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Preface

The subject area of mathematical statistics is so vast that in undergraduate 
courses there is only time enough to present an overview of the material. 
In particular, proofs of theorems are often omitted, occasionally with a 
reference to specialized material, with the understanding that proofs will 
be given in later, presumably graduate, courses. Some undergraduate texts 
contain an outline of the proof of the central limit theorem, but other 
theorems useful in the large sample analysis of statistical problems are 
usually stated and used without proof Typical examples concern topics 
such as the asymptotic normality of the maximum likelihood estimate, the 
asymptotic distribution of Pearson’s chi-square statistic, the asymptotic 
distribution of the likelihood ratio test, and the asymptotic normality of 
the rank-sum test statistic.

But then in graduate courses, it often happens that proofs of theorems are 
assumed to be given in earlier, possibly undergraduate, courses, or proofs are 
given as they arise in specialized settings. Thus the student never learns in a 
general methodical way one of the most useful areas for research in statistics
-  large sample theory, or as it is also called, asymptotic theory. There is a 
need for a separate course in large sample theory at the beginning graduate 
level. It is hoped that this book will help in filling this need.

A course in large sample theory has been given at UCLA as the second 
quarter of our basic graduate course in theoretical statistics for about twenty 
years. The students who have learned large sample theory by the route given 
in this text can be said to form a large sample. Although this course is given 
in the Mathematics Department, the clients have been a mix of graduate 
students from various disciplines. Roughly 40% of the students have been 
from Mathematics, possibly 30% from Biostatistics, and the rest from 
Biomathematics, Engineering, Economics, Business, and other fields. The
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students generally find the course challenging and interesting, and have often 
contributed to the improvement of the course through questions, suggestions 
and, of course, complaints.

Because of the mix of students, the mathematical background required 
for the course has necessarily been restricted. In particular, it could not be 
assumed that the students have a background in measure-theoretic analysis 
or probability. However, for an understanding of this book, an under­
graduate course in analysis is needed as well as a good undergraduate course 
in mathematical statistics.

Statistics is a multivariate discipline. Nearly, every useful univariate prob­
lem has important multivariate extensions and applications. For this reason, 
nearly all theorems are stated in a multivariate setting. Often the statement 
of a multivariate theorem is identical to the univariate version, but when it is 
not, the reader may find it useful to consider the theorem carefully in one 
dimension first, and then look at the examples and exercises that treat prob­
lems in higher dimensions.

The material is constructed in consideration of the student who wants to 
learn techniques of large sample theory on his/her own without the benefit 
of a classroom environment. There are many exercises, and solutions to all 
exercises may be found in the appendix. For use by instructors, other exer­
cises, without solutions, can be found on the web page for the course, at 
http://www.stat.ucla.edu/courses/graduate/M276B/.

Each section treats a specific topic and the basic idea or central result of 
the section is stated as a theorem. There are 24 sections and so there are 24 
theorems. The sections are grouped into four parts. In the first part, basic 
notions of limits in probability theory are treated, including laws of large 
numbers and the central limit theorem. In the second part, certain basic tools 
in statistical asymptotic theory, such as Slutsky’s Theorem and Cramer’s 
Theorem, are discussed and illustrated, and finally used to derive the asymp­
totic distribution and power of Pearson’s chi-square. In the third part, 
certain special topics are treated by the methods of the first two parts, such 
as some time series statistics, some rank statistics, and distributions of 
quantiles and extreme order statistics. The last part contains a treatment of 
standard statistical techniques including maximum likelihood estimation, 
the likelihood ratio test, asymptotic normality of Bayes estimates, and 
minimum chi-square estimation. Parts 3 and 4 may be read independently. 
There is easily enough material in the book for a semester course. In a quarter 
course, some material in parts 3 and 4 will have to be omitted or skimmed.

I would like to acknowledge a great debt this book owes to Lucien Le 
Cam not only for specific details as one may note in references to him in 
the text here and there, but also for a general philosophic outlook on the

http://www.stat.ucla.edu/courses/graduate/M276B/
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subject. Since the time I learned the subject from him many years ago, he 
has developed a much more general and mathematical approach to the 
subject that may be found in his book, Le Cam (1986) mentioned in the ref­
erences.

Rudimentary versions of this book in the form of notes have been in 
existence for some 20 years, and have undergone several changes in computer 
systems and word processors. I am indebted to my wife, Beatriz, for cheer­
fully typing some of these conversions. Finally, I am indebted to my students, 
too numerous to mention individually. Each class was distinctive and each 
class taught me something new so that the next year’s class was taught 
somewhat differently than the last. If future students find this book helpful, 
they also can thank these students for their contribution to making it under­
standable.

Thomas S. Ferguson, April 1996
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1

Modes of Convergence

We begin by studying the relationships among four distinct modes of 
convergence of a sequence of random vectors to a limit. All convergences 
are defined for d-dimensional random vectors. For a random vector 
X = ( X {, . . . ,  X d) e  Rd, the distribution function of X, defined for x = 
(x l9. . . ,  xd) e  Ud, is denoted by Fx(x) = P(X < x) = P(X{

< jcd). The Euclidean norm of x = ( x {, . . . ,  xd) e  is denoted by 
|x| = (xf 4- ••• +xd)l/2. Let X,X,,X2, . . .  be random vectors with values 
in Md.

Definition 1. Xn converges in law to X, Xn —» X, if Fx (x) —> Fx(x) as 
n oo, for all points x at which Fx(x) is continuous.

Convergence in law is the mode of convergence most used in the 
following chapters. It is the mode found in the Central Limit Theorem and 
is sometimes called convergence in distribution, or weak convergence.

Example 1. We say that a random vector X e  Ud is degenerate at a point 
c e  [R* if P(X = c) = 1. Let Xn e  [R1 be degenerate at the point 1 /n , for 
n = 1,2,. . .  and let X  e  1R1 be degenerate at 0. Since \ / n  converges to 
zero as n tends to infinity, it may be expected that Xn —> X . This may be 
seen by checking Definition 1. The distribution function of X n is Fx (jc) = 
h/n,  ̂ (x), and that of X  is Fx (x) = I[QtQ0]( x \  where IA(x) denotes the 
indicator function of the set A (i.e., IA(x) denotes I if x e  A, and 0 
otherwise). Then Fx (jc) —> Fx (x) for all x except x = 0, and for x = 0 we 
have Fx (0) = 0 Fx (0) = 1. But because Fx (x) is not continuous at 
x = 0, we nevertheless have Xn X  from Definition 1. This shows the

3



4 A Course in Large Sample Theory
need, in the definition o f convergence in law, to exclude points x at which 
Fx (x) is not continuous.

p
D efin ition  2. X„ converges in probability to X, X„ —» X, if for every 
e >  0, / >{|X„ -  X| >  e} -► 0 as n ->  « .

D efin ition  3. For a real number r > 0, X n converges in the rth mean to X, 
X„ X, if E |X „ -  X|r - »  0 as n - »  » .

D efin ition  4. X„ converges almost surely to X, X„ > X, if 

P{limn_+QOX n =  X} =  1.

Almost sure convergence is sometimes called convergence with probabil­
ity 1 (w.p. 1) or strong convergence. In statistics, convergence in the rth 
mean is most useful for r = 2, when it is called convergence in quadratic 
mean, and is written X n — > X. The basic relationships are as follows.

Theorem I.

a) X„ - i i  X => X„ X.
b) X„ X for some r > 0 => X„ ^  X.
c) x „ i x = » x „ ^ x .

Theorem 1 states the only universally valid implications between the 
various modes of convergence, as the following examples show.

Example 2. To check convergence in law, nothing needs to be known 
about the joint distribution of Xn and X, whereas this distribution must be 
defined to check convergence in probability. For example, if X1,X2, . . .  
are independent and identically distributed (i.i.d.) normal random vari-Cg> p
ables, with mean 0 and variance 1, then X n —> X u yet X n

Example 3. Let Z be a random variable with a uniform distribution on 
the interval (0,1), Z e  ^(0,1), and let X l = 1, X 2 = /[0 1/2)(Z), X 3 = 
*'̂ [1 / 2, ^ 4  = [̂o, i/4)^^X ^ 5  = [̂i / 4, i ■ • ■ ■ J® general, if n —
2k + m, where 0 < m < 2k and k > 0, then X n =

Then Xn does not converge for any Z e  [0,1), so Xn 0. Yet Xn —> 0 
for all r > 0 and X„ 0.
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Example 4. Let Z be ^(0, 1) and let X„ = 2"/[0 x/n)(Z). Then E\Xn\r =
2nr/ n  —» oo, so Xn ■** 0 for any r > 0. Yet X n 0 ({limw ^ ^ X n = 0} = 
{Z > 0}, and P{Z > 0} = 1), and X n 0 (if 0 < e < 1, P(\Xn\ > e) = 
P(X„ = 2") = 1 /»  -»  0).

In this example, we have 0 ^  X„ X  and lim,,.,*, EXn > EX. That 
we cannot have 0 < X n X  and lim ,,^  EXn < EX  follows from the 
Fatou-Lebesgue Lemma. This states: If Xn X  and if for all n Xn > Y  
for some random variable Y  with E\Y\ < °°, then liminf^^^ EXn > EX . 
In particular, this implies the Monotone Convergence Theorem: If 0 < 
X x < X 2 < •* and X n X , then EXn —>EX. In these theorems, Jf, 

and EX  may take the value + 00.
The Fatou-Lebesgue Lemma also implies the basic Lebesgue Dominated 

Convergence Theorem: If X n X  and if iJfJ < Y  for some random 
variable Y with E\Y\ < 00, then EXn ->

The following lemma contains an equivalent definition of almost sure 
convergence. It clarifies the distinction between convergence in probability 
and convergence almost surely. For convergence in probability, one needs 
for every e > 0 that the probability that X n is within e of X tends to one. 
For convergence almost surely, one needs for every e > 0 that the proba­
bility that X* stays within e of X for all k > n tends to one as n tends to 
infinity.

Lemma 1. X n X if and only if for every e > 0,

P{|Xfc — X| < e, for all k > n) —> 1 as n —>00. ( 1 )

Proof. Let A n e = {|X* -  X| < e for all k > n). Then P{limn_ 0QX n = X) 
= P {for every e > 0, there exists an n such that |X^ — X| < e for all 
k > n) = P{ f| e > 0 U „ A n% e). Thus, X n X is equivalent to

H n u U  = i. (2 )
' e> 0  n }

Because the sets U n A n e decrease to f l e>0 U w A n e as e -> 0, (2) is 
equivalent to F{Un A n J  = 1 for all e > 0. Then, because A n e increases 
to U n A n e as n —> 00, this in turn is equivalent to

~~* 1 as n —> 00, for all e > 0, (3)

which is exactly (1). ■



6 A Course in Large Sample Theory
Proof of Theorem I.

(a) X„ X =* X„ X: Let e > 0. Then

P{|X„ -  X| < e} > P{|X* -  X| < e, for all > n) —» 1 as n -» °o, 

from Lemma 1.
(b) X n X => X n X: We let /(X &A)  denote the indicator random 

variable that is equal to 1 if X e  A and to 0 otherwise. Note that

£|X„ -  X|r > E[|X„ -  X|7{|X„ -  X| > e}] > eT{|X„ -  X| > e}.

