0.
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Accordingly, by Theorem 6.4., S** = E(S*|S,,) : S, =S is the unique UMVU estimator of (1 — 6).6.
To calculate S** we have:

S*™(s) = Ep(S*|S, =s) = FPy(X1=0,X2=1|5, =5)
Pg(Xl:0,X2:1,X3+---—|-Xn23—1)

Pg(Sn = S)
= 0 if s=0,
o Pg(Xl = O)Pg(Xg = 1).P(Sn_2 =8 — 1)
N Pg(Sn = 8)

(1-6).0.0(n 2,5 —1).65.(1— )2 (D
C(n,s).05.(1 —)n—s

_ s.(n—s)
 n(n—-1)
yielding:
o S(n—=29)
5= n.(n—1)
O

Problem 6.21. Suppose that Xi,---, X, are Lid. random variables with density or frequency
function f(x;0) satisfying the condition of Theorem 6.6. Let 6, be the MLE of 6§ and 6,, be another
(regular)estimator of 6 such that

Show that C(#) must have the form

Solution. By two times application of Theorem 6.6 for sequences of estimators (9;);’10:1 and (0,)5
we have:

Vil =) =4 210) + Zi(0) = N(O. 7750
V(ln —0) —q Z1(0) + Z3(0) :  Zy(6) independent Zi(6).

Consequently, by assumption:

011(9) = Var(Zl(H)): ()
c22(0) = Var(Zi(0) + Z3(0)) = a2(0),
c12(0) = Cov(Z1(0), Z1(0) + Z5(0)) = Var(Z,(0)) =

c1(0) = c12(0) =
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Chapter 7

Interval Estimation and Hypothesis
Testing

Problem 7.1. Suppose that Xi,---, X, are i.i.d. Normal random variables with unknown mean p

and variance 2.

(a) Using pivot (n — 1)52%/0? where

n

1 _
52 = — > (Xi-X)?
=1

we can obtain a 95% confidence interval [kl.S2, k:g.Sz] for some constants ki and ks. Find expressions
for k1 and ko if this confidence interval has minimum length. Evaluate k; and ke when n = 10.

(b) When n is sufficiently large, we can approximate the distribution of the pivot by a normal distri-
bution (Why 7). Find approximations for k1 and ko that are valid for large n.

Solution. (a) Let X ~ x2_, with p.d.f fxn—1 and the condition
Pa<X<b=1—-a (a<b). (%

Then the interval I(, 3 = [a,b] with smallest length satisfying () has the following constraint on its
bounds (Tate & Klett, 1959):

fxm+s(a) = fxne3(b).

Now, by Example 7.4. (”;;352 ~ X%—l and for k1 = ”T_l, ko = ”T_l we have:

(n—1).52

o2

P(k1.S? < 0? < k9.5%) = P(a < <b)=Pla<x2 ,<b) =095 (%)

n+1

By (), the required a,b have the constraint A"t o8 = b5 eh, Next, taking n = 10 we will have
the following system of equations:

Pla<x

N

<b

S—

I
SN
o
St

-
.

.€

|
(NI
Il

with solution a = 3.284, and b = 26.077. Thus, k1 = 555 = 0.345 and ky = 59; = 2.741.
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(b) By Example 5.14, for 02 = 1-162 we have y/n.(d, = o) =4 N(0, ”7) Define g(x) = 22, then, by
Theorem 3.4. \/n.(02 — %) =4 N(0,2.0%). Thus,

QLT — —1).52 2 4
(n 2) - Z.N(UQ,ZTJ) =d Nn,2n)- (n100) (%)

= ~
o2

_ 2
But, % ~x2_4, and by (* %) it follows that as n — oo:

a—n b—n

L
S\lW\W\Q’)W P(a<xp_q <b)=P(a < Nop) <b) = P(

) On the other hand, |I,p)| =b—a = v2n * (%) — (%22)) implying that the length of the desired

Van Van
interval is minimized when ‘\1/_2% = —1.96 and 1\7/_—2—’; = 1.96 or, equivalently, a = —1.96.v/2n + n and
b= 1.96.v/2n + n. Accordingly:
n—1 n—1 n—1 n—1
b 1.96.v/2n +n a —-1.96.v/2n +n
O
Problem 7.3. Suppose that Xi,---, X, are i.i.d. continuous random variables with median 6.

(a) What is the distribution of " |, I(X; < 0)?

(b) Let Xy < -+ < X(y) be the order statistics of Xj,---, X;,. Show that the interval [X(;), X(,)] is a
100.p% confidence interval for # and find an expression for p in terms of [ and wu.

(c) Suppose that for large n, we set

L= |5 —0.98xvn) and u=[7+098xnl.

Show that the confidence interval [X(;), X(,] has coverage approximately 95%.

Solution. (a) As P(Iy,<g = 1) = P(X; < 0) = 1, it follows that Iy,<¢ ~ Binomial(1,1) (1 <i<n),
and by independence of Ix,<g (leqi < n) it follows that, > " | Ix,<p ~ Binomial(n, )

(b) By an application of Problem 2.25 with Fy (#) =1 — Fx(0) = 3, we have:
p = ( ): ( ()<9§X()):P(X()<6’)— (X()<9)

= > C(n,k).Fx(0)".(1 - Fx(0 Zan Fx(0)%.(1 — Fx ()" *F
k=l
u—1

e C(n,k

= Y Gl k01— Fxo)y = DOy

k=l

(c) Let Y = 3" | I(X; < 0) ~ Binomial(n, %), then by part (a) and Theorem 3.8, i/ﬁg ~ N(0,1) as
n — oo. Consequently: !
Py(X(y <0< X)) = Po(X) <0) — Po(X(y

= P@(l < Y) Pg(u < Y)

n

<0)
(1—Py(Y <)) — (1—Pp(Y <w)) =Py(I<Y < u)

2 u—s
\/E§Y< ﬂ)
] ]

P(—1.96 < Z < +1.96) = 0.95,

= Py

1


Yu Lin
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implying

or equivalently the assertion.
O

Problem 7.5. Suppose that X1, -, X,, arei.i.d. Uniform random variables on [0, ] and Xy s Xn)
be the order statistics.

(a) Show that for any 7, X,)/0 is a pivot for 6.

(b) Use part (a) to derive a 95% confidence interval for 6 based on X(,). Give the exact upper and
lower confidence limits where n = 10 and r = 5.

Solution. (a) By Problem 2.25 (b) the p.d.f of X(,)/0 is calculated as follows:

Fxoso(t) = 0.fx,,(0:4) = 0.n.Cln,r).(Fx (0.£))'.(1 = Fx(6.6))" " fx(6.1)
I'(n+1)
L(r).l'(n—r+1)

LA -l (0<t <),

yielding, X(,)/60 ~ Beta(r,n —r +1).

(b) By part (a), X ~ Beta(r,n —r+ 1) and Fx(x) = L,(r,n —r + 1) we have:

X Xy _ _ Xir)
b < 0 < ) = P@(CL.Q < X(r) < b@) = Pg(a < 0
a

0.95 = Fy( <b) = Ly(r,n—r+1)—I,(r,n—r+1).
In particular, for n = 10, and r = 5 we have: 0.95 = I;(5,6) — I,(5,6), and one choice for (a,b) can be

I(ja, b) = (0.20,0.76), giving a 95% confidence interval for 0 as [é(.(;’é, g%].

Problem 7.7. Suppose that X;, Xy, -- are i.i.d. Normal random variables with mean p and variance
o2, both unknown. With a fixed sample size, it is not possible to find a fixed length 100p.% confidence
interval for u. However, it is possible to construct a fixed length confidence interval by allowing a
random sample size. Suppose that 2d is the desired length of the confidence interval. Let ng be a fixed
integer with ng > 2 and define

no

1

1 W .
Xo=—) X;, and S?= X; — Xo)%
0 no ; i 0 no — 1 ;( i 0)

Now, given Sg, define a random integer N to be the smallest integer greater or equal than ng and
greater than or equal to [So.t,/d]? where a = (1 — p)/2 and t, is the 1 — a quantile of a t-distribution
with ng — 1 degrees of freedom. Sample N —ng additional random variables and let X = N1, ZZI\; 1 X
(a) Show that v/ N(X — u1)/So has t— distribution with ng — 1 degrees of freedom.

(b) Use the result of part (a) to construct a 100p% confidence interval for p and show that this interval
has length at most 2d.
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Solution. (a) Similar to Example 2.17, we have:

VN(Xn — p) (VN(Xn — p)/(c/V'N)
So NEE
(VN(Xn —n))/(c/VN) ~ N(0,1)

(no = 1)S5/0* ~ Xapa

in which the later two distributions are independent. Hence, by definition of T' distribution, v N (X —

w)/So ~ Tng—1-

(b) First, by Part (a):
VN(X —p)

p = Pu(—tu—p)2me-1 < 5 < t(1-p)/2,n0—1)

N R
— PM(X—%-SOSMSX-F%-SO),

— — —  tq o —  to- o —
and take Ipy = [L(X), U(X)] = [X — 02200 Gy X  -2r2no=t Sy).