(This is Chebyshev’s Inequality.) The result follows by letting n °°.
(c) X„ -A X => X„ X: Let e > 0 and let 1 e  represent the vector 

with 1 in every component. If X„ < x0, then either X < x0 + e l or 
|X — X J > e. In other words, {X„ < x0} c  {X < x0 + el} U {|X — 
X„| > e}. Hence,

o) *  ^x ( * 0 + *1) + ^{IX -  X J > e}.

Similarly,

Fx (X 0 -  e l)  ^  FX(j(x0) + P{|X -  X J > e}.

Hence, since P{|X -  X J > e} —> 0 as n —» °o5

Fx(x0 — e l) < liminf Fx (x0) < lim sup Fx (x0) < Fx (x0 + el).

If Fx(x) is continuous at x0, then the left and right ends of this 
inequality both converge to Fx(x 0) as e —> 0, implying that

Fxn(*o) -► ^x(xo) as n —» oo. ■

EXERCISES

1. Suppose X n \ / n )  (beta) and 1 6 ^ 1 , 1 / 2 )  (binomial). 
Show that X n X. What if X n ^ & e (a /n ,  fi/n)?

2. Suppose X n is uniformly distributed on the set of points 
{1//2,2/n,. . . ,  1}. Show that X n ^  X,  where X  is ^(0,1). Does 
X  X I

3. (a) Show that if 0 < r' < r and E\X\r < oo, then E\X\r <
(b) Show that if 0 < r' < r and X n -A X  then X n X . You may use 

Holder's Inequality: For nonnegative random variables X  and Y  
with finite means, EX»Y'-r  < (EX)p(EY) l~p for 0 < p  < 1.

4. Give an example of random variables Xn such that E\X„\ -> 0 and 
E\X„\2 1.
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5. Let / i b e a  constant. Show that X n — > fi if and only if EXn —» /i, and 

vaxiXn) —> 0.
6. If the limiting distribution function, Fx, is continuous, then the defini­

tion of convergence in law is simply that Fx (x) —> Fx(x) as n —> oo, for 
all x. However, in this case, it automatically follows that the conver­
gence is uniform in x. Prove this in one dimension: If Fx is continuous 
and X n —>X as n —> oo5 then su p jF ^ x )  — Fx (x)| —> 0 as n —> oo.

7. Using the Fatou-Lebesgue Lemma, (a) prove the Monotone Conver­
gence Theorem, and (b) prove the Lebesgue Dominated Convergence 
Theorem.



2

Partial Converses to Theorem 1

Although complete converses to the statements of Theorem 1 are 
invalid, as we have seen, under certain additional conditions some impor­
tant partial converses hold. We use the same symbol c to denote the point 
c e  03rf, as well as the degenerate random vector identically equal to c.

Theorem 2.

(a) / /  c e  Rrf, then X„ ^  c => X„ c.
(b) I f X n X and |X/  < Z  for some r > 0 and some random variable Z  

with EZ < o°, then X n -A X.
(c) [Scheffe (1947)]. If  X„ X, X„ > 0, and E X n -*  EX < <*>, then 

Xrt A  X, where r = 1.
(d) Xw —» X if and only if every subsequence nv n2, ...  e {1,2,...} has a 

sub-sequence m x, ra2, . ..  e {«,, n2, ...} such that Xm̂ X as j  oo.

Remarks. Part (a), together with part (c) of Theorem 1, implies that 
convergence in law and convergence in probability are equivalent if the 
limit is a constant random vector. In the following sections we use this 
equivalence often without explicit mention.

Part (b) gives a method of deducing convergence in the rth mean from 
almost sure convergence. See Exercise 3 for a strengthening of this result, 
and Exercise 2 for a simple sufficient condition for almost sure conver­
gence.

Part (c) is sometimes called Scheffe’s Useful Convergence Theorem 
because of the title of Scheffe’s 1947 article. It is usually stated in terms of 
densities (nonnegative functions that integrate to one) as follows: If f n(x) 
and g(x) are densities such that f n(x) —* g(x) for all x, then f \ f n(x) -  
g(x)| dx —» 0. [The hypotheses f n(x) > 0 and ffn(x) dx —» fg(x) dx are 
automatic here. The proof of this is analogous to the proof of (c) given 
below.]

8



Partial Converses to Theorem 1 9
Pointwise convergence of densities is a type of convergence in distribu­

tion that is much stronger than convergence in law. Convergence in law 
only requires that P(Xn e  A) converge to P(X e  A)  for certain sets A of 
the form {x: x < a}. If the densities converge, then P(Xn e  A) converges 
to P(X e  A) for all Borel sets A, and, moreover, the convergence is 
uniform in A. In other words, suppose that X n and X have densities (with 
respect to a measure v) denoted by f n(x) and /(x), respectively. Then, if 
fn(x) —> f(x) for all x, we have

sup | P(Xn e  A) -  P(X  e  A)  | -> 0.
A

The proof is an exercise. We will encounter this type of convergence later 
in the Bernstein-von Mises Theorem.

As an illustration of the difference between this type of convergence 
and convergence in law, suppose that X n is uniformly distributed on the 
set { \ / n , 2 / n , . . . ,  n/n). Then Xn ^  X  e  ^(0, 1), the uniform distribu­
tion on [0,1], but P(Xn e  A)  does not converge to P(X e  A)  for all A. 
For example, if A = {x : x is rational}, then P(Xn e  A) = 1 does not 
converge to P(X e  A) = 0.

Part (d) is a tool for dealing with convergence in probability using 
convergence almost surely. Generally convergence almost surely is easier 
to work with. Here is an example of the use of part (d). If X„ —> X with 
probability one (i.e., almost surely), and if g(x) is a continuous function of 
x, then it is immediate that g(Xn) —»g(X) with probability one. Is the 
same result true if convergence almost surely is replaced by convergence 
in probability? Assume X n —> X and let g(x) be a continuous function of 
x. To show g(Xn) —>g(X), it is sufficient, according to part (d), to show 
that for every subsequence, n {, n 2, . . . e  {1,2,...}, there is a sub-subse­
quence, m„ m2, .. .  e {nx, n2, ...} such that g(Xm ) —A  g(X) as i —> oo. So 
let n{, n 2, . . .  be an arbitrary subsequence and find, using part (d), a 
sub-subsequence m {, m2, .. .  e {«,, n2, ...} so that X m X. Then g(Xw ) 

g(X), since g(x) is continuous, and the result is proved.

Proof of Theorem 2. (a) (In two dimensions)

P{|X„ -  cl <  m/2)  ^  p | c  -  e (  j ) <  X„ <  c +  j ) J
- p {x - s c + e ( ! ) M x - i c + e ( - > ) }

- / - { x , S c + e ( - ' ) } + p { x . £ c - s ( ; ) }
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c2 + e

•c

c2 — €

cl — e cl + e

(b) This is the Lebesgue Dominated Convergence Theorem in d dimen­
sions. Note that X„ X and |X jr < Z  implies |X|r < Z  a.s., so that 
|X„ -  X|r < (|X„| + |X|)r < ( Z l/r  + Z l/ry  < 2rZ  a.s. Now apply the 
Lebesgue Dominated Convergence Theorem in the form given in the 
previous section replacing X n by \Xn -  X\r and X  by 0.

(c) Let x * denote the positive part of x: j*rf = max{0, x}. In one 
dimension, for a real number x , |jc| = x  + 2(—x)+; hence E\Xn -  X\ = 
E(Xn -  X )  + 2E (X  -  X n)+. The first term converges to zero because 
EXn —+ EX. The second term converges to zero by the Lebesgue Domi­
nated Convergence Theorem, because 0 < (X  -  X nY  < X ¥ and EX+ < 
For dimensions greater than one, use the triangle inequality, \Xn — X| < 
Ey=I |X nj -  Xj\, and use the above analysis on each term separately.

The proof of part (d) is based on the Borel-Cantelli Lemma. For events 
Aj , j  = 0,1, . . . ,  the event {Aj i.o.} (read A } infinitely often), stands for the 
event that infinitely many Aj  occur.

The B o r e l-C a n te lu  Lemma. If  EJ=1 P(Aj) < oo, then P{Aj i.o.} =  0. 
Conversely, if the Aj are independent and EJ=1 P(Aj) = then 
P{Aj i.o.} = 1.

Proof. (The general half) If infinitely many of the A - occur, then for all n, 
at least one A} with j  > n occurs. Hence,

I oo \ oo
P{Aj  i .o .}  ^  P U  Aj  <  £  P(Aj )  -  0 .  ■I j=n ] j=n

The proof of the converse is an exercise. (See Exercise 4.)
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A typical example of the use of the Borel-Cantelli Lemma occurs in 

coin tossing. Let X x, X 2, . . .  be a sequence of independent Bernoulli trials 
with probability of success on the nth trial equal to pn. What is the 
probability of an infinite number of successes? Or, equivalently, what is 
P{Xn = 1 i.o.}? From the Borel-Cantelli Lemma and its converse, this 
probability is zero or one depending on whether £  pn < °° or not. If 
pn = 1 / n 2, for example, then P{Xn = 1 i.o.} = 0. If pn = l /n ,  then P{Xn 
= 1 i.o.} = 1.

The Borel-Cantelli Lemma is useful in dealing with problems involving 
almost sure convergence because X n X is equivalent to

P{\Xn -  X| > e i.o.} -  0, for all e > 0.

(d) (If) Suppose Xn does not converge in probability to X. Then there 
exists an e > 0 and a 8 > 0 such that P{\Xn — X\ > e] > 8 for infinitely 
many n , say {ftj}. Then no subsequence of ln}) converges in probability, 
nor, consequently, almost surely.

(Only if) Let en > 0 and EJLj < oo. Find rij such that PflX,, — X| > 
Sj] < Gj for all n > nj9 and assume without loss of generality that n { < n 2
< . . . .  Let Aj = {|XW; -  X| > sj). Then, EJ=I P(Aj) < EJ__, Sj < oo, so 
by the Borel-Cantelli Lemma, P{Aj i.o.} = 0. This says that with probabil­
ity 1, |Xn — X| > Sj occurs only finitely many times. Since —» 0, we 
have for any s > 0 that with probability 1, |Xn -  X| > e occurs only 
finitely many times. Hence, XM̂ X; that is o lX ^  — X| > e i.o.} = 0 
for all e > 0. Similarly, if ri is any subsequence, X n, —» X, so we can find 
a sub-subsequence n" of ri such that X n» X. ■

EXERCISES

1. Let X ], X 2, . . .  be independent identically distributed with densities 
f i x )  — ax~(a*l)I(Xy00)(x). (a) For what values of a > 0 and r > 0 is it 
true that (1 / n ) X n 0? (b) For what values of a > 0 is it true that 
( l / n ) X n 0? (Use the Borel-Cantelli Lemma.)_ o c cm

2. Show that if E E(Xn -  X)2 < », then X „ X and X „ -U  X. Show 
that if E E |X„ -  X|r < <», then X„ X and X, A  X.

3. Improve Theorem 2(b) and Theorem 2(c) by using Theorem 2(d) to 
show p
(a) If X n —> X and |Xn|r < Z  for some r > 0 and some random vari­

able Z such that EZ < oo, then X n -A X.
(b) If X„ X, X„ > 0, and E X n -> EX < oo, then X„ A  X, where 

r = 1.
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4. (a) Give an example of events A t, A 2, . . .  such that E“=] P(Aj) = oo

and P(Aj  i.o.) = 0.
(b) Show that if A i, A 2, . . .  are independent events such that 

E“_, P(Aj) = oo, then P(Aj  i.o.) = 1.
(Hint: Show that P{Aj  finitely often} = P{U„ C\j>nA Cj} =
lim„^ae n ,> „(l -  P{A}) < lim„_>ajexp{-Ey>„ P(Aj)).)

5. Let X ly X 2, ...  be independent random variables such that P{Xn = n a) 
= \ / n  and P{Xn = 0} = 1 -  \ / n  for n = 1,2, . . . ,  where a  is a con­
stant. For what values of a, -oo < a < oo, is it true that
(a) X„ i  0?
(b) X n 0?
(c) Xn -A 0 for a given r > 0?

6. (a) Suppose f n(x) and g(jc) are densities such that for all x , /„(*) —»
g(jc) as n —» oo. Show that

f\L(x) ~ g ( x ) \d x  —> Oas n  oo.

(b) Show that if Xn has density f n(x), if X  has density g(x), and if 
/  -  g(*)| dx —» 0 as n —* oo, then

sup | P{ Xn f=A) - P { X ^ A )  | —» 0 as « -*  oo.
A

7. Prove the following strengthening of Scheffe’s Theorem: If X n X  
and if E\Xn\ E\X\  < oo, then E\Xn -  X\  -> 0.

8. Show if X„ X  and if E X 2 -»  E X 2, then X„ X.



3

Convergence in Law

In this section, we investigate the relationship between convergence in 
law of a sequence of random vectors and convergence of expectations of 
functions of the vectors. The basic result is that Xn ^  X if and only if 
Eg(Xn) *-> Eg(X) for all continuous bounded functions g. We conclude 
with the Continuity Theorem that relates convergence in law of a se­
quence of random vectors with convergence of the corresponding charac­
teristic functions.

Let g represent a real-valued function defined on We say that g 
vanishes outside a compact set if there is a compact set C c  Rd such that 
g(x) = 0 for all x £  C.

Theorem 3. The following conditions are equivalent.

(a) Xn 5  X.
(b) Eg(Xn) Eg(X) for all continuous functions g that vanish outside a 

compact set.
(c) Eg(Xn) Eg(X) for all continuous bounded functions g.
(d) Eg(Xn) -> Eg(X) for all bounded measurable functions g such that 

P{X e  C(g)} = 1, where C(g) = {x: g is continuous at x} is called the 
continuity set of g.

The implication (a) => (b) or (c) or (d) is known as the Helly-Bray 
Theorem. For example, it implies that Ecos(Xn) -* E cos(X) whenever 
Xn X , because cos(jt) is continuous and bounded. We now give some 
counterexamples to show the necessity of the boundedness and continuity 
conditions.

13
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Example 1. Let gO ) = x, and let

n with probability 1 / n ,
0, with probability (n — 1)/«.

Then X n 3  X  = 0, but E g ( X j  = n ■ 1 /m = 1 ■» Eg(0) = 0. Thus in (c) 
and (d), one cannot remove the boundedness of g.

Example 2. Let

and let X n be degenerate at 1 /n .  Then X n -» 0, but Eg(Xn) = 1 
£g(0) = 0. Thus in (b) and (c) one needs continuity; likewise in (d) one 
needs P{X e  C(g)} = 1.

Proof of Theorem 3. Obviously, (d) => (c) and (c) => (b). We will show
(d) => (a) =* (b) =* (c) =* (d).

(d) => (a): Let x° be a continuity point of Fx . Then Fx(x°) = £g(X), 
where g(x) is the indicator function,

The continuity set of g contains all points x except those such that x < x° 
with equality for at least one component. Because x° is a continuity point 
of Fx , we have Fx(x° + el) -  Fx(x° -  el) 0 as e -» 0, which implies 
that the continuity set of g has probability 1 under the distribution of X. 
Hence, ^  (x°) /^ (x 0). ■

(a) => (b): Let g be continuous and vanishing outside a compact set, C. 
Then g is uniformly continuous: For every e > 0, there exists a number 
8 > 0 such that |x -  y| < 8 implies |g(x) -  g(y)| < e.

Let e > 0 and find such a 8 > 0. Slice C by finite sets of parallel 
hyperplanes at a distance of at most 8 /  yfd apart, one set for each 
dimension, each hyperplane having probability zero under Fx (only count- 
ably many parallel planes can have positive mass). This cuts into 
parallelepipeds of the form (b, c] = {x: b < x < c} = {x: bt < x{ < ch for 
all /}. On any such parallelepiped |g(x) -  g(c)| < e. Thus, |g(x) -  g(x)| < e 
for all x, where g(x) =  £ aI, (b c] g (c )/(b c](x). This is essentially a finite sum 
since g vanishes outside a compact set, and it may be rewritten as a finite 
sum of the form, g(x) =  £ £ 0, / (_^ X ](x) (as in the proof of Theorem 2(a)),



with Fx continuous at each x,. Thus, X„ ^  X implies that Eg(Xn) = 
E, aiFx (\) -> E, ajFx(x) = Eg(X). Finally,

|Eg(X„) -Efc(X)|

< | ^ ( X „ )  -  ££(X„)| + |££(X„) -  ££(X)| +|£j?(X) -  Eg(X)|

< 2e + | Eg(Xn) — Eg(X) | -* 2s.

Since this is true for all s > 0, Eg(Xn) -» Eg(X). ■

(b) => (c): Let g be continuous, |g(x)| < A  or all x, and e > 0. Find B 
such that P{|X| > B} < e /(2 A). Find h continuous so that

. . 10, if |x| S: B + 1 . .h(x) = { . . . . .  _ and 0 < h(\)  < 1 for all x.\ 1, if |x| < B

Then,

|£S(X„) - £ g ( X ) |< |E g ( X „ )  -Eg(X„)/*(X„)|

+ | £ g ( X J / I(X„) -Efr(X)A(X)|

+ |£g(X )/I(X) - E g ( X )  |

The middle term -» 0, because g • h is continuous and vanishes outside a 
compact set. The first term is bounded by e/2,

\Eg(Xn) - £ s ( X „ ) / * ( X „ ) |< £ | s ( X „ ) | | l  -  h(Xn)\ <AE(\  -  h(X„))

= A( \  -  Eh(Xn)) -> A( 1 -  Eh(X)) < e/2,

and, similarly, the last term is bounded by e/2. Therefore, \Eg(Xn) -  
Eg(X)\ is bounded by something that converges to e. Since this is true for 
all e > 0, lim„ _  |£g(X„) -  ££(X)| = 0. ■

To prove (c) => (d), we use the following lemma.

Lemma. Let g be bounded measurable with P[X e  C(g)} = 1. Then, for 
every e > 0 there exist bounded continuous functions f  and h such that 
f  < g < h  and E(h(X) -  /(X » < e.

Proof. Define for k = 1,2,. . . ,

f k(x) = inf[g(y) + * | x - y | ]  and hk(x) = sup [#(y) -  £|x -  y | ] . 
y y

Then clearly, /j(x) < / 2(x) < ••• <g(x) < ••• < h2(x) < hr(x). First note

Convergence in Law 15
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that the f k(x) and hk(x) are continuous and bounded. [Because

so that \fk(x') ~ f k(x)\ <& |x -x ' | . ]  Let / 0(x) = lim * ^  f k(x) and h0(x) = 
hk(x). Then / 0(x) < g(x) < h0(x). Second, note that if g is contin­

uous at a point x, then / 0(x) = g(x) = h0(x). [Let s > 0 be arbitrary. We 
show / 0(x) > g(x) — e. Find 8 > 0 such that |y — x| < 8  implies \g(y) -  
g(x)| < e, and let B be a lower bound for the function g. Choose 
k > (g(x) -  B)/8.  Then

> min{g(x) -  e, B + ((g(x) -  B ) / 8 ) 8 } = g(x) -  e.]

Third, note that Ef0(X) = Eg(X) = Eh0(X), because P{X e  C(g)} = 1. 
Now by the Monotone Convergence Theorem, Efk(X) s1 Ef0(X) and 
Ehk(X) \  Eh0(X). So, for every e > 0, there exists k such that E(hk(X) — 
f k(X)) < 8. ■

Proof of (c) => (d). Let g be bounded measurable with P(X e  C(g)) = 1, 
let 8 > 0, and find /  and h as in the lemma. Then,

Eg(X) -  8 < Ef(X) = lim Ef(Xn) < liminf Eg(Xn)

< lim sup Eg(Xn) < lim Eh(Xn) = Eh(X) < Eg(X) + 8.

Let 8 -> 0, and conclude Eg(X) = lim Eg(Xn). ■

For X e  Rd and t e  the characteristic function of X is defined as 
<px(t) = Eexp{/tr X} = Eexp[i(tlX l + ••• +tdX d)}, where i = ]/ — 1.

Theorem 3(e) (the Continuity Theorem)

Proof. (=>) This follows immediately from the Helly-Bray Theorem, be­
cause exp{/tr X = costr X + i sin t r X is bounded and continuous.

(<=) Let g be continuous and vanishing outside a compact set. Then g 
is bounded, |g(x)| < B say, and uniformly continuous. Let e > 0. Find

/ t (x') = i n f [ * ( y ) + * l x ' - y | ]
y

< inf [g(y) + A;|x -  y|] + fc|x -  x'| = /*(x) + A:|x -  x'|,
y

/o(x) ^ A ( x)

= min [g(y) + k |x -
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8 > 0 such that |x -  y| < 8 =» |g(x) -  g(y)| < e. To show Eg(X„) -> 
Eg(X), let e^KO, <j2I) be independent of the X„ and X. Then

\Eg(Xn) - ^ ( X ) | < | £ g ( X „ )  - £ # ( X „  + Y J l

+ \Eg(Xn + Y J  - £ £ ( X  + Y J |

+ |3?(X  + Y„) -E * (X ) | .
The first term is

^  £{lg(X„) — g(X„ + Yff)| /( |Yff| < S)}

+ £{|g(X„) —g(X„ + Y(T)|/(|Y <T| > S)}

< e + 2BP{IYJ > 8} <2e

for a  sufficiently small. Similarly, the third term < 2e. It remains to show 
that

Eg(Xn + Ya) -+Eg(X + Ya).

The characteristic function of*/f(0, a 21) is

<p( t) =
1

^2/it a
j eitTz-zTz/(2a2) dz = e -tTta2/2'

Using this with a = 1 / a ,  and making the change of variables u = x + y 
for y, we find

Eg(Xn + Ya) =

27r

/  fg(x + y)e~yTy/(2cr2) dy dFn(x) 

fg(u )  fe-(u-*)T(u-x)/(2,Tl)dF„(x) du 

jg(u) J  j  y e ,tr(u - x) - ° ’ 2, r t/2 dtdFn(x) du

fg(u) ŷ e'‘r" _tr 2*rt/2<pXn( — t) dt du

i
f g ( u ) f e itTu- a2tTt/2<px( - t )  dt du,

using the Lebesgue Dominated Convergence Theorem (le'^Vx ( “ 01 < 1
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and g has compact support). Undoing the previous steps, we see that this 
last expression is equal to Eg(X + Y^). ■

EXERCISES

1. If X n ^  X  e^ (A ), is it necessarily true that Eg(Xn) -> Eg(X)  for
(a) g(x) = /(0,io)(*X
(b) g(x) = exp{—x2},
(c) g(x) = sgn(cos(jc)) [where sgn(jc) = +1 if x > 0, 0 if x = 0, and 

-1  if x < 0.]
(d) gU ) = x l
If not, give a counterexample.