Second, for N = max(no, [So0-t(1—p)/2,ne—1/d]?), it follows that:

t(1—p)/2,n0-1 t—p)/2,m0—1
IL,U :2*77.S0§2* ! .S()Z2d.
He.ul VN So-t(1-p)/2.n0—1/4
O
Problem 7.9. Suppose that Xi,---, X, are i.i.d. random variables with density function

flx; ) = Aexp[—A.(z — p)] for = > p.

Let X(l) =min(Xy, -+, X,).
(a) Show that

and hence is a pivot for A.
(b) Describe how to use the pivot in (a) to give an exact 95% confidence interval for A.
(c) Give an approximate 95% confidence interval for A based on S(\) for large n.

Solution. (a) As X; = 2X\(X; — ) ~exp(3) (1 <i<n)areiid., and X6 =d 2A( Xy —p) (1

i
n), a re-arrangement of equations in Problem 2.26 yields:

* 1 *
Xy = Yo
X = Yot -7
Xy = Yo+t —7Y¥ot +5Y0
Xw = Yot 7Yoo+ T3V +Ye ()

<

]

L <
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in which Y3 ~ Xé) (1 <i < mn). Consequently, by (x) it follows that:

n

SO = D (AX =) — @A (Xq) — 1))

i=1
= D _(Xfy =~ Xty = XXy —nXpy) = E;Y(i) —Yo
=1 =1 i=

= ZY(;) ~ X2(2(n —1)).
i=2
(b) As

for a = X%(nq) 0.975 and b = X%(nq) 0.025 it follows that:

2 2
X2(n—1),0.975 X2(n-1),0.025
2. 350 (Xi = X)) 2. 00 (X — Xy)

(c) An application of Theorem 3.8 for i.i.d. random variables X' ~ X?l) (i=1,2,---) with p* =1

[UX), VX)] =

-

2
and (0*)% = 2, yields X(;;—mm —4q N(0,1). Thus as n — oc:

a—2(n—1) < S(A) —2(n—1) < b—2(n—1)

V22.n—1) = 22.n-1) ~ 22— 1))

0.95 = Py\(a< S\ <b) =Py

—2(n—1 b—2(n—1
pe20 =) oy 1y < 20D
22.(n—-1) 22.(n—-1)
Next, one choice will be a27l) 96 and 2222 +1.96, or:

2.2.(n—1) 2.2.(n—1)

a=2+vn—-1.(vn—-1-1.96), b=2+v/n—1.(vn—141.96).

Accordingly,
o Vn—1L(vVn—-1-196) vn—1.(vyn—1+1.96)
x) VX =1 S (X = Xy) T (X = Xy) }
O

Problem 7.11. Consider a random sample of n individuals who are classified into one of three
groups with probabilities 62,260.(1 — 6), and (1 — 0)2. If Y1, Y5, Y3 are the numbers in each group then
Y = (Y1,Y2,Y3) has a Multinomial distribution:

n!

fy:6) = 02 [20(1 = O)]. (1~ )%

y1lyalys!

for y1,y2,y2 > 0;y1 + y2 + y3 = n where 0 < 6 < 1. (This model is the Hardy-Weinberg equilibrium
model from genetics.)
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(a) Find the maximum likelihood estimator of # and give the asymptotic distribution of \/ﬁ(GAn —0) as
n — oo.
(b) Consider testing Hy : 0 = 6y versus Hj : 0 > 0y. Suppose that for some k:

Py [2Y1 +Ys > k] = a.

Then the test that rejects Hy when 2Y7 + Yo > k is a UMP level « test of Hy versus Hj.
(c) Suppose that n is large and a = 0.05. Find an approximate value for k in the UM P test in part

(b).
(d) Suppose that 6y = 1/2 in part (b). How large must n so that a 0.05 level test has power at least
0.80 when 6 = 0.67

Solution. (a) Let * =1 — 6, then 0* =1 — 6. In addition:

n!

fly;0%) = m(l — )2 (2.0%.(1 = 0%).(0°)% + y1,y0,y3 > 0,y1 + 2 + Y3 =1,
1— 6% 0% 2n on

2.1+ Y, Yo 4+ 2.Y5

16" = 002~ @7 . B(Y)) = n.(1—09% E(Ys) = 2n.6%.(1 — 0%), E(Y3) = n.(0")?
El(7) = 0,
B0'0) = G

Now, by comments on page 254, 1(0*) = —Eg(I" (6*))|n=1 = 9*.(12_9*) = 9.(12_9)> and hence I(6) =

ﬁ- Now, by theorem 5.3:

V6, — 0) =4 N(0, zay) = N0, =),

(b) Using equation Y3 + Y3 = —(2.Y] + Y2) + 2n, we have:
n!
y1!y2!y3!))]
n!
= exp[(2.y1 + y2).log(0) + (—(2y1 + y2) + 2n).log(1 — 6) + (y2.log(2) + log(

f(y;0) = exp[(2.y1 + y2).log(0) + (y2 + 2.y3).log(1 — 6) + (y2.1og(2) + log(

y1ly2lys! 2
6 !
= exp[(2.y1 + y2). log(ﬁ) + 2n.log(1 — 6) + (y2.log(2) + log( 1

1 yllyglygl))]

By Example 7.15 for ¢(0) = log(1%5), T(y) = 2.y1 +y2, b(0) = —2n.log(1 — ) and S(y) = y».log(2) +
log(ﬁ;!yﬁ) the assertion follows.

(c) By Part (a), v/n.(6, — 6) ~ N(0, @) where 0, = ZYHE a5 n — oo, Consequently:

005 = Py, (2.Y1+Ya>k) = Py,(0, > %)
_ Vi (6y, — 6) Vvn(E — o) Vi —6y)
- F%(v@(1-m/2ziV@U(1—9@/2) Pz = 6%(1—0@/2%
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: Va(E—6o) \ Via(k—6o) . N
or equivalently P(Z < m) ~ 0.95. Hence, s = 1.645, implying:

1.645 * 90(1 —00)/2

k(@o,n) ~ n( \/'ﬁ +90).
(d) First, with 6y = 3 we have,
n 1.645

Second, given power level, for 8; = 0.60 we have:

VAR — 0)

0.80 < Py, (2.Y1 + Ya > k(6o,n)) ~ Py, (Z >
0,(2.Y1 + Y2 > k(6o,n)) ~ Py, ( 01.(1_91)/2)
k(@o,n) _ 9 k(@o,n) _ 0
Py (7 < Vi, 1)) <020 Y D o _osa ()
01.(1 —61)/2 Vb1.(1—61)/2
Accordingly, plugging in () in (x*) we get n > 77.

O

Problem 7.13. Suppose that X ~ Bin(m,6) and Y ~ Bin(n, ¢) are independent random variables
and consdier testing:
Hy:0> ¢ versus Hy:0 < ¢.

(a) Show that the joint frequency function of X and Y can be written in the form

P 0:0.0) = ()" ()7 expld(6.6) + S(a.v)]
and that Hy is equivalent to ( )
L 0.(1—-9

(b) The UMPU test of Hy versus H; rejects Hy at level a if X > k where k is determined from
conditional distribution of X given X +Y = z (assuming that § = ¢). show that this conditional
distribution is Hypergeometric . (This conditional test is called Fisher’s exact test.)
(c) Show that the conditional frequency function of X given X + Y = z is given by

P(X=z|X+Y =2)= 5(21(7?5(6?(: Z__“")j;s

where the summation extends over s from max(0,z — n) to min(m, z) and ¢ = Z((ll:ﬁg. (This is called

a non-central Hypergeometric distribution.)

Solution. (a) First,

flz,y;0,0) = f(x;0).f(y;0) = C(m,x).0°.(1—0)"""*C(n,y).¢Y.(1 — )" ¥

= (&)x*(1jjqﬁ)y*[C(m,fﬂ)-(l—H)m-C(nay)-(l—cb)”]
(90 T4

)**Y . exp[m.log(1 — 0) + n.log(1 — ¢) + log(C(m, z).C(n,y))].
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Take d(0, ¢) = m.log(1 — ) + n.log(1 — ¢) and S(z,y) = log(C(m,x).C(n,y)).