2. Show that if ar Xrt ^  ar X for all vectors a, then X n =5 X.
3. Show that if X n has a density f n( x \  if X  has density f ix),  and if for all 

x> fn<x) ) as « -> oo then for all bounded measurable functions 
g, Eg(Xn) -> Eg(X).

4. The Poisson Approximation to the Binomial Distribution.
(a) Let Sn have the binomial distribution, &(n,pn), and let Z have the 

Poisson distribution, «^(A), and suppose that npn -> A as n oo. 
Using characteristic functions, show that Sn Z.

(b) Generalize as follows. Let X l n , X l n , . . . , X nn be independent 
Bernoulli trials with P(X}- n = 1) = pj n. Suppose that as w -> oo 
Plt„ + +p„,„ -> A> and maxj £ n pj n -> 0. Then, Sn A).

5. Le Cam's Inequality. The following inequality gives a bound on the 
worst error that may be made using the Poisson approximation. Let 
X x,X2, . . - , X n be independent Bernoulli trials with P(Xtl = 1) = pt for 
i = 1 , . . . ,w ,  and let Sn == E"X r Let A = E? and let Z be a random 
variable with the Poisson distribution, c^(A). Show that for all sets A ,

l m . e . 4 )  - P ( Z e / f ) | <

Note that if each p{ = A/w, this gives Exercise 4(a). (See J. Michael 
Steele, “Le Cam’s Inequality and Poisson Approximation,” Am. Math. 
Monthly (1994), pp. 48-54, for a survey article.) [Hint: The following is 
a coupling argument; it couples Sn and Z by defining them on the 
same probability space, and making them as close as possible. For 
i = 1, . . . ,  n, let Ut be independent ^(0,1) random variables, let X t = 
/(Lf > 1 — pt), and let Yi\ = 0 if Ut < e~Pi and let Yt be defined in 
terms of ^  in such a way that Yt e ^ /? , ) .  Show this can be done, and 
let Z = L?y; <E^(A). Then show (1) \P{Sn ^ A ) - P { Z ^ A ) \ <  
P(Sn *  Z); (2) P(Sn * Z)  < Ef P(X, *  Y,\ and (3) P(X, *  Jp < pf.]
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Laws of Large Numbers

The law of large numbers expresses the notion that the mean of a 
sample from a distribution converges to the mean of the distribution in 
some sense. When the convergence is in probability or, equivalently, in 
law, this is known as the weak law of large numbers. When the conver­
gence is almost surely, it is the strong law of large numbers. The simplest 
law of large numbers, and the most useful for statistical work, is for 
distributions with finite second moments, and the convergence is in 
quadratic mean.

All three laws of large numbers are stated in a multidimensional setting. 
We give the proof of the weak law based on characteristic functions and 
the continuity theorem. For this and for the proof of the central limit 
theorem in the next section, we first review the properties of derivatives of 
vector-valued functions of a vector variable, including a Taylor-series 
expansion to the second order. We also review the relevant properties of 
characteristic functions.

These laws are related to the notion of consistency of statistical esti­
mates and application is made to the Glivenko-Cantelli Theorem, which 
states that the sample distribution function is uniformly strongly consistent 
as an estimate of the true distribution function. Applications to estimating 
regression coefficients and autoregressive parameters and to finding prob­
abilities of large deviations are left for the exercises.

Notation. If /:  Ud -> R, the derivative of /  is the row vector,

d
dx

d

19



The derivative of g: IR̂  —> IRk, thinking of g as a column vector,
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g =
8 1 

8k

is

£(*) =

d d
s l0 )

' ^ 8l(x)

•
d d

s*(x)
-

(a k X d matrix). The second derivative of /: \n>d

d .
(<!*,) r/(x)

is defined as

/ «<?JCj

/ «
(<?*</)

r/(x)

Rules

!*, and h(x) = g(Kx)), then h(x) = g(f(x))f(x). 
k, and h(x) = f(x)rg(x), then h(x) = g(x)r f(x)

(1) If f: IRrf -» Us, g: R1
(2) If f: IRrf -* IR*, g: Ud - 

+ f(x)rg(x).
(3) The Mean-Value Theorem. If f: IRd -» IR* and if f(x) is continuous in 

the sphere {x: |x — x0l < r}, then for |t| < r,

f(xo + t) = f(xo) + /of(xo + Mt) du t■

Proof. Let h(u) = f(x0 4- u t \  so that h(«) = f(x0 4- ut)t from rule (1).
Then, 4- ut)t du = /oh(u)dw = h(l) -  h(0) = flx0 4- t) — f(x0).

■
(4) Taylor's Theorem. If / :  Ud -> R, and if fix) is continuous in the 

sphere {x: |x -  x0| < r}, then for |t| < r,

/ ( xo + 0  = / ( xo) + / ( xo)* + tTfofovf ( x o + uvt) dudvt.



Properties of characteristic functions. <px(t) = E  exp{/t'X}.

(1) <px(t) exists for all t e  Ud and is continuous.
(2) <px(0) = 1 and |<px(t)| < 1 for all t e  (Rrf.
(3) for a scalar b ¥= 0, <px/h(t) = (px(t/b).
(4) for a vector c, <px+c(t) = exp{/t7c}<px(0.
(5) for X and Y independent, <px+Y(t) = <Px^(pY( ^
(6) if £1X1 < °°, <px(t) exists and is continuous and <px(0) = /(mr, where 

|m = EX.
(7) if E |X |2 < oo, <px(t) exists and is continuous and <px(0) = —E X X T.
(8) if X is degenerate at c, <px(t) = exp{itrc}.
(9) if X is^ tjx , 2), cpx(t) = exp{/tr |jL —

Theorem 4. Let X, X1? X2, . . .  be i.i.d. (independent, identically distributed) 
random vectors, and let X n = (1 /«)E^ X;.

(a) (PFea* W )  //E |X | < oo, then X„ ft = EX.
(b) / /E |X |2 < oo^/ien X„ p  = EX.
(c) (Strong law) X n p  <=» E|X| < °° and p  = EX.

Proof, (a) Let <px(t) = Zsexp{/tr X}. Then
n

^ x / 0  =  <pX)+ ... + x n( t / n )  =  T \ (P x J( ^ / n )  =  (P \ { ^ / n ')
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f  cpx (u t /n )  du 
Jo

Because <px(0) = 1, and <px(s) ip7 as e 0,

<Px„(*) exP\ lim j  ipx (u t /n )  du exp{/jxr t}.

Here, we use the fact that for any sequence of real numbers, an, for which 
lim ,,^  nan exists, we have (1 + an)n -> exp{limrt_>00 nan}. Because 
exp{i|xr t} is the characteristic function of the distribution giving mass 1 to 
the point |m, we havejxom the Continuity Theorem Xrt —> fit which implies 
from Theorem 2(a), Xrt —» |x.

(b)

EIX„ -  p\2 = E(Xn -  n )T(X„ -  n) = (1/n2) £  £E(X,. -  n )T(X, -  ,1 )
‘ j

= ( l / « 2) £ £ ( X i - ^ ) r (Xi - ^ )
I

= (1 /n)E(X  -  M.)r (X -  jt) 0.
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(Note that this proof requires only that the X, be uncorrelated and have 
the same mean and covariance matrix; it does not require that they be 
independent, or that they be identically distributed.)

(c) Omitted. [See, e.g., Chung (1974), Rao (1973).] ■

The method of proof of part (b) is very general and quite useful for 
proving consistency in statistical estimation problems. In such problems, 
the underlying probability, PQ, depends upon a parameter 0 in © in Ud, 
and we are given a sequence of random vectors, ©„, considered as 
estimates of 0. We say that 0n is a consistent sequence of estimates of 0 if 
for all 0 e  0 , 0n i  6 when P = P0 is the “true” probability distribution. 
This is sometimes called weak consistency, or consistency in probability. 
We may similarly  ̂define strong consistency (0n 0), or consistency in 
quadratic mean (©„ — » 0), both of which imply (weak) consistency. The 
weak (strong) law of large numbers states the sample mean is a weakly 
(strongly) consistent estimate of the population mean.

Exercises 1 and 2 give extensions of the law of large numbers. In the 
first, the X; are not identically distributed, and in the second, they are not 
independent.

The weak law of large numbers says that if X {, . . . , X n are i.i.d. random 
variables with finite first moment, /i, then for every e > 0 we have 
P(\Xn — p\ > e) -> 0 as n -> oo. The argument of Theorem 2(b) only 
shows that P(]Xn — /i\ > e) -> 0 at rate \ /n .  Actually, the rate of conver­
gence of P(\Xn — p\ > e) to zero is typically exponential at a certain rate 
thatjdepends on e and on the underlying distribution of the A"’s. That is, 
P(\Xn -  /x| > e) behaves asymptotically like exp{— na] for some a > 0, 
in the sense that P(\Xn — /i\ > e)l/n exp { — a} or

( l /n) \ogP( \X„  - M| > e) -> - a  as n oo.

The study of the rate of convergence of P( \Xn — /x| > e) to zero is in the 
domain of large deviation theory. (See Exercises 5-8.)

Consistency o f the Empirical Distribution Function. Let X v . . . , X n be 
independent identically distributed random variables on IR with distribu­
tion function F(x) = P (X  <x). The nonparametric maximum-likelihood 
estimate of F is the sample distribution function or empirical distribution 
function defined as

1 "
Fn(*) = ~ LV„»)(*)• 

n 1

Thus, Fn(x ) is the proportion of the observations that fall less than or
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equal to x. For each fixed x, the strong law of large numbers implies that 
F„(x) F(x), because we may consider «,)(x ) as i.i.d. random vari­
ables with mean Fix). Thus, Fn(x) is a strongly consistent estimate of 
F(x) for every x.

The following corollary improves on this observation in two ways. First, 
the set of probability one on which convergence takes place may be chosen 
to be independent of x. Second, the convergence is uniform in x. This 
assertion, that the empirical distribution function converges uniformly 
almost surely to the true distribution function, is known as the Gliuenko- 
Cantelli Theorem.

Corollary. P{supx\Fn(x) -  FO )| -> 0} = 1.

Proof. Let e > 0. Find an integer k > 1 / e and numbers —00 = Xq < jC| < 
x2 < ••• < xk_x < xk = oo, such that F(xj)  < j / k <  F(x:) for j  =
1, . . . ,  k — 1. [F(xj)  may be considered notation for P (X  < x-).] Note that 
if Xj_x <Xj, then F(xj)  — F(xj_[) < s. From the strong law of large 
numbers, Fn(xj) F(xj) and Fn(x j )  F(x j )  for j  = 1, . . . ,  k — 1.

Let x be arbitrary and find j  such that x}_, < x < x}. Then, Fn(x) — 
F(x) < Fn(x j)  -  F(Xj_x) < Fn(x j )  -  F ( x p  + e, and Fn(x) -  F(x) > 
Fn(xj - 1 ) ~ Fix-)  ^Fj<Xj_ {) -  F(xj_ j) -  8. This implies that supjF„U)
— F(x) | < An + e 8. Since this holds for all e > 0, the corollary 
follows. ■

EXERCISES

1. (Consistency of the least-squares estimate of a regression coefficient.) 
Suppose that for given constants z x, z2, . . .  the random variables 
X l9X 2,- . .  are independent with linear regression, E(X;) = a + j8zi9 
and constant variance, var(^ ) = cr2. The least-squares estimates of a 
and based on X l9 . . . 9X n are

Hence,

^  n fin >
where zn = (1 /r tiLty.  A qm
(a) Under what conditions on z i9 z2, .. .  is it true that — > j8?
(b) When does an — » a ?
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2. (An autoregressive model.) Suppose e {, e2, ...  are independent random 
variables all having the same mean ji and variance a 2. Define X n as 
the autoregressive sequence,

— qm . .
where -1  < /3 < 1. Show that X n — ► f i / ( \  — /3).

3. (Bernstein's Theorem.) Let X x, X l9.. .  be a sequence of random vari­
ables with E(Xt) = 0, var(X,) = cr2, and corr(Xi9 Xj) = p/;. Show that 
if the variances are uniformly bounded (cr2 < c, say), and if ptJ -> 0 as 
\i -  j\ -> o o  (i.e., for every e > 0, there is an integer N  such that
11 -  j\ > N  implies |p/; | < e), then Xn — > 0.

4. (Monte Carlo.) One strategy for evaluating the integral

by Monte Carlo approximation is as follows. Write integral with a 
change of variable, y = 1 /x , as

where Y[9. . . 9Yn is a sample from the uniform distribution on [0,1]. 
How well does this approximation work? Does In converge

The following four exercises deal with large deviations for sums of i.i.d. 
random variables. For an accessible introduction to the general theory, see 
the book, Large Deviation Techniques in Decision, Simulation and Estima­
tion by James A. Bucklew, John Wiley & Sons, New York, 1990.

Let X ]9. . . 9 X n be i.i.d. random variables with moment-generating 
function M(6)_finite for all 0. Let /x denote the first moment of X. To 
show that P(\Xn -  [j l \ > jb )  converges to zero exponentially, it is sufficient 
to show that both P(Xn > /x 4- e) and P(Xn < ji — e) tend to zero 
exponentially. We concentrate on the first of these two quantities, since 
the other is treated by symmetry. The main result is that if the large 
deviation rate function, H (x \  defined in Exercise 5, is continuous at

and for n > 2,
PXn~\ + en,

,oo 1

and approximate I by

to 11
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/x + e, then (\ /n)\og P(Xn > /x + s)  — H( /x + s). This is done in two 
steps in Exercises 6 and 7.
5. Let A" be a random variable with moment-generating function, M(6) 

= £exp{0A"} finite in a neighborhood of the origin and let fx denote 
the mean of X, /x = EX. The quantity,

H ( x ) = sup(0jc — log M(0))
e

is called the large deviation rate function of X.
(a) Show that H(x) is a convex function of x.
(b) Show that H(x) has a minimum value of zero at x = /x.
(c) Evaluate X(x)  for the normal, Poisson, and Bernoulli distributions.

6. Show that

P (X n > fx +  e )  <  exp{ -  0( fx +  e) -h n log M(6/n ) j

< exp{ -n H (  ix + e)}

for all 0 and n. (Use a Chebyshev inequality type of argument.)
7. Let f i x )  denote the density of the common distribution of the Xh and 

introduce an exponential family of distributions having density

f ( x \ 6 )  = e exf ( x ) / M ( 6 ) .

This reduces to the original density, f ix) ,  when 0 = 0. Let Pe denote 
the probability measure induced by this density, and note that P = PQ. 
Let 8 be an arbitrary positive number, and let y = /x + s + 8. Find O' 
such that Ee,X  = y,_or equivalently, M'(0 ')/M(0')  = y._
(a) Show that P0,(\X„ -  y I < 8) < exp{nH(y + 8)}P0(\Xn -  y\ < 8).
(b) Note that P(Xn > /x 4- s) > P(\Xn — y I <  8) > exp{—nH(y +  

8)}Pe.(\Xn - y \  < 8 \  and conclude that lim infw ^ J l /n ) \ o g  P(Xn
> /x + e) > — H( fx + s).

8. For the Bernoulli distribution with probability p of success, the rate 
function H(x) is not continuous at x = 1. Establish the rate of conver­
gence of P(Xn > 1) and P(Xn > 1) to zero directly in this case.
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Central Limit Theorems

In this section, we present the basic Central Limit Theorem for i.i.d. 
variables. We do this for vector variables since the proof is essentially the 
same as for one-dimensional variables. The extension to independent 
nonidentically distributed random variables, due to Lindeberg and Feller, 
is stated without proof. Applications are given to some important statisti­
cal problems: to least-squares estimators of regression coefficients, to 
randomization tests for paired comparison experiments, and to the 
signed-rank test.

Theorem 5. Let X UX 2, .. .  beLi.d. random vectors with mean fjt and finite 
covariance matrix, X. Then }fn(Xn — fjt) 0,2).

Proof Because yfn (Xn -  jj l) = (1 / {n )E?(X;. -  jjl), we have

^ < * .- ,0 (0  -  <Pt^xr A t/ ^ )

= n<Px,-li(t/v'rt) = (p{t/4n)n, (1)

where <p(t) is the characteristic function of X; — /x,. Then, because cp(0) =
1, <p(0) = 0, and <p(e) -> - X  as e -> 0, we have, applying Taylor’s Theo­
rem,

fysrfl.-ioC0  = ( ] + - t ' f ^ v < p ( u v t / i f n )  dudvt

-> exp| lim t' p  f lv(p(uvt/}fn) dudvt
\ n-*°° J0 •'0

= e x p {-(l/2 )t '2 t} . (2)

26
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In the convergence statement, we have used the fact that for any sequence 
of real numbers, an, for which limn nan exists, we have (1 + an)n -> 
expflim ■

The extension of the Central Limit Theorem to the independent non- 
identically distributed case is very important for statistical work. We state 
the basic theorem in one dimension without proof. See Feller (1966) 
(Vol. 2) or Chung (1974) for a proof quite similar to the proof of Theorem
5. It is useful to state this extension in terms of a triangular array of 
random variables,

X n

X 21? ^22 

^32’ X 33

where the random variables in each row are assumed to be independent 
with means zero ad finite variances.

The Lindeberg- F eller Theorem. For each n =  1,2,. . . ,  let X nj9 for 
j  = 1, 2 , . . . ,  n, be independent random variables with EXnj = 0 and 
var{Xnj) = a 2-. Let Z n = L ^ ] X nj, and let B 2 = var(Zn) = E%\<Tn2r Then,
Zn/ B n -+JX0,1), provided the Lindeberg Condition holds: For every s > 0,

E  E { X * I ( \ X nj\ > s B n)} -  0  a s  n  ^  oo. ( 3)
j  — 1

Conversely, if (1 /Z?^)max; < n an2 -> 0 as n -> oo (//z«/ £y, if no one term of
the sum B 2 plays a significant role in the limit), and if Z n/ B n 1), then
the Lindeberg Condition holds.

The important special case where there is a single sequence, X y, X 29---9 
of independent identically distributed random variables with mean fx and 
var(Xj) = a 2 can be obtained from this theorem by putting X nj = znJ(Xj
-  p,) to obtain the asymptotic normality of Zn/ B n where Zn = 
Ey —, Znj(Xj -  fi) and B2 = cr2E"=,,z^ . (See Exercise 5.)

Example 1. Application to the asymptotic normality of the least-squares 
estimate of a regression coefficient. Suppose X}r = a + /3z; + ej for j  =
1,2, . .. ,  where the z; are known numbers not all equal and the are 
independent random variables with means zero and common variances
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cr2. In Exercise I of Section 4 we saw that the least-squares estimate, j$n, 
of /3 was consistent provided E/=1(z;- — zn)2 -> oo as n -> oo. We now show 
that if the conditions are strengthened to include

(a) the ej are identically distributed, and
(b) maX j < n(Zj -  zn)2/EJL,Uy -  z n) 2 -»  0  as n -»  oo,

then (3n is asymptotically normal.
Note that

A ,=  E  Xj^Zj — Z„) j  £  (Zj — Z„)2 
j - t  /  j - I

= fi + E  ey(«y -  z„) /  £  (zy -  Z„)2. (4)
y = l /  j —I

We show that the conditions of the Lindeberg-Feller Theorem are satis­
fied with = e,(z; — zn). Since EXnj = 0 and variXnj) = <t 2(zj -  zn)2, 
we have B2 = <r^E"=1(z; -  z„)2, and

4  E  *  e B » )l

“  i  E  £{«y (*y -  *»)2* ( M Z/ “  f »)l  *  e B «)}y=i 7

£ i  E  ( zy -  «»)2^{ey2/(leyl ^  eo /%)) ,  (5)
n y=i

where y 2 = max; <„(zy -  zn)2/ L ] ^ l(zj - z n)2. From assumption (a), the 
expectation term is independent of j  and may be factored outside the 
summation sign. The terms B 2 cancel, and the expectation tends to zero 
because the variance of ej is finite and yn -> 0 from assumption (b). We 
may conclude that

-  0 )  ^ ^ X 0 , c r 2), (6)

where s2 = E”=1(z;- -  z„)2/n .

Example 2. The randomization t-test for paired comparisons. In a paired 
comparison experiment for comparing a treatment with a control, 2 n 
experimental units are grouped into n pairs such that within each pair the 
units are as much alike as possible. Then for each pair, it is decided at
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random which member of the pair receives the treatment and which serves 
as control. We let (Xj9 VJ) represent the resulting measurements on the ;th 
pair, for j  = with Xj being the result of the treatment and Yj
being the result of the control.

The usual paired comparison t test for comparing treatment and control 
is based on the assumption that the differences, Zy = Xj — Yjf are inde­
pendent and identically distributed with finite second moment. The hy­
pothesis H0 of no difference between treatment and control becomes the 
hypothesis that the distribution of the Zy is symmetric about zero. The 
usual test of H0 is based on the one-sample t statistic, t = y/n -  1 Z H/ s z = 
yjn -  \ (Xn — Yn)/s^  where sz is the standard deviation of the sample, 
si = (l/Ai)L?(Zy -  Z„)2. Under the hypothesis that the Zy are i.i.d. nor­
mally distributed, t has t distribution with n — 1 degrees of freedom.

Randomization tests (sometimes called Permutation tests) may also be 
used for this problem. This test is based solely on the fact that the 
assignment of treatment and control to the pairs is made independently 
and at random. The analysis of the test is done conditionally on the 
observed values of the Zy. Because of this, the random variables Zy, 
conditional on the values |Z; | = |z; |, are independent under HQ with 
P(Zj = + \Zj\) = P(Zj = |zj|) — j .  Thus under / /0, the vector 
( Z {, . . . ,  Zn) has 2” equally likely possible values, ( ± \zxI, . . . ,  ± \zn\). Any 
statistic based on ( Z l9. . . ,  Zn) has at most 2n values as well.