Second, as 8 > ¢, it follows that % > 1 and % > 1, implying (%)(%) > 1, or equivalently
In((§)-(1=§)) > 0.
(b) Under null hypothesis § = ¢ = p, and hence:

PXmalX iy =z = PE=2X4V=2) PX=2Y=z-2) PX=2)PV=z-x)

PX+Y =2) PX+Y =2) P(X+Y =2z)
C(m,z).p*.(1 —p)™*.C(n,z —x).p* *.(1 — p)"—**= _ C(m,x).C(n,z — x)
C(m+mn,z).p?.(1 —p)rtm=2 Cm+n,z)

(c) Using Part (a) representation we have:

PX=z|X4+Y =2 = P();(Xx;f; :ZZ) d = 21:(;2)( i’z’/y :Z P $)5)
1/}”0.(%)2. exp[m.log(1 — 6) + n.log(1 — ¢) + log(C(m, x).C(n, z — z))]
dos ws.(%)z. exp[m.log(1l — 0) + n.log(1 — ¢) + log(C(m, s).C(n,z — s))]
P*.C(m,x).C(n,z — x)
>, [9°-Cm, 5).Cln, 7 — )]

O

Problem 7.15. Suppose that Xi,---, Xj¢ are i.i.d. Uniform random variables on [0, 8] and consider
testing

Hy:0=1 versus H;:0#1

at the 5% level. Consider a test that rejects Hy if X(19) < a or X(19) > b where a <b < 1.
(a) Show that a and b must satisfy the equation

b0 — 10 = 0.95.

(b) Does an unbiased test of Hy versus Hj of this form exist 7 If so, find a and b to make the test
unbiased.

Solution. (a) By Example 7.2. for n =10 and Y = @ we have, Fy (y) = y'© (0 <y < 1). Hence,
0.05 = P(X(10) <aU X0 >bl0 =1)=1- P(a < X9y < b0 =1)

or P(4<Y <50=1)=Pa<Y <b)=095o0r b!° — a0 = 0.95.

(b) There is such an unbiased test if and only if infi.¢-07(0) > 7(1). But,

m(0) = Po(X@10) <aUXug)>b)=1-Fyla < Xy <b)

plo _ 410

0.95

= 1_97,

(6 >0).
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Thus,
1
7(0.95170) = 0 < 0.05 = 7(1),

and consequently, such unbiased test does not exist. However, if one replace the alternative hypothesis
with Hy : 8 > 1, such an unbiased test will exist.
O

Problem 7.17. Suppose that X = (X1, -+, X,,) are continuous random variables with joint density
f(x) where f = fo or f = f1 are the two possibilities for f. Based on X, we want to decide between
fo and f; using a Non-Neyman-Pearson approach. Let ¢(X) be an arbitrary test function where fj is
chosen if ¢ = 0 and f; is chosen if ¢ = 1. Let Ey(T") and E1(T) be expectations of a statistics T = T'(X)
assuming the true joint densities are fy and f1 respectively.

(a) Show that the test function ¢ that minimizes a.Eg[¢(X)] + (1 — a) Eq1[1 — ¢(X)] (where 0 < o < 1
is a known constant) has the form

f1(X)

HH) =1 it Jo(X)

>k

and 0 otherwise. Specify the value of k.

(b) Suppose that Xi,---, X, are i.i.d. continuous random variables with common density f where
f=1rfoor f=fi(fo # f1)- Let ¢,(X) be the optimal test function (for some «) based on X1, -, X,
as described in part (a). Show that

- im (e Eolé (X)] + (1 - @) Ey[1 - ¢,(X)]) = 0.

n—oo

Solution. (a) Take k& = 2. and consider another test function (X). By conditions ¢(z) =

L4 (2)—k.fo(z)>0 and 0 < ah(x) < 1 it follows that:

(p(z) — p(2)).(fr(z) — k.fo(x)) >0 for all z.

Then, by integration we have:

(1-a) /(cb(ff) ¥(x))-f1( )dfﬂ(a)-/(cﬁ@) U(@))-fo(z)dz =20 <
[J(@16() = v@)-fola)da + [(1- a).((a) ~ d@)) @)z <0
Eo((@)-(¢(X) —9(X))) + E1((1 — a).(¢(X) — ¢(X))) <0 &
((@).Eo(¢(X)) + (1 — a).E1(1 = ¢(X))) — () Eo((X)) + (1 — ). E1 (1 = 9(X))) <0 &
G(9)-GY) <0 «
G(¢) < G(w)
(b) First, let the sequence of random variables X (i = 1,2,---) and sequence of real numbers

an, (n=1,2,---) satisfy the conditions lim;,,_., X =4 X* and lim,_ye0 an = a, respectively. Then,
given corresponding C.D.F’s Fxx, and Fx~, it follows that (Exercise !):

lim Fx:(a,) = Fx+(a). ()

n—o0
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Second, by definition

Eo(log(jzl)) < 0,and El(log(?)) > 0. (xx)

0 0

Third, for ¢ = 1 we have:
LSy @), 1y fale), 1 fi(x), log(k)
”.;1 g(fO(l'i)) = g(ZHl fo(:z:@-)) = ! g(fo(x)) Z

and similarly for ¢ = 0 we have:

1§ gm0  losth)

~ 7 folwi) n

Now, by Theorem 3.6 and two times application of (x) we have:

Tim (. Eolgn(X)] + (1~ 0)Bi[1 = 6u(X))) = lim (a.Eo[lp,/g,54lf = fo

+ (L= a)Er[ly, fo<klf = f1])

= lim « l Y o) h@) log(k) =
= 1 P( .;lg(fo( ))Z - |f = fo)

n—oo n xT;

—_— <o
+ (1- a).P(El(log(ji(l))) <0). . * ok %)
> 9

Finally, a comparison of (%) and (x * %) yields the desired result.
O

Problem 7.19. Consider a simple classification problem. An individual belongs to exactly one of k
populations. Each population has a known density f;(x)(i = 1,--- , k) and it is known that a proportion
pi belong to population i(py + - - -+ pr, = 1). Given disjoint sets Ry, - - , Ry, a general classification rule
is

classify as population i if z € Rj(i = 1,--- , k).

The total probability of correct classification is

k
C(Ry, -, Ry) = ;pi /R fi(z)dz.

We would like to find the classification rule (that is, the sets Ry,---, Rj) that maximizes the total
probability of correct classification.
(a) Suppose that k£ = 2. Show that the optional classification rule has

@) pe _ . 1@ _p2
Tih@ S p) BT R <h

(b) Suppose that fi; and fo are Normal densities with different means but equal variances. find the
optional classification rule using the result of part (a) (that is, find the regions R; and Ra.).
(c) Find the form of the optimal classification rule for general k.

Ry ={
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Solution. (a) First, by p1 + p2 =1 and 1g, + 1r, = 1, it follows that:
C(Rl,RQ) = /(pl.fl(x).lRl(m))dw+/(p2.f2(x).132(a:))da:
— [ (1 i@) = prfala) Ay 0) + pfa ). ()

Second, let R}, R be two other disjoint sets with union R. Then, for & = %j, we have(Exercise !):

(1, (2) — 1 (2)).(fi(2) — k. fo(2)) > 0 for all a.
Consequently:
@) =15 @) r(0) = B2).fola)do 20
[00@) = 1 @)1 i(0) — prfala)dr =0
[ R @)-r.61(0) = oo > [(g(a))-0) = pofo)de

/ (p1-f1(2) — po.J2(@)). 11, (2) + po. fo() ) > / (1.1 (&) — pa-fo(2)) s (&) + po- o). (35)
Accordingly, by (%) and (xx) it follows that:
C(Ri,Re) > C(R],R5).

(D)As fi(z) = —o— . exp(Z5HD), (w1 # pa), and (z— u)? = (2= 2)? = (20— (1 + pr2)).(—p11 + 12),

2.m0 "

it follows that:

filz) _ p2
@ = o
p2}

— (ol explgo (@ = m)* = (o = pa)?)) = 22

Ry

b2
= {@]2.(m1 — p2).w > (4 — p3) + 2.0°. log( =)}

(1] — p3) +2.0%.1log(22)

= {JZ‘IL’ > 2 (Ml — N2) = }7 if u1 > p2,
(uf — p3) +2.0% log(E2)

= {w\x < 2 (/’Ll — ,u2) B }7 if < p2,

and take Ry = R — R;.

(c) As for k = 2 we have, Ry = {z|p1.fi(x) — p2.fa(x) > 0}, taking Lo(z) =0, Li(x) = p1.fi1(x) —
p2.fa(z) it follows that:
Ry = {z|L1(z) > Lo(z)}.

Consequently, for case k > 2 we may set (Floudas & Pardalos, 2009):
Ry ={a|Li(z) = Lj(z) (0<j<d)} i=12--.k
in which for some (qij)le we have:
Lo(z) = 0,
Li(z) = pifi(z)— Z gj-fi(x), i=1,2,--- k.

1<j#i<k



98 (© 2018 by Chapman & Hall/CRC

O

Problem 7.21. A heuristic (but almost rigorous) proof of Theorem 7.5. can be given by using the fact
that the log-likelihood function is approximately quadratic in a neighbourhood of the true parameter
value. Suppose that we have i.i.d. random variables X7i,---, X, with density or frequency function
f(z;6) where 6 = (6;,--- ,0,), define

Zn(u) =In(Ln(0 +u/v/n)/Ln(0) = ul .V, — %UTI(Q)U + Ry (u)

where R, (u) =, 0 for each u and V,, —4 N,(0,1(6)).

(a) Suppose that we want to test the null hypothesis Hy : 61 = 019, ,0, = 0,9. Show that, if Hy is
true, the LR statistic is 2In(A,) = 2[Zn((7;) - Zn(@)] where U, maximizes Z, (u) and Uyo maximizes
Zn(u) subject to the constraint that u; = -+ =wu; = 0.

(b) Suppose that Z,(u) is exactly quadratic (that is Ry (u) = 0). show that

where V;, and I(0) are expressed as
Vi1 111(0) 112(9)>
Vo = 1(0) = .
(Vn2> ® <I21(9) I5(0)

¢) Assuming that nothing is lost asymptotically in using the quadratic approximation, deduce Theorem
7.5. from parts (a) and (b).

—
=ny

Solution. (a) By definition and 9/;1 =0+ % for some (/]; and «9/,;) =60+ UT(; for some ﬁ,; it follows

Vvn Vn
that:
~ Oa Oa
2.log(A,) = 2.log( L”(?f) ) = 2.log(Ln(97+[ﬁ)) = 2.log( L0+ ﬁ)/Ln(e) )
Ly (60) Ln(0+ J20) L (0 + 22)/Ln(6)
Lo(9+ Z2) L6+ T0) . .
2 Jog(— ) — 2. log(——37) = 2Zu(Th) = Zu(Tno)]

(b) Let Z,(u) = UT.V,, — £.UT.I(0).U. Then:

dZ;éU) =yl _ % «(2UT10) =V —UT10)=0=UT100)=VT, or UT =VT.1(0)"".

As I(#) and I~'(#) are both symmetric we have:

o~

U, = VII10) YT = 1@ "Ht.v, =16)"1.v,.

n
The second assertion follows similarly by consideration a projection P.
(c) Let X ~ Np(ppx1,Cpxp)- Then, a necessary and sufficient condition for the random variable (X —

wT.D.(X — i) to have a chi-square distribution with r degrees of freedom (in which r = rank(DC))
is that (Rao, 1973): CDCDC = CDC.
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Now, using V;, =4 N,(0,1(0)) as n — oo and the fact that:
2.108(An) = 2(Zu(Un) = Zu(Uno)]
—~T 1 ~7 —T 1 —r —
= 2[(U, .V, — f.Un 1(0).U, )— (Uno Vi — §'Un0 1(0).Uno)]

n

~ v me) P(6).(1(6)-P(6) — 2.1)].V,.

n

and taking D = I(0)~! ( ).(I(0).P(0) — 2.1) and C = I(0) in above mentioned Statement the
assertion follows.

O

Problem 7.23. Suppose that X1, -, X,, are independent Exponential random variables with E(X;) =
B.t; where t1,--- ,t, are known positive constants and [ is unknown parameter.

(a) Show that the MLE of § is 8, = 1 7 | X;/t;.

(b) Show that \/n(B — 8) =4 N(0, 52).
(¢) Suppose we want to test Hy : 5 = 1 versus H; :  # 1. show that the LR test of Hy versus H;
rejects Hy for large values of

= 2 VT.I(e) Vi — % VI I10) . 1(0).1(0)"1.V,) — (V.I.P(9).V;, — %.VHT P(6).1(0).P(0)T.V,)]

T, = n(ﬁn - ln(/Bn> - 1)
where B, is defined as in part (a).
(d) Show that when Hy is true, 2T, —4 x2(1). -

Solution. (a) As: I(f;x) = Z?:l(log(ﬁllti.e

d 1 L\~ ~ Xy
—I(B;x) = =.[— —. —|=0= 4, = :
(b) Define X} = )t(—:, i =1,2,---, then X’s are i.i.d. random variables with F(X}) = 3, and
Var(X}) = 8% Hence, by Theorem 3.8 and Part (a):
BB NO1), (1 o0)
/3/f
and the assertion follows.
(c) By Part (a) and:
i Xuﬁn i e—wz/t (1/Bn=1) =i (wi/t)-(1/Ba-1)
— S— — (ﬁn) n o n+n.ﬁn,
I;I XZ’ 1 £[1 Bn

it follows that: . . . e
T, = log(Ay) = —n.log(Bn) — n + n.By = n.(Bp — log(Bn) — 1).
(d) This is a direct consequence of Theorem 7.4. in which:

/ 1 " 1 2.
Upsw) = —log(pt) — 5o (Bia)=—5+ gy U'(Bio) = 55 —
/ " _1 ’ 1 1
Es(l (Bix)) = 0, Eg(l (B3x)) = e Varg(l (B;x)) = Var’B(_E + B;Ct) — 7

aDnd I(8) = Varg(l' (B;x)) = gz = —Es(l" (B:2)) = J (B).
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Chapter 8

Linear and Generalized Linear Models

Problem 8.1. Suppose that Y = X3 + ¢ where € ~ N,(0,0%.1) and X is n x (p + 1). Let B be the
least squares estimator of 3.

— 3 2 . . .
a) Show tha = ——- is an unbiased estimator of o~.
Show that §2 = IX=251 biased estimator of o
(b) Suppose that the random variable in € are uncorrelated with common variance 2. show that S is
an unbiased estimator of o2.

(c) Suppose that (X7.X)~! can be written as

COO PR Cop

_ IS ... c
(XTX) 1 — 11 1p
Cpo PR cpp

B;—B; .
Show that Sji\/%NT(TL—p—I) fOI‘j—O,l,--- , D

Solution. (a) First, let § = X.8 with rank(X) = p + 1. Then, for H = X(XT.X)"1XT | we have
Y —-60=(I,—H).Y. Thus:
(n—(p+1).8%=Y" (I, -H)".(I,-H).Y =YT.(I, —-H)2Y =YT.(I, - H).Y. (%)

Second, by H# = 6, it follows that rank(l, — H) =tr(I — H) =n — (p+ 1), and:

EYT.(I,-H)Y) = tr(I,—H).Var(Y))+ EXY) (I, — H).E(Y)
= oltr(l,— H)+60T.(I, —H).0=0>(n—(p+1)). (%%

Thus, by (%) and () we have:

B($) = (= 04 D)) = s Bl = (0 1.5
_ 1 T — :71 o?.(n— =o?
= e P L = I)Y) = st = (1) =

(b) By Proposition 8.1(b) we have 71.;5/02 ~ x%(n — (p+ 1)), and hence E(n.ﬁ/aQ) =n—(p+1),

implying: F(S?) = E(—gmo?) = o?.
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(c) By definition, for independent random variables Z,V with Z ~ N(0,1) and V ~ x2%(m), we have
T = —~— ~ T(m). Now, by Proposition 8.1. take independent random variables % ~ N(0,1)

VV/m 02.¢jj

and nT?f _ m—(pa%l))s“’ ~x2(n—(p+1)) and m =n — (p+1), it follows that:

~ B;—5;

biBi o N7 (py1))

VS2.ci; (n—(p11))52 ’
5j [ o ]

a

n—(p+1)
|

Problem 8.3. Consider the linear model Y; = o + S1.xi1 + -+ Bp.xip + € (i =1,--- ,n) where for
j=1,---,pwehave Y ;" z;; =0.
(a) Show that the least squares estimator of 3y is By =Y.

(b) Suppose that, in addition, we have > | ;.2 = 0 for 1 < j # k < p. Show that the least squares
i1 Tij-Yi

estimator of 3; is f; = ST
i= ij

Solution. (a) As B = (XT.X)~1.XTY in which

Bo 1z - 21 Y1
x B1 1z -+ x9p Y2
B={ 1 X=|.. , V= )
Bp 1 Tnl * Tnp Yn
we may conclude that:
1 1 1
Bo T11 %21 Tl 1z o mye oz
B1 _ » 1z Top - Tap )
T1j T2 Tnj
51) o o 1 Tnl Tnk Tnp
$1p I‘Qp xnp
1 1 1
11 T21 Tnl Y1
* DY >< y2
1‘1j $2j .CL‘nj s
DY yn
Tip T2p Tnp
n
n 0 0 > i1 Vi
n
— 0 )—1 % Z¢:1 Li1-Yi
n
0 22':1 Tip-Yi
1 —
= 0 0 . n.y
_ 0 Zizl Ti1-Yi
= (] ... ) % :
n
0 Zi:l Lip-Yi

implying £y = % *N.Y =7.
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(b) In this case, we have:

n
B1 0 Z¢:1 95121 0 T T 0 Z?:l Til1-Yi
— k
Bj 1 o 0 SRD DARE I 0 ) > i1 Tij Y
Bp 0 0 e 0 Z?:l ‘Tzzp Z?:l Lip-Yi
1
= 0 0 0
0 —1 9 0 ;Llyi
POHEH Zizl Li1-Yi
_ : § .
0 0 i 0 ) D TijYi
0 0 - 0 % Doi1 TipYi
% ip
2?21 Yi
n n
Doy i1 Y
1T
= S xiyi | s
1 x?j
Z?:l Tip-Yi
:Ln:l $z2p
. . A, o Z:l: Ti5.Yi
yleldlng, /Bj = ﬁ

O

Problem 8.5. Suppose that Y = 6 + € where 0 satisfies A0 = 0 for some known ¢ X n matrix A having
rank ¢. Define # to minimize |[Y — 0]|? subject to A9 = 0. Show that 6= (I — AT(A.AT)~L A)Y.