The randomization t test uses the one-sample t statistic, t = 
yjn -  1 Zn/ s z. The rejection criterion is not based on the t distribution but 
rather on the discrete distribution generated by these 2” equally likely 
values of (Z4, . . . ,  Z n). For example, testing against one-sided alternatives, 
one computes the t statistic for all 2n values and rejects H0 if the 
observed t falls in the upper 100a % of them. For small values of n , this 
distribution can easily be tabled by a computer by evaluating the t statistic 
at each of these 2" values. For large values of n, other methods must be 
employed. One method is the Monte Carlo method of approximate ran­
domization, where a random sample of a few hundred is drawn from the 
distribution and the observed t statistic is compared to the sample. The 
method we use here looks at the large sample distribution of the statistic 
under the randomization hypothesis. _

First, consider the randomization test applied to the statistic Z„. We 
show that if the z; satisfy the condition

then yfnZn/o'n —v/'tO, 1) under / /0, where an2 = (l/« )E "z2. We let
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X nj = Zj in the notation of the Lindeberg-Feller Theorem. Then EXnj = 0
and var = zf, so that B2 = L"zf. We show E" Zj/Bn 1) by
checking the Lindeberg Condition. Because \Xnj\ is degenerate at \zj\,

From condition (7), this is equal to zero for all n sufficiently large. Thus,
we conclude that yfnZn/ a n = £" Z j / B n 0 ,1 ) .  _

The randomization t test is based on the t  statistic rather than Z n. 
However, one can show that these two randomization tests are equivalent. 
This  ̂ is because t = y/n — 1 Z n/ s z is an increasing function of u = 
yfnZn/(Tn. To see this, note that t  and v always have the same sign, and 
that

The conclusion to be drawn from this is that the randomization t test is 
asymptotically normal and has asymptotically the same cutoff points as the 
usual t test provided (7) is satisfied. This result can be considered as a 
nonparametric justification of the usual t test for paired comparisons 
when the sample size is large.

Example 3. The signed-rank test for paired comparisons. One may also 
apply the signed-rank test to this problem. This test, like the randomiza­
tion t test, is based on the assumption that under H0 the random variables 
Z;, conditional on the values |Z; | = |z; |, are independent with P(Z; = 
+ \zj I) = P(Zj — -  \zj\) = \.  The signed-rank statistic is defined as fol­
lows. Let Rj denote the rank of |z; | in the ranking of \z{ | , . . . ,  \zn\ from 
smallest to largest. (We assume that all the |z; | are different and that no 
\zj I is zero.) Then the signed-rank statistic, W+, is the sum of the ranks Rj 
for those Z; that are positive:

l { m 3 x z f / B 2n > e 2).  (8 )
\j<n /

v2 = nZ„2/cr„2 = nZ2n/ ( s 2z + Z„2) = n | — + l j

n

(9)
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If we reorder the subscripts of the Zy so that 0 < |z,| < |z2| < ••• < 
|z„|, then we have W+ = E" .//(Zy > 0). Because under H0, the /(Zy > 0) 
are i.i.d. Bernoulli variables equally likely to be zero as one, we find

1 JL n(n  + 1)
e w ^ - 2 p - 5 - r - ^

1 £  .2 " ( W + 1)(2» + 1) varIF+= - £ y 2 = -----------—----------- . (10)

To show asymptotic normality of (W+ — EW+ ) /  y^var Ŵ+ , note that H/ + = 
E?y/(Zy > 0) may be reduced to a form of the randomization test based 
on Zn. In fact, if Wn denotes the sum of the ranks of the positive Z., 
minus the sum of the ranks of the negative Z;, then (assuming no z . = 0;, 
Wn = EJ jKZj  > 0) -  Ei ;/(Z, < 0) = 2JK+-  Ei j. This shows that W+ 
is linearly related to Wn. But (\/ri)Wn is exactly of the form of Zn of the 
randomization test with |z; | = j. We merely have to show that the se­
quence \zj\ = j  satisfies (7). This follows because max, < n j 2 = n2, and 
E" j 2 = n(n 4- 1)(2n 4- l)/6 . We may conclude that Wn and hence W+eg
are asympotically normal; (W+— EW+)/ yVar 0,1).

Improving the Approximation
The convergence in the Central Limit Theorem is not uniform in the 
underlying distribution. For any fixed sample size n, there are distribu­
tions for which the normal distribution approximation to the distribution 
function of yfn (Xn — /jO /ct is arbitrarily poor. However, there is an upper 
bound, due to Berry (1941) and Esseen (1942), to the error of the Central 
Limit Theorem approximation that shows the convergence is uniform for 
the class of distributions for which E \X  — /z|3/o -3 is bounded above by a 
finite bound. We state this theorem without proof in one dimension.

Berry- E sseen  T h eo rem . I f  X }, X 2, . . . ,  Xn are i.i.d. with mean /x, vari­
ance a 2 > 0, and absolute third moment p = E \X  — p\ 3 < °°, then

|Frt(jt) -  4>(x)| < cp/(]fncr3), for all x  and n, (11)

where Fn(x) is the distribution function of yfn(Xn — /z)/cr, where 4>(jc) is the 
distribution function ofJX0,1), and where c is a universal constant known to 
be greater than 0.4097 and less than 0.7975. [See van Beek (1972).]
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When we have information about the third and higher moments of the 
underlying distribution, we may often improve on the normal approxima­
tion by considering higher-order terms in the expansion of the characteris­
tic function. This leads to asymptotic expansions known as Edgeworth 
Expansions. We present without proof the two next terms in the Edge- 
worth Expansion approximations of Fn(x):

where = E(X  -  fi)3/<r3 and /32 = E(X -  pY/cr* — 3 are the coeffi­
cient of skewness and the coefficient of kurtosis, respectively, and where 
<p(x) represents the density of the standard normal distribution. This 
approximation is to be understood in the sense that the difference of the 
two sides when multiplied by n tends to zero as n -> oo. Assuming the 
fourth moment exists, it is valid under the condition that

This condition is known as Cramer's Condition. It holds, in particular, if 
the underlying distribution has a nonzero absolutely continuous compo­
nent. The expansion to the term involving 1 /  4n is valid if the third 
moment exists, provided only that the underlying distribution is nonlattice, 
and even for lattice distributions it is valid provided a correction for 
continuity is made. See Feller (Vol. 2, Chap. XVI.4) for details.

Let us inspect this approximation. If we stop at the first term, Fn(x) ~ 
<E>(x), we have the approximation given by the Central Limit Theorem. 
The next term is of order 1 /  yfn and represents a correction for skewness, 
since this term is zero if f}{ = 0. In particular, if the underlying distribu­
tion is symmetric, the Central Limit Theorem approximation is accurate 
up to terms of order 1 / n. The remaining term is a correction for kurtosis 
(and skewness) or order 1 /n .

The Edgeworth Expansion is an asymptotic expansion, which means 
that continuing with further terms in the expansion with n fixed may not 
converge. In particular, expanding to further terms for fixed n may make 
the accuracy worse. There are a number of books treating the more 
advanced theory of Edgeworth and allied expansions. The review by 
Bhattacharya (1990), treats the more mathematical aspects of the theory 
and the book of Barndorff-Nielsen and Cox (1989) the more statistical.

/32( x 3 -  3x) p ? (x5 -  IOjc3 + 15jc)
<p ( x ) .  ( 12)

24m 12n

lim sup | E (exp{itX}) | < 1.
|/| ->00

(13)
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Table 1. Normal and Edgeworth approximations of the normalized 

mean of a sample of size 5 from an exponential distribution
X <&(x) E j(x) E2(x) Exact

-  2.0 0.023 - 0.001 -0.007 0.000
-1.8 0.036 0.010 0 .000 0.003
-1.6 0.055 0.029 0.017 0.015
-1.4 0.081 0.059 0.047 0.042
-1.2 0.115 0.102 0.091 0.086
- 1.0 0.159 0.159 0.151 0.147
-0.8 0.212 0.227 0.223 0.221
-0.6 0.274 0.306 0.305 0.305
-0.4 0.345 0.391 0.392 0.392
-0.2 0.421 0.477 0.478 0.478

0.0 0.500 0.559 0.559 0.560
0.2 0.579 0.635 0.634 0.634
0.4 0.655 0.702 0.700 0.701
0.6 0.726 0.758 0.758 0.758
0.8 0.788 0.804 0.808 0.807
1.0 0.841 0.841 0.849 0.847
1.2 0.885 0.872 0.883 0.881
1.4 0.919 0.898 0.910 0.908
1.6 0.945 0.919 0.931 0.929
1.8 0.964 0.938 0.947 0.946
2.0 0.977 0.953 0.959 0.959

Hall (1992) is concerned with the application of Edgeworth Expansion to 
the bootstrap.

We conclude with a simple example to illustrate the improvement in 
accuracy afforded by the Edgeworth Expansion. Suppose that n = 5 and 
that X x, X 2, . . . ,  X n is a sample from the exponential distribution with 
density exp{—jc} on (0, oo). For this distribution, /x = 1, a 2 = 1, j8, = 2 , 
and f$2 = 6. In Table 1, the exact values of Fn(x) may be compared with 
the normal approximation, 4>(a:), and the Edgeworth Expansions to terms 
of order 1 /  yfn and 1 / n , denoted by E x(x) and E2(x ), respectively. The 
exact values may be obtained from the \ 2 distribution with 10 degrees of 
freedom, normalized to have mean 0 and variance 1.

It may be seen that the normal approximation is only moderately good, 
being off by 0.060 at x = 0. The approximation E x(x) is much better, the 
maximum error having been reduced to .018, occurring at -1.4. 
Finally, the approximation E2(x) is remarkably good, having a maximum 
error of 0.005 at x = —1.2. The negative values of E x and E2 may be 
replaced by zeros.
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EXERCISES

1. (a) If X l9 X 2, ...  are i.i.d. in U2 with distribution giving probability
to h J , 02 to J® , and (1 ~ 0{ -  02) to |®J, where 6X > 0, 02 > 0, 
and 0l + 02 < 1, what is the asymptotic distribution of X n given 
by the Central Limit Theorem?

(b) Let X {, X 2, . . . ,  X n be a sample from the Poisson distribution 
with density f (x\6)  = e~edx/x\  for x = 0,1 , . . . ,  and let Zn be 
the proportion of zeros observed, Zwj= i\/n)YJlj ^ {l(Xj = 0). Find 
the joint asymptotic distribution of (Xn, Z n).

2. Let X y ,X 2, . . .  be independent and suppose that X n = yfn with 
probability \  and X n = — ]fn withj>robability for n = 1,2,. . .  . 
Find the asymptotic distribution of Xn. (Check the Lindeberg Condi­
tion.)

3 Show that the Lindeberg-Feller Theorem implies the Central Limit 
Theorem in one dimension.

4. Give a counterexample to the conjecture: If X {, X 2, . . .  are indepen­
dent random variables, and EX. = 0 and var X: = 1 for all /, then__ eg J
y/nXn 0,1). (Consider distributions of the form P{X} = Vj) = p - /2, 
P{Xj = —Vj] = pj/ 2, and P{X} = 0} = 1 — joy, for some numbers Vj 
and pj.)