Solution. First, as A.AT is positive-definite and non-singular it is invertible, too. Second, using the
method of Lagrange Multipliers, define r(8) = [|Y — 0|2 + 67.AT.\. Then:

d y_o9d _ Ty 0 dney LT
7 (0) =225(Y —0).(¥ =) + ATA=0= 0 =Y — Z.ATA (x)

Next, estimating both sides of (x) under A it follows that 0 = Aby = AY =2 AT X)) = AY —1 A AT\
or AY = A.AT. ( ). Hence, by invertibility of A.AT :

(AATYTAY = % (%)
Accordingly, by () and (xx) it follows that:
O =Y — AT (AATY LAY = [I — AT.(AAT)"1 A] Y.
O

Problem 8.7. (a) Suppose that U ~ x2(1,07) and V ~ x%(1,60%) where 6? > 63. Show that U is
stochastically greater than V.
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(b) Suppose that U, ~ x%(n,6?) and V,, ~ x2(n,03) where 6? > 63. Show that U, is stochastically
greater than V.

Solution. (a) For standard normal distribution Z, in which X — |0;| ~ Z (i = 1,2), we have:
P{U>z)>P(V >z) & P(X%>zl0?)>P(X?> z|63)
& P(X[> Vazl|tw]) = P(X] > vx[lf2])
B B

& P(|X] < Vaxl|oh]) < P(I1X] < Vz[|02])
& P(|Z+61] <Vx) < P(|Z 4+ 6] < V)
for all x> 0.

Hence, considering standard normal C.D.F, ® and p.d.f, f, it is enough to prove the function
9(0;2) = P(1Z + 0] < /&) = ®(~0 + V&) — D(~0 — V/z), 0>0

is decreasing. The proof is complete by considering the fact that

2g90:0) = = [(=0+VD)+f(=0-V) <0 & f(=(0+Vr)) = f(0+Ve) < f(Va=0): Vo0 < Vatd,

(b) Let X3,---,X,, and Y7,---,Y,, be two sets of independent random variables in which Y; is stochas-
tically smaller than X;, with notation ¥; <4 X; (1 <i < n). Then (Belzunce, Martineze & Mulero,
2016),

Now, by Part (a) and an application of above statement with X} = X? ~ x2(1,6?) and YV;* = Y? ~
X2(1,603) (1 <i<n) it follows that:

n n
i=1 =1

O

Problem 8.9. Suppose that Y = X + ¢ where € ~ N,,(0,0%.1) and define the ridge estimator (Hoerl
and Kennard, 1970) Bx to minimize |Y — X.8]|2 + .|| B||* for some A > 0. (Typically in practice, the
columns of X are centred and scaled, and Y is centred.)
(a) Show that

Br=(XTX+XD)'XTY = (I + \(XT.X)"1)"13
where B is the least squares estimator of 5. Conclude that B; is a biased estimator of .
(b) Consider estimating 6 = a’.3 for some known a # 0. Show that MSEg(aT.B:) < MSEg(aT.B) for
some A > 0.

Solution. (a) Let G(8) € R", then: %(HG(B)HQ) = 2(%6‘(@).(}(5). Hence, by two times application
of this rule it follows that:
d 2 2y _ iy _ 4
ag Y —XBIE+AIBIT) = 2(55( = X.5).(Y = X.5) +A.2.(355).5
= 2.(-X)T.(Y = XB)+ 2L}

= 2% [-XTY +(XT. X +)1)B] =0,
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and by comments on Page 407 it is implying :

B = (XTx+AxD) ' xTy

= (XT X+ A1) (xT.X.B)
(X" X)L (XX +A1)7(B)
(I+A (X" X)"H)7L(B).

(b)Take U = (a” By — a”.8).(XT.X)~".(aT.B)) and V = (XT.X)~".(a”.B)). Then, for A > —2L&L) ¢
follows that:
0 <2NEy(U) + N2.Ep(V). (%)

Accordingly, by (%) and considering the fact that By = I+ )\.(XT.X)_l)_l.(E) implies 3 = (I +
A(XT.X)71).(By), it follows that:

MSEg(a”.By) = Eg((a”.Br—d".B)?)
< Ep((a” Br — a”.8)%) + 2.X.Ep((a” B — aT.0).(XT.X) . (aT By))
- A2E9(<XT >1<aTﬁA>)
= By((a” By —aT.$)?) + 2.E4((a¥ By — aT.B).(0(XT.X)"LaT B))
+ EQ(AQ.(( . )1.aT.ﬁ)\))

Eg(((aT By — a”-8) + (AM(XT.X)"L.aT B)))?)
Eg((a”.(I+ 2(XT.X)"1).(By) — a”.8)?)
MSEp(a” (I +X(XT.X)"1).(BY))

= MSEy(a”.B).

O

Problem 8.11. Suppose that Y; = 218 + ¢;(i = 1,--- ,n) where ¢’s are i.i.d. with mean 0 and
finite variance. Consider the F' statistic (call it F},) for testing Hy : Br41 = -+ = [p = 0 where

B= (B, Bp)"-

(a) Under Hy and assuming the conditions of Theorem 8.5. on the z;’s, show that

(p—7).Fn —a X2(p — 7).

(b) If Hy is not true, what happens to (p —r).F,, as n — oo. 7

Solution. As RSS ~ x%(n—p—1) =4 Sy p—l X7 X ~ttd o 2(1),and E(XF) =1 (1 <i <n—p-—1),
an application of Theorem 3.6, implies that (RS s )/(n—(p+1)) =, 1. Then, an application of Theorem
3.2 with g(z) = 2 yields

IS /= 1)) =1 (4

(a) Referring to Page 409:

RSS.—RSS
=== RSS, - RSS

b Em g T X ()
n—p—1)o
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Now, by (%) and (**) and an application of Theorem 3.3.(b) yields:

RSS, — RSS 1
(p—'l")Fn: o2 * RSS —d XQ(p_T)
(n—p—1)02

(b) Referring to Pages 413-414:

855158 RSS, — RSS | X6 — |1 Hr- X B2

ip—ri60?), 6% = |

(p—r).F, = 755 5 5 (% % %)
(n—p—1)02 g g
Accordingly, by () and (* * %) and another application of Theorem 3.3.(b) it follows that:
RSS, — RSS 1
(p—T).Fn = 2 *® RSS —d XQ(p_T;QQ)'
o W
(n—p—1)o?
O
Problem 8.13. Consider the linear regression model Y; = x?ﬁ +¢ (i=1,---,n) where e, -+ , €, are

i.i.d. Exponential random variables with unknown parameter .

(a) Show that the density function of Y;’s is fi(y) = A.exp[—\.(y — 1 B)] for y > 27 3.

(b) Show that the MLE of 8 for this model maximizes the function g(u) = Y. ; 27 u subject to the
constraints Y; > J:,LTu fori=1,---,n.

(c) Suppose that Y; = B.z; + €;(i = 1,--- ,n) where €, -+, €, i.i.d. Exponential random variables
with parameter A and x; > 0 for all 4. If B; is the MLE of 3, show that B; — B has an exponential
distribution with parameter A.>"" | ;.

Solution. (a) Let y = h(e) = 2.8 + € with f.(y) = X.e™™¢ € > 0. By Theorem 2.3, for ¢ = h~!(y) =
y— 7.8 and |J,-1(y)| = 1 we have:

Fr(y) = Fx (7 @) AT ()] = Ae =00y 0T g > 0,
(b) As:

n

1(B;y) =D log(fy(yis B) = D> _(log(\)=A.(yi—=] .B)) = (n.log(\) =\ D> _wi)+A._af .8): A>0,
i=1 =1 i=1

=1

it follows that:
arg(max(l(B8;y))) = arg(max(z el ) yi—zl >0 (1<i<n).
=1

(¢) By yi = B.xi 20 (1 <i<n)wehave, 2t > (1 <i<n),and by Part (b):

By = arg(max(1(5;y))) = arg(max(}_ 27.6)) = min 2.

. 1<i<n x;
=1
Accordingly:
Fy @) = P(Ba—fB<a)=P(min ' <f+z)=1-P(min = > f+a)
Bn—p v o " =T)= 11%111%111 Z; - = 12%111 I, - .

n

Y; i AT
= 1—H1P(xz>ﬁ+x)=1—1‘[1p(ei>x.xi):1—e Aima T
1= 1=
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and hence, B; — B ~exp(A. D0 xi).
O

Problem 8.15. Suppose that Y has a density or frequency function of the form

£(4:0.6) = explf.y — ”if’ ey, )

for y € A, which is independent of the parameters § and ¢. This is an alternative to general family of
distributions considered in Problem 8.14. and is particularly appropriate for discrete distributions.
(a) Show that the Negative Binomial distribution of Example 8.12 has this form.

(b) Show that Ep(Y) = ¢~ b (h) and Varg(Y) = ¢—'b"(6).

Solution. For y =0,1,--- , we can write:
Fly+3),  (ap?
y!.I(3) (1+ a.u)y“'%

1 1 1 Q. 1 o 1 Q.
= ——1 @ y: ——1 1 «@ Y
Cly+ W)= () *(1+a.u) Cly+ =1Ly *( )e s ( )

J(y; )

) +y.log(——E ),

1 1
= expllog(C(y + o 1,y)) + o log(1 —

1+ap 1+a.p
and by taking
0 = log(~ ) 6=a cly,0) =log(Cly+ é ~Ly)). b(0) = ~log(1 — =~ L) = log(1— <),
the assertion follows.
(b) First:
d d b(0
0 = =15 [ 0.0 = [ lexpioy - "2+ el o)y
gy MO) RN
/A Jglexp(@-y ol c(y, ¢))ldy /(y 5 )-f(y; 6, ¢)dy
= Ep(Y) - bq(f),

so, Ep(Y) = bg}).

Second, using first part it follows that:

w0 S — L) = 4 [ vdew0 - 2+ ety oy
= / y %[GXP(Q y— b((f) + c(y, 9))]dy = / y(y — ff))-f( ;0,0)dy
= ) - "9 By = By(v?) - (By(V))? = Vary(v)
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O

Problem 8.17. Lambert (1992) describes an approach to regression modelling of count data using a
zero-inflated Poisson distribution. that is, the response variables {Y;} are nonnegative integer valued
random variables with the frequency function of Y; given by

PYi=y)=0;+(1—0;)exp(—)\;) fory=0, (1—6;)exp(—N\)N//y! fory=1,2,--

where 6; and )\; depend on some covariates; in particular, it is assumed that

where z;(i = 1,--- ,n) are covariates and f3, ¢ are vectors of unknown parameters.

(a) the zero-inflated Poisson model can viewed as a mixture of a Poisson distribution and a distribution
concentrated at 0. That is, let Z; be a Bernoulli random variable with P(Z; = 0) = 6; such that
P(Y; =0|Z; =0) =1 and given Z; = 1,Y] is Poisson distributed with mean )\;. Show that

P(Z; =0Y; =y) =0;/[0; + (1 — 0;).exp(=\;)] for y =0, 0 for y >1.

(b) Suppose that we could observe (Y1, Z1),- -, (Ys, Z,) where the Z;’s are defined in part (a). Show
that the MLE of 8 depends only on the Z;’s.

(c) Use the ” Complete data” likelihood in part (b) to describe an EM algorithm for computing maximum
likelihood estimates of 8 and ¢.

(d) In the spirit of the zero-inflated Poisson model, consider the following simple zero-inflated Binomial
model: fori=1,---,n, Y7,---,Y, are independent random variables with

PY;=0)=X+(1-X).1-0)", PYi=y)=01-X).Clmy)d/(1-0,)""Y 1<y<m
where 0 < ¢ < 1 and ln(lf—i@i) = By + B1.2;, ln(li—x) = ¢g + ¢1.7; for some covariates x1,- -, XTn.

Derive an EM algorithm for estimating ¢ and 8 and use it to estimate the parameters for the data in
Table 8.1.; for each observation, m = 6. with m = 6 :

Table 8.1. Data for Problem 8.17; for each observation m==6.
X y X y X y X y
0.3 0 0.6 0 1.0 0 1.1 0
2.2 1 2.2 0 2.4 0 2.5 0
3.0 4 3.2 0 34 4 5.8 5
6.2 0 6.5 5 7.1 4 7.6 6
7.7 4 8.2 4 8.6 4 9.8 0

(e) Carry out a likelihood ratio test for Hy : 31 = 0 versus Hj : 31 # 0. (Assume that the standard x?
approximation can be applied.)
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Solution. (a)

P(Y; = y|Z; = 0).P(Z; = 0)
P(Y; =y)
P(Y; =y|Z; =0).P(Z; = 0)
[P(Y; =y|Z; = 0).P(Z; =0) + P(Y; = y|Z; = 1).P(Z; = 1)]

P(Z;=0]Y; =0) =

0 .
= Grenaop TVEY
P(Y; =y)
= < =0 if y>0.
- P(Y;=y) =P =y) y

(b) As f(y,2;08,0) = f(y; 2, 8,0) * f(2; 8,0) = f(y; 2,0) * f(2; B), the log-likelihood of the joint distri-

bution can be written as:

l(ﬁa‘b? Y, Z) = ZIOg(f(zu +210g ylaz’w )
=1

= [ _(zial B —log(l +exp(z].5)))]
)

+

>
i=1
> (1= z)(yix] & — exp(af .¢)) = > (1 z). log(y:!)]
i=1 i=1

= L(B;Y,Z) + Le(83Y, Z),

in which the first term L.(8;Y, Z) is only dependent to z and so is M LE([3).
(c) The (k + 1)th iteration of the EM algorithm requires three steps:

(i) E-Step: Estimate z; via:

78 = P(z = 0ly;, B0, ¢¥)

P(yi|zi = 0).P(z; = 0)
[P(yi|2 = 0).P(2; = 0) + P(yi|zi = 1).P(2; = 1)]
1
1+ eXp(—x;fF.B(k) — eXp(:B;fF.¢(k))) ‘1y =

(ii) M-Step for ¢: We find ¢+ by maximizing L.(¢;Y, Z*¥)).

(iii) M-Step for B: We find S+ by maximizing L.(8; Y, Z¥)) as a function of 8 given below:

n

L.(5;Y, Z(k Z z(k al.p— Z z; )log 1+ exp(z!.B)) — Z(l — zi(k)).log(l + exp(z!.3)).

=1
(d) First, the log-likelihood is given by (Hall, 2000):
U6.8:y) = Y [ymo *log(e™ @+ (14" #)™™) ~log(1 + " )
i=1

+ Ly # (il .8 — milog(1 + €™ %) +1og(C(mi, yi)))).
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Second, define

Z; = 1if Y; is generated from zero state, 0, if Y; is generated from binomial state.

Then, given Z = (21, -+ , z,) the complete data {(v;, z;) }i_; log-likelihood is of the form:

n

log([[ P(Yi = i, Zi = 2))
=1

(9, B3y, 2)

n

> [zial ¢ — log(L + €™ %)
=1

DI = 2)  (gioal B = milog(1+ ¢ ) 4 log(Cmi, )]
i=1

le(d3y,2) +1e(Bsy, 2).

Finally, the EM algorithm by starting values (¢(?), 3(0)) for the iteration (k+ 1) has the following steps
(Hall, 2000):

(i) E-Step: Estimate Z; via:

TS P(Zi =ty 6B, B0 P(Zi = 1) 1+ exp(—aL.¢0))(1+ ent BT ymmi

(ii) M-Step for ¢ : We find ¢*t1) by maximizing l.(¢;y, z)).
(iii) M-Step for £ : We find B*+1) by maximizing I.(3;y, 2(F).

(e) With the assumption ¢; = 0, the following SAS 9.4. Proc FMM output shows that with p —
value(B1) = 0.0803 > 0.0500, we cannot reject the null hypothesis Hy : 51 = 0 at 5% level.

Zero-Inflated Binomial Model

The FMM Procedure

Parameter Estimates for Binomial Model
Component| Effect |[Estimate Standard|z Value|Pr > |z|
Error
1 Intercept| -1.3727 | 1.3014 -1.05 |0.2915
1 X 0.3481 0.1990 1.75 |0.0803
Parameter Estimates for Mixing Probabilities
Component Linked Scale
Mixing Logit(Prob)|Standard |z Value|Pr > |z|
Probability Error

1 0.5492 0.1975 0.6067 0.33 |0.7447
2 0.4508 -0.1975

Figure 8.1. SAS 9.4. output for Table 8.1. data
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O

Problem 8.19. Consider finding a quasi-likelihood function based on the variance function V(u) = p

for some specified r» > 0.
(a) Find the function ¢ (p;y) for V().
(b) Show that

d d
@w(u;y) = In f(y; 1)

for some density or frequency function f(y;u) when r =1,2,3.