5. (All the applications of this section may be based on the following 
special case of the Lindeberg-Feller Theorem.) Suppose X V X 2, . . .  
are i.i.d. random variables with mean /x and variance a 2. Let Tn = 
Ey^ znjXj, where the znj are given numbers. Let fin = ETn and 
a 2 = var T„. Using the Lindeberg-Feller Theorem, show that (Tn —

1) provided maxy<n z 2nj/YJ]^xz 2nj -> 0 as n -> oo.
6. Records. Let Z,, Z2, ...  be i.i.d. continuous random variables. We say 

a record occurs at k if Z k > max7 <  ̂ Ẑ . Let = 1 if a record occurs 
at &, and let R k = 0 otherwise. Then R {> R2, . . .  are independent 
Bernoulli random variables with P(Rk = I) = I — P(Rk = 0) = 1/k  
for k = 1,2,... . Let Sn = YJ[Rk denote the number of records in the 
first n observations. Find ESn and varSw, and show that (Sn —
ESn) /  ^/var Sn 0,1). (The distribution of Sn is also the distribu­
tion of the number of cycles in a random permutation.)

7. Kendall’s r. Let Z t, Z2, . . .  be i.i.d. continuous random variables, and 
let Xk denote the number of Z t for i < k that are out of order, that 
is, have values greater than Z k, X k = Ef_I /(Z, > Z k). It is known 
that the X k are independent random variables and that X k is uni­
formly distributed on the set (0,1, .. . ,  k — 1}. The statistic Tn = E? Xk 
represents the total number of discrepancies in the ordering. It is zero
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if the observations are in increasing order, and it takes on its maxi­
mum value of L"(& — 1) = n(n — l) /2  when the observations are in 
decreasing order. It may be used as a nonparametric test of random­
ness against the hypothesis that there is a trend in the observations, 
increasing or decreasing. The statistic, = 1 -  4Tn/(n(n -  1)), is 
always between — 1 and 4-1 and is called Kendall’s coefficient of rank 
correlation. It is a measure of agreement between two rankings 
of n objects. Find ETn and var and show that (Tn -  ETn) /
/var Tn 1).

8. If A",, X 2, .. •, X n are i.i.d. in 1R1 with distribution giving probability \  
to -  1 and 4-1, find cn for n = 1 and 2 such that sup* | Fn(x) -  <f>(*)l 
= cn p/W n  cr3). What do you conjecture for limrt cn? (Use Stirling’s 
formula: n\ = (nn/ e n))/2irn .) What does this say about the constant c 
in the Berry-Esseen Theorem?

9. Show that if X {, X 2, . . . ,  X n are samples from a distribution with 
coefficient of skewness and coefficient of kurtosis j82, then the 
coefficient of skewness (3ln and the coefficient of kurtosis /32n of 
Sn = X { + X2 + ••• +X„ are given by /3,„ = &x/ { n  and p2n = j82/n.  
Conclude that Table 1 also represents the Edgeworth Expansion 
approximations for the mean of a sample of size 10 from the x 2 
distribution with 1 degree of freedom, or the Edgeworth Expansion 
approximations for a sample of size 1 from the x 2 distribution with 10 
degrees of freedom.

10. Suppose that X {, X 2, X 3 is a sample of size 3 from the uniform 
distribution on (0,1). Compare the exact probability, P(X , 4  X2 4- 
X3 < 2), to its normal and Edgeworth approximations.
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6

Slutsky Theorems

A common problem in large sample theory is the following. Given a 
sequence of random vectors, {Xn}, and given its limit law, say X n —> X, 
find the limiting distribution of f (X n) for a given function, fix). The 
Slutsky Theorems provide a powerful technique for attacking this prob­
lem. For example, it gives a simple method for showing that the ^-statistic 
for a sample from a distribution with finite variance is asymptotically 
normal, as we shall see.

T h eo rem  6. (a) If Xn e  Rd, X n X, and if f: Ud —> Rk is such that 
P{X e  C(f)} = 1, where C(0  is the continuity set of f, then f(Xn) ^ /(X ).

(b) / /  X„ ^  X and (Xn -  Y„) 0, then Y„ X.
(c) I f  X„ e  [Rrf, Y„ e  |R*, X„ ^  X, and Y„ ^  c, then

p
Note: We say X n and Y„ are asymptotically equivalent if (X„ — Yn) —> 0. 

Thus, part (b) states that asymptotically equivalent sequences have the 
same limit laws.

E xample 1. Suppose X n ^> X  e^tO , 1). Then, using f i x )  = x 2, part (a) 
gives X 2 X 2, because /  is continuous. Since X 2 e  X\ when X  e  
^f(0,1), we have X 2 xl-

39
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Example 2. If X n ^ * X  0,1), then 1 / X n Z, where Z has the 
distribution of 1 /X ,  even though the function f i x )  = \ / x  is not continu­
ous at 0, because P(X = 0) = 0. Z has the reciprocal normal distribution 
with density,

1 t 1
8(Z) 41v z 2&XP\ 2z2

Example 3. However, if Xn = 1 / n  and

_ /1 , if x > 0,
\ 0 ,  if jc <  0,

S ’ &then X n —* 0, but f ( X n) /(0).
cg>

Example 4. Part (c) cannot be improved by assuming Yn —> Y and con­
cluding | j  j. For example, if A" is ^(0,1) and Xn = X  for all n, 
and Yn = X  for n odd and Yn = 1 -  X  for n e 
Yn ^(0,1), yet | y" j does not converge in law.

Example 5. Suppose X n X  and Yn c. Does Xn + Yn ^  X  + c7
First we note from (c) that j and then from (a) with / ( x, y) =
x + y that Xn + Yn ^  X  + c. This combination of (a) and (c) is worth 
stating as a corollary.

C o r o l l a r y .  I f  X n <e Md, Yn <e R*, X n ^ X , Y n ^  c, a n d  f: R d+k ^  W  is 
such that e  C ( f ) |=  1, then f(X„, Y„) ^  f(X, c).

This follows directly from (a) and (c).

E xample 6. If X„ ^  X and Y„ c, then Y„TX„ ^  cTX.

E xample 7. In one dimension, if c ¥= 0 and X n X  and Y„ i  c, then 
X n/ Y n —»X/c.  In this last, we are using the function

f l X y ) . l X/ r ' i t y * 0’
A , y )  \0,  if y = 0,

which is discontinuous at all points of the line y = 0. However, the 
limiting distribution of ^  j gives mass 0 to this line if c 0, so the result 
follows from the corollary.



Proof of Theorem 6. (a) Let g: Uk -> U be bounded and continuous. From 
Theorem 3(c), it is sufficient to show that £g(f(Xw)) -> Eg(f(X)). Let 
h(\) = g(f(x)). Then, a point of continuity of f is also a point of continuity 
of h; that is, C(f) c  C (h \  so from Theorem 3(d), £g(f(Xn)) = Eh(Xn) -> 
Eh(X) = Eg( f(X)).

(b) Let g be continuous vanishing outside a compact set. From Theo­
rem 3(b), it is sufficient to show that Eg(Yn) -> 2sg(X). Because g is 
uniformly continuous, let s  > 0, and find 8 > 0 such that

|x -  y| < 8 =>|g(x) - g ( y ) l  < e-

Also g is bounded, say |g(x)| < B. Thus,

| £&(¥„) - E g ( X ) \  z \ E g ( Y n) - E g ( X n)\ + \ Eg(Xn) -  Eg(X)\

= £|g(Y „) - g (X „ ) |/ ( |X „  - Y J  < 8 )

+ E \ g ( Y „ ) - g ( X n) \ l ( \ X n - Y „ \ > 8 )

+ \ Eg(Xn) - E g ( X ) \

< e + 2BP{\X„ -  YJ > 5} + 1Eg(Xn) -  ££(X )| e.

(c) P{ |(* -)  - ( x; ) |  > 8} = P i |Y„ -  cl > 8} -> 0.

So from (b), it is sufficient to show that But if g is

continuous bounded, Eg(Xn, c) -> Eg(Xy c) because Xn —» X. ■

Asymptotic Normality of the t Statistic. If X l7 X 2, . . .  is a sample from a 
distribution with mean jul and variance cr2 > 0 (on the real line), then

X „ ^ f i  and ( l / n ) £ x 2 ^ E X 2,
1

from the Law of Large Numbers, so from the corollary,

s 2n = (1 / « )  Z x f  -  * E X 2 - p 2 = a 2.
1

In addition,

v ) / a  1 )

from the Central Limit Theorem. Hence, again from the corollary, 

& ( X „ - p ) / s n ^ ( 0, 1).

Slutsky Theorems 41
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The left side is defined as zero (or anything else) if s„ — 0, as in Example
7. From this it follows that the t statistic is asymptotically normal,

= V ^ T ( ^ „ - m) A „ ^ ( o, i ). ■

The Slutsky Theorems for convergence in probability are quite analo­
gous to Theorem 6, but part (c) can be strengthened:

Theorem 6'. (a) If  Xrt e  Ud, X n X, and f: Ud -> Uk is such that 
P{X e  C(f)} = 1, then f(X„) f(X).

(b) / /  X„ X and X„ -  Y„ 0, then Y„ A  X.

(c) / /  X„ A  X and Y„ A  Y, then (* ).

The Slutsky Theorems for convergence almost surely, obtained by 
replacing —» wherever it occurs in Theorem 6' by — , are also valid 
and easy to prove.

EXERCISES

1. Prove Theorem 6'. Hint: For (a), use Theorem 2(d).
2. Show that if {Xn} and {y„} are independent, and if Xn X  and

Yn ^  Y , then j where X  and Y  are taken to be indepen­
dent.

3. Consider the autoregressive scheme,

X n = p X n_t +  en, for n =  1 ,2 ,3 , . . . ,

where e v s 2, . - .  are i.i.d., E e n = //,, var(ert) = a 2, - 1  < < 1, and 
X 0 = 0. Show that X n = (1 /n )  E" Xj  is asymptotically normal:

^ ( X n -  / . / ( I  - / 3 ) )  ^ 0 , a 2/ ( l  - / 3 ) 2), if - 1  < / ? <  1,

( X n -  / i/2 )  ^ ( 0 ,  <t 2/ 2 ) ,  if /3 = - 1.

Note the discontinuity at = - 1 .  What happens at p  = +1?
4. (a) Show that two sequences of normalized random variables are

asymptotically equivalent if their correlation converges to one. (A 
random variable is normalized if it has mean 0 and variance 1 .) 
Conclude that if (X n -  EXn) /  y^var X n ^  X  and if corr( X n,Yn)

1, then (Y„ -  EYn) /  ^  X.
(b) Suppose X n and Yn have zero means and equal variances. Is it true 

that if X n X  and corKA^, y„) -> 1, then Yn ^  X I



5. Show that if E ( X n -  Yn)2/\a x  X n -» 0, then corr(Arn,Yn) -» 1. Con­
clude using Exercise 4,

X n - E X n s  E ( X „ - Y „)2
- "■ -  - => X  and " -» 0
yvar X„ var X„

imply
Yn -  EYn #

V̂Var Yn ^

6. The following version of Theorem 6(b) is often useful for nonnegative 
random variables.
(a) Show that if X n X  > 0 and X „/Y n A  1, then Yn ^  X.
(b) Extend this result to random vectors.

Slutsky Theorems 43
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Functions of the Sample Moments

We continue investigating the implications of the Slutsky Theorems. 
Here we study Cramer’s Theorem on the asymptotic normality of func­
tions of the sample moments through a Taylor-series expansion to one 
term. In some situations, the rate of convergence to normality is exceed­
ingly slow. Hence, we conclude this section by studying improvements to 
the normal approximation that take more terms of the series expansion 
into account.