Solution. (a) Using %1/}(”, y) = ﬁ it follows that:

Bluy) = /(W)duz/ﬂ;“)du:

Y 1—r
= |—. 1
[T

[ Y

9 _ T-M27T 1r7é2 + ln( ) r= 2] + C(y)

r;é1+y ln( ) r= 1]
In particular:

r=1 : ¥(py) =y.log(n) —pu Poisson
r=2 : Y(py)= %y —log(n)  Gamma

1
r=3 : Y(py) = —y—i—— InverseGaussian
242 p
2
. ) . ry

(b) Suppose that for some measure P on R to have:

APy s) = esp(u0 —90).aPw): 0= [ s

Then, 1 = [dPy = [exp(y.0 — g(0))dP(y) = e 9. [ e¥dP(y) or [e¥9dP(y) = €9, Consequently:
my(t) = E(Y)= /ety.eye_g(e)dp(y) = /ey(t+9)dP(y).e_g(0)
= 9(tH0) o=9(0) — o9(t46)—g(0)
Hence, my(0) = g'(6) = p, ¢ (0) =V(n), % =g"(6) = V(u), implying:

din(f(y; 1)) dIn(f(y; 1)) d6 : 1 y—p_ dp(py)
a7 R il AL Bl % B T

Finally, checking v (u,y) for V() = p” (r =1,2,3) in Part (a) we observe that:

dIn(f(y; 1) _ dp(p,y)
du dp

r=1,2,3.
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Chapter 9

Goodness-of-Fit

Problem 9.1. The distribution of personal incomes is sometimes modelled by a distribution whose
density function is

f(z;0,0) = %(1 + g)_(o‘ﬂ) forz >0

for some unknown parameters o > 0 and 6 > 0. The data given in Table 9.2 are a random sample of
incomes (in 1000s of dollars) as declared on income tax forms. Thinking of these data as outcomes of
i.i.d. random variables X1y, - -, Xy, define

40 40

10 10
Y = Z Iix;<05), Yo = Z Tos<x;<a0), Y3 = ZI(4O<XZ-§90)7 Yy = Z—’(ngo)-
i=1 i=1 =1 =1

Table 9.2. Data for Problem 9.1.
3.5 7.9 8.5 9.2 114 174 20.8 21.2
21.4 22.5 25.3 25.7 25.9 26.2 26.6 27.8
28.7 30.1 30.2 30.9 35.0 36.0 39.0 39.0
39.6 43.2 44.8 47.7 57.5 62.5 72.8 83.1
96.6 106.6 | 115.3 | 118.1 || 152.5 | 169.2 | 202.2 | 831.0

(a) What is the likelihood function for the parameters o and 6 based on (Y7,---,Yy)?
(b) Find the maximum likelihood estimates of o and 6 based on the observed values of (Y7,---,Y}) in

the sample.
(c) Test the null hypothesis that the density of the data is f(x;«,#) for some « and 6 using both the
LR statistics and Pearson x? statistics. Compute approximate p-values for both test statistics.

Solution. (a)Take S = [0,00) and define A; = [0, 25], Ay = (25, 40], A3 = (40,90], A4 = (90, 00). Then,
S = U?ZlAj, and furthermore:

b b a T
pla,b;a,0) = /f(:n;oz,@)da::/ 5(1+5)_(a+1)dx

b/0 a
= / a.(1+2)" @ de = (1 4+ 5)70‘ -(14+-2)"% (a<b).
a/b
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So:
40!
L(a, 0591, 92,93, Y4) TR RN
Y1:Y2:Y3:ya:
95 25 40
# =@+ )T [+ )™ = (L )70
40 90 90

*

(1+5) =1+

(b) By data given in Table 9.2 y; = 10,32 = 15,y3 = 7,y4 = 8 and Part (a) the log-likelihood function
is given by:

7)o [+ ),

l(a,0) = log(L(a,0;10,15,7,8))

B 40! 2% . 2% 40,

= log(10!15!7!8!)+10*log(1 (1+ 0) )+ 15 x log((1 + 9) (1+ 0) )
40 90 90

+ 7*10g((1+7)_a— (1+7)_a)+8*log((1+7)_a).

Next, define g(a,0) = —I(«,0). Then, by Powell’s Method for finding minimum values of g (Powell,
1964), it follows that: & = 0.0527 and 6 = 0.0917.

Figure 9.1 Plot of function I(a, 0)

(c) First, define:

pile) =1 (L4 2)™ pala,8) = (14 )™ = (14 7)™,
pa(,6) = (1+ )7 = (14 2)™, pya,6) = (1 + 2™,

0
and evaluating at MLE values in Part (b) we get:

0 0

~ ~ ~ ~

p1(@,0) =0.0256, pa(@,f) =0.0181, ps(@,d) =0.0303, p4(@,8) = 0.6955.
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Second, by Theorem 9.1. and Theorem 9.2. for £k = 4, n = 40 and p = 2 we have:
2.In(Ag) ~ x2(1), Kiy ~ x3(1).

To test the null hypothesis Hy : ¢; = p;(a,0) (j =1,2,3,4) we have:

2.In(Ay) = 2.3 ln(40y(j) — 141.118 >> 3.841 = Reject the null hypothesis at 5% level
B ,p‘

4 ~
40 2
Ky = Y (y; = 40-p i (@0))7 _ 401,930 >> 3.841 = Reject the mull hypothesis at 5% level.

The corresponding p-values for the above LR test statistics and Pearson x? test statistics are both
smaller than 0.00001.

O

Problem 9.3. Consider theorem 9.2. where now we assume that 6,, is some estimator (not necessarily
the MLE from the Multinomial model) with

V(0 = 8) —ra Ny(0,C(6).)

(a) Show that K** —2In(A%) —, 0 (under the null hypothesis).
(b) What can be said about the limiting distribution of 2In(A;,) under this more general assumption
on 6, ?

Solution. (a) First, by null hypothesis Hy : pj(f) = ¢; (1 < j < k), A] = % (1 <j<k),and
Example 3.12 for X} = 1x,ea; ~ Bernoulli(p;(0)) (1 <i <n)and X} = ZZ:; X o % it follows
that: v

V(== = p;(60)) =a N(0,p;(0) x (1 =p;(0))) (1<j<k) (x)

Second, it follows from assumption that:

Vi (pj(0n) = pj(8)) —a N(0,p;(8)".C(8).p;(0)) (1<j<k). (+x)

Third, it follows from (x) and (*x) that:

B pi)) = Var(" —p(6)
L nO.0-50) 50" CO0)
v VBB O)p O OO0
__define kj (9’ Tn)

QISR (2 ). (s4%)
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Now, for r1,79,€ > 0 by (* * %) and an application of Theorem 3.7 it follows that:

P P i) > ) =PI ()] > (-)7%)
. E((L —7,(6.)))
()7
= k;j(e:lrn) 1i:1, (1<j<k), (n>1). (1)

Accordingly, it follows from (1) that:

S i@ 0. (2> >0 ()

n't.

Fourth, using S_% Yoi — 1= Z?Zl p;(6,) it follows that:

Fifth, given (
we have:

2.In(A¥) =

=1 n

P2 @) =0 (1)

M»

Jj=1

% — pj(9~n)) —p 0, (1 1 1) and using Taylor expansion of f(x)

n. nj*ln
’ Z s >)

= In(x) around a = p;(6,)

2n. Z ——pj n)) +0j(0n)) * (In(=%) — In(p; (6n)))]
By . 3
2. 31— py(6)) * (225 = np(6)))]
j=1
k
2n Z (pj(9~ )—ln(pj(gn)))]
j=1
k , ~ . .
20 31—y (61)) # (—e (220 () + Op(22 — (6]
j=1 n p](en) n n
k 8 1Y, - 1 Y, Y,
n Or, — (L —pi(6,)) — - M pi(00))% + Op (2L — pi(6,))°
) jzlup]( ) (wn)(n PO) = o i) + O = py 6
k . ~
n 3 i)+ 203 01— (0
j=1 p;(6 j=1
k k
2. Z )] S (0] 4 2 Oy~ s (6,))°
j=1 p](g’ﬂ) n j=1 "
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Now, by (f) for r1 = 1,72 > 3 and (}) it follows that:
k v )
2:10(05) = (16307 = 4n. 3 0n2 =y (B))’ =0
‘]:

(b) Let (K,)?%,2.In(A,,) and ( *)2,2.In(A}) be corresponding statistics to p](QAn) and p;(6,), respec-
tively. Then, if (K})? — (K;)? —, 0, then by Part (a) and using

2.In(A) = (2. In(A}) = (K;)%) + (K3)? = (K)?) + (Kn)?

it follows that 2.1n(A}) has an asymptotic x? distribution.
O

Problem 9.5. Suppose that Xi,---, X, are i.i.d. continuous random variables whose range is the
interval (0,1). To test the null hypothesis that the X;’s are uniformly distributed, we can use the
statistics:

Vi stm (2m.X;) IZCOS (2m.X5)

(a) Suppose that X/s are Uniform random variables on [0, 1]. Show that as n — oo,

(\/1,5 ; Sin(27r-Xi>7 \/177 ; COS(27T.Xi>) —d (Zl7 ZQ)

where Z; and Z, are independent N (0, 02) random variables. Find the values of o2.

(b) Find the asymptotic distribution of V,, when the X;’s are uniformly distributed.

(c) Suppose that either E[sin(27.X;)] or E[cos(2m.X;)] (or both) are non-zero. Show that V;, —, oo in
the sense that P(V,, < M) — 0 for any M > 0.

(d) Suppose that {vy o} is such that P(V,, > vy, o) > « when the X;’s are uniformly distributed. If the
X;’s satisfy the condition given in part (c), show that

lim P(V,, > vpq) =1

n—oo

for any a > 0.

Solution. (a) We apply Example 3.11 with

A G- e-(h )

Hy * TX*Y* Oy

in which X} = sin(2.7.X;) and Y* = cos(2.7.X;), (1 <i <n). To calculate the entries of the matrix
C we first calculate the C.D.F. and p.d.f of X in which:

Fx:(z) = P(sin(2.m.X;) <z)=P((0 <27m.X; <arcsin(z)) U (2. > 2.71.X; > 7 — arcsin(z)))
i - + 2. i
= (0 < X, < Dy g 5 x, p TEUOE),)) mER A )
d 1
fX;‘ () = @(FX;‘ (r)) = m-l[fl,ﬂ (7).
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Consequently:
1
x
. = ———)dz =0,
e /_1(77.\/1z2)
1 2 . o\ 1
9 x 2, ,arcsin(z) —z.(1 —x%)2 1
e = [ == O 5 H=15
* ok ! . 1 Am . dx
ox+y+ = E[X*Y*]= [ sin(2.7.z).cos(2.m.x)dx = sin(z)— =0,
0 2 0 4.7
1 2.
fys = / cos(2.m.x)dx :/ cos(x)j—x =0,
0 0 LT
e = B =B - (X)) =1- B(X))=1-3=1.

(b) Let Y ~ x*(p) and ¢ > 0. Then (Exercise !), ¢.Y ~ Gamma(a = ,A\ = ). Now, consider the
function g defined by g(Uy,Us) = U? + UZ2. Hence by Part (a) and Theorem 3.2.(b) for independent
71, Zo ~ N(0,1) and the mentioned note for p =2, ¢ = 1/2 and Y = (-2=)? + (—£2-)2 we have:

2 1/2 1/2

Vi = g(\/ﬁXif’L \/ﬁ?;) —d g(Z1>Z2) = 212 + ZZ2
1 Z Z 1
L 124+ ( 2 2y =4 ~42(2) = Gamma(1,1) =% exp(1).

2 R T

(c) Let X = sin(2.7.X;) (1 <4 < n) with E(X/) = p* # 0, (the solution for other cases is

analogous). Then by Theorem 3.6., X;» —;, u*. Hence, by Theorem 3.2(a) for g(x) = 22 it follows that
(X3)? =p (u)?, implying:

n.(X5)? =y o0, (%)

On the other hand, V,, > n.(X?)?, (n > 1) and for M > 0 given (V;, < M) C (n.(X})? < M), we
have:
P(Vy < M) < P((X;5)?< M), (n>1). (s)

Accordingly, by (x) and (x*) the assertion follows.

(d) Let vy o = O(n"), (0 <r < 1),so that sup,cy ﬁ’;—ﬁ| < M} < oo. Then, by (n!=".((X})?+ (Y,;5)?) >
M) C (' ((X5)? + (Y)?) > %52), (n > 1) we have:

1> P(V > vpa) = (07 ()2 H(V)?) = 22)) > P! () (V)2) = M) (n>1). (++%)

n nr =
But, by a small modification of proof in Part(c):

lim P(n' " (X5)2 + (V1)?) 2 M) =1, (% %)

n—o0
and; finally, by considering ( * xx) in (* % *), the assertion follows.

O

Problem 9.7. A Brownian Bridge process can be represented by the infinite series

Blx) = @ Z sin(ﬁ.km)Zk

k
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where Z1, Zs, - -+ are i.i.d. Normal random variables with mean 0 and variance 1.
(a) Assuming that the expected values can be taken inside infinite summations, show that

E[B(z)B(y)] = min(z,y) — zy

for 0 <zx,y <1.
(b) Define

1
W? = / B*(z)dx
0
using the the infinite series representation of B(z). Show that the distribution of W?2 is simply the

limiting distributions of the Cramer-von Mises statistics.

Solution. (a) Let K be a symmetric positive definite kernel on a o—finite measure space ([0, 1], M, )
with an orthonormal set {¢}72, of LQ([O 1]) such that its correspondent sequence of eigenvectors

{Ai}32, with condition Ap.¢k(t) = fo (t,s)¢pr(s)ds (k > 1) is non-negative. Then, K has the

representation
)= An-dr(@).dr(y)
k=1

with convergence in L? norm, (Mercer, 1909).

Now, for the Mercer series representation of the kernel function K(z,y) = min(z,y) — z.y with A\, =
ﬁ and ¢ (t) = v/2.sin(k.7.t) we have:

BE(B(x).E(y) — E((\fz Sin(?;flx Zi)( \Trfz sm7rk:2x ZkQ))

ko=
_ %[ Z (Sin(ﬂ'.kl.x).Sin(ﬂ'.kQ :v) B(Ze, 7))

ky k=1 & k2
= %[ Z (Sin(:;kl'x).Sin(lkz'm).E(Zm.Z}@))}
ky =kg=k=1 ! 2
v 21y (k) sntkid) b b))
ki £ha—1 ! 2
- Z(ﬁ)(\/ﬁsm(wk.’t)\/ﬁsm(ﬂky))
k=1~

= min(z,y) — z.y.

(b) Let Uy = F(Xy) ~ Unif[0,1] (1 <k < n) be independent with order statistics Uy, < Us, <
- < Uppn. Then,(Csorgo & Faraway, 1996):

where W7 = 2 if Uy, = 0 or Up,, = 1. Define V,,(z) = Fya(x), (—0o <z < 00). Then, V,(z) =
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0, (x<33-)and1, (z>%). Now, by (x) for the corresponding characteristics functions we have:

12.n
- _ W2y s 3 ita
g walt) = g Bl =, f ¢ dVn)
12.n
(—2.i.t)2

m) = /0 e’ de(CC) = (ﬁv(t), (—OO <t< OO) (**)

Accordingly, by (##) and comments on Page 126, it follows that W2 —4 W?2.
U

Problem 9.9. Suppose that X;,---, X, are i.i.d. Exponential random variables with parameter .
Let X (1) <--- < X(;) be the order statistics and define the so-called normalized spacing (Pyke,1965)

D1 = TLX(l)

Dy = (n—k+1).(Xp) — Xpg-1)) (E=2,---,n).
According to Problem 2.26, Dy,---, D, are also i.i.d. Exponential random variables with parameter
A

(a) Let X, be the sample mean of X71,---, X, and define

1 n
T, = —— D2,
" n.(X,)? ; !

Show that /n(T,, —2) —4 N(0, 20).
(b) Why might T;, be a useful test statistic for testing the null hypothesis that the X;’s are Exponential?

Solution. (a) With the notation on Page 29, if X ~ exp(\), then (Exercise!) Y = XF ~ Weibull(\, 3)
with E(Y) = (%)(%).F(l + %) and Var(Y) = (%)(%).[I‘(1+ %) —I?2(1+ %)] Consequently, for 8 = 3, we
have D? ~4 Weibull(\, §) with E(D?) = % and Var(D?) = 2% (1 <i<n). Also, \.X; ~ exp(1)
with E(A\.X;) =1, (1 <i<mn).Given these conclusions we have:

First, by Theorem 3.8 for X; = D? pf = % and (0*)* = 39, it follows that \/ﬁ(%l[)l2 —2) =4

N(0, i—‘j), and, by Theorem 3.4. for g(z) = \.z :

n 2
Az.\/ﬁ.@—nlDi o) S N(0,20). (+)

Second, by theorem 3.6. for X* = A\.X;, \.X,, =, 1, and by Theorem 3.2(a) for g(x) = m% :

1
(A Xn)?

—p Lo (k%)

Third, given definition of 7}, one may write:

n 2
VT, —2) = A2./n.( (A)lg'n)QZan Dr _ %) (s % %)

Finally, an application of Theorem 3.3.(b) for (x), (x*), and (x * %) proves the assertion.
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b) We apply Lagrange Multipliers Method for the function f(ai,--- ,a,) = a?>+- - -+a2 with constraint
pply Lagrang p 1 n
function g(ay,--- ,an) = a1 + - -+ a, — k. Consider:

l(ala"' 7an;A) :f(al')'" 7an) —)\-9<a17"' 7a/n)7

and, then, the system of equations

dl
E = 2.0/1 — A= 0,
1
dl
E = 2.an — A= 0,
n
dl
S —(a1 4+ s, —k)=0,
has the solution a1 = -+ = a, = % by its first n equations and % = % by its last equation. Conse-

quently, by the last two results, we have a; = % (1<i<n).

Finally, under the null hypothesis D; ~ exp(\), (1 <i < n) and considering Dy +---+D,, = n.X,, = k,
we notice the values of T,, and hence \/n(T),, — 2) are minimized allowing one not to potentially reject

the null hypothesis.
O
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