The analysis of the asymptotic distribution of the /-statistic given in the 
previous section may be extended jto d  dimensions as follows. From the 
central limit theorem, we have ]fn(Xn ~  I*) — X)  where X =  var(X), 
and from the Law of Large Numbers, with some help from the Slutsky 
Theorems, we have S„ = (l/n )E "(X ; -  X„XXy -  X„)r  X. If _X is 
non-singular, then P{S„ is nonsingular} —> 1 and S~1/2]fn(Xn — 
jx) X ~1/2 Y where Y e J iO ,  X). Srnce 2 “ 1/2Y e^K 0 ,X “ )/22 2 ‘ 1/2) 
=yK0,1), we conclude that S ~'/2-Jn(Xn -  fi) 0,1).

This is an example of a more general theorem, due to Cramer, that 
states that smooth functions of the sample moments are asymptotically 
normal. First, it is clear from the Central Limit Theorem that the sample 
moments about zero, things like ( l / rOT," (1 /« )  and
(1 /« )E "  XfYj ,  are jointly asymptotically normal if the expectations of the 
squares of all terms exist. Then, repeated application of the following 
theorem shows that moments centered at the sample mean and smooth 
differentiable functions of them are also asymptotically normal.

44
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Theorem 7 (Cramer). Let g be a mapping g: Ud such that g(x) is
continuous in a neighborhood o f |ul g  If X n is a sequence o f d-dimen- 
sional random vectors such that ]/n(Xn — (x) —̂ X, then ]fn(g(Xn) -  
g(|x)) —> g(|x)X. In particular, if ]fn(Xn — |ut) 0 ,2 )  where 2  is a 
d  X d covariance matrix, then

-  g (f-))  ^ l 0 , g ( i * ) 2 g ( t « . ) r ). (1)

Proof. First note that {n (X„ — p) ^  X implies that X n p.. Now if g(x) 
is continuous in {x: |x  — |x| < 6}, then for |x  — |x| < 8 ,

g(x) =  g (p )  + / ' g (p  + v(x  -  p.)) dv{x  -  p.), (2)
Jo

so for |XW -  |x| < 8,

v/« (g (X „) = f lg ( n  + v(Xn -  ix,))dmfn(X„ -  ja). (3)
•'o

Since X„ n,  we have />(|X„ — (jl| < 8) -* 1 and /0' g(jjl + y(X„ — p)) du 
g(^X so V^(g(X„) — g((jt)) ^5 g(|j.)X. If X e J X 0, 2 ), then because 

£g(ji)X  = 0 and var(g(|w)X) = g(jji)2g(fJi)r we have g(§jt,)X e  
^(0,g(|i,)2g(|Ji.)r ).

E xample I. For a sam ple from  a one-dim ensional distribution with meanr .— _ cg>
ju. and variance_cr , v n ( X n — /jl)  a  ). What is the asymptotic
distribution of X 2?

Solution. Let g(x)  = x 2. Then g(jc) = 2x,  and g(ju,) = 2/t. Hence, from 
Theorem 7,

V ^ (X 2 -  fi2) ^ ( 0 ,  V c r  2). (4 )

Note: This exam ple and those that follow  bring out several points to be 
aware o f in large sam ple theory. First, the rate o f convergence to norm al­
ity in Theorem  7 can vary widely with variation in either g or /jl.

Second, the asym ptotic variance can be zero as in Exam ple 1 when  
/jl =  0. All this exam ple says w hen /jl =  0 is that 4n X 2 —» 0, and this is 
not what one m eans by asym ptotic distribution. W e would like to find an 
asym ptotic scaling sequence an such that anX 2 has a nondegenerate 
distribution. In fact, when /jl =  0, n X 2 —> a 2\ 2, because by Slutsky n X 2 =  
(yfnXn)2 -> Y 2 w here Y  0, a 2) so that ( Y / a )2 G
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Third, the moments of the limit need not be the limit of the moments, 
as the following example indicates.

Example 2. Suppose that 4 n ( X n -  fi) 0, a 2). What is the asymp­
totic distribution of 1 / X n? Let g(x)  = l / x .  Then g(*) = — I / * 2 and 
g( //,) = - 1/ / I2. Therefore, by Cramer’s Theorem, when /i ¥= 0,

X„
&

(5 )

However, when X n a 2/ n ), E ( l / X n) does not exist, because for
any distribution with density positive and continuous at the origin, 
E ( l /  \X\) = 00.

Example 3. Assuming finite fourth moments, what is__the asymptotic 
distribution of the sample variance, s 2 = ( l / n ) L “(Xj  -  X n)2? Since s 2 = 
(1 / n ) E? X 2 — X 2, we must first find the asymptotic joint distribution of 
the first two moments. Since s2 does not depend on location, we may as 
well assume /i =  0 (or equivalently, work with X} -  p).  Let mxx = 
(1 /n )E ?  X 2 and m x = ( l /n )E ?  Xj . From the Central Limit Theorem,

mx
r a v

& ^ ( 0, 2 ),

where

= m Y 2 2 m: = s;,

war X  c o v ( X 2, X )  

c o v ( X 2, X )  var X 2

To find the asymptotic distribution of s 2, let g( mx, ra^ )  
and note that g ( mx, m xx) = ( — 2 mx, 1) and g(0, o-2) = (0,1). Hence,

Vn (s2 - o-2) ̂ ^ 0 ,  g(0, <r2)Xg(0, <r2)r)

= . / f ( 0 ,v a r * 2) = ^ f ( o ,E Y 4 -  ( £ * 2) 2)

= ^ ( 0, ju.4 -  o-4). (6)

If the parent distribution is normal, then /i4 = 3 a*4, so 

yfn^sl — a 2) 2 a 4).
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Improving the Approximation. We return to the observation in Example 1
that if Jn (X n — /x) — <r2) and g(x)  = x 2, then Cramer’s Theorem 
yields

(7 )J n ( X 2 -  fjb2) —»^f(0 ,4 /tV 2).

When = 0, this gives 4 n X 2 0,0), but more accuracy can be 
obtained using instead

nX,v2 -K O' X t (8)
This clearly implies a danger from using (7) when /x is close to but not 
equal to zero. No matter how large n is, there is a /jl sufficiently close to 
zero for which the approximation (7) is very poor. One can often obtain a 
definite improvement in the approximation by taking more terms in the 
expansion of the function g into account in the proof of Cramer’s 
Theorem.

Suppose that yfn(Xn — / jl)  0, cr2), and suppose we are interested 
in estimating g( /jl) where g( /jl) has a continuous second derivative with 
g"( /jl) =£ 0. To improve upon the approximation given in Theorem 7, we 
expand g(jt) about fi to second-order terms and complete the square in
x — /jl:

g ( x )  -  g( n )  ~ g'(  fx,)(x -  /t) + ~ y  ( x  -  m)2

g ' i t f

Replacing x by X n, we may conclude that

(9 )

n { g ( X n )

where

%

\ { ^ { X n -  M )/o-+  % ) 2 -  Jn\  ( 10)

y f n g ' {  f i )

< ^ " U )  ‘

The distribution of the square of a normal random variable with mean y  
and variance 1 is the noncentral chi-square distribution with 1 degree of 
freedom and noncentrality parameter y 2, denoted by ^fCy2). Therefore,
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we may rewrite (10) with the notation

« (# (* « )  - S ( ^ ) ) ------- 8 2 ^  I X \ { j n )  ~ %2]- ( 1 1 )

When g(jt) = x 2, this gives in comparison to (7)

n(x;-»2)~v2lx?(y,2)-y.2b ( 12 )

where yn = yfn fx/ (2a) .  When fx = 0, this reduces to (8). For y 2 close to 
zero, this provides a big improvement over (7). Even for y 2 large, (12) is 
approximately the same as (7), because x \?(%2) — Jn *s approximately 

4%2) [see Exercise 2(b) of Section 10].
We conclude with a numerical example of the accuracy of these approxi­

mations. The function g(x)  = x 2 is a little too simple, because the 
expansion (9) becomes exact. Instead we take g(x) = exp{x}, and we 
suppose that yfn(Xn -  fx) is exactly JiO , cr2). To keep things simple, we 
take fx = 0 and a 2 =  1. Let Z = Vw(exp{Xn} -  exp{/*,})/(o- exp{/x}) 
= \/n^(exp{X„\ — 1). Under the normal approximation (7), the distribution 
of Z is <£(z). From the noncentral x 2 approximation (11), the distribution 
of Z is (using yn = yfn)

P ( Z  < z )  ~ p ((y r (0,1) + yn)2 < y„2 + 2\/nz)

= + 2Jnz  — \fn  ̂ — <1>( — ]/n + l4 n z  — i/n]. (13)

The exact distribution of exp{Xn} is lognormal, and

P ( Z  < z )  =  P (ex p {^(0 ,1 / n ) }  < 1 + z / { n  ) = log(l + )).

(14)

In Table 2, we take n = 5 and compare the two approximations with the 
exact probabilities.

If X n is not exactly normal, for example, if it were the mean of a sample 
for an exponential distribution, the above approximations can be improved 
by considering the Edgeworth Expansion, E2(x), of Table 1 in place of 
<£(*) in Table 2.
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Table 2. Normal and noncentral x 2 approximations of the distribution 
oi }fn{g(Xn) — g(0))/g'(0) for a sample of size n = 5 from a 

standard normal distribution with g(x) = exp{x).

0>(z) (13) (14)
-  2.0 0.0228 0.0000 0.0000
-1 .8 0.0359 0.0000 0.0001
-1 .6 0.0548 0.0000 0.0025
-1 .4 0.0808 0.0000 0.0139
-1 .2 0.1151 0.0000 0.0427
-1 .0 0.1587 0.0641 0.0925
-0 .8 0.2119 0.1481 0.1610
-0 .6 0.2743 0.2375 0.2424
-0 .4 0.3446 0.3285 0.3297
-0 .2 0.4207 0.4169 0.4170

0.0 0.5000 0.5000 0.5000
0.2 0.5793 0.5760 0.5760
0.4 0.6554 0.6441 0.6436
0.6 0.7257 0.7040 0.7025
0.8 0.7881 0.7558 0.7530
1.0 0.8413 0.8000 0.7958
1.2 0.8849 0.8374 0.8316
1.4 0.9192 0.8686 0.8615
1.6 0.9452 0.8944 0.8863
1.8 0.9641 0.9156 0.9067
2.0 0.9772 0.9330 0.9234

EXERCISES

1. Find the asymptotic distribution of log s 2. _
2. Show that the joint asymptotic distribution X n and si  is

}fn
* X m

o-2
& o, /x3 

/x4 -  o-̂

3. Find the asymptotic distribution of
(a) sx/ X n (the coefficient_of variation).
(b) m3 = (1 / n ) L nx(Xj  -  X ) \

4. Let X ], . . . ,  X n be a sample of size n from the beta distribution, 
& e (0 ,1), 6 >  0. The method-of-moments estimate of 6 is 6n = X n/ ( \
-  X n). Find its asymptotic distribution.
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5. The Poisson Dispersion Test. A standard test of the hypothesis H 0 that a 
distribution is Poisson, ^(A ) for some A, is to jeject H 0 if the ratio of 
the sample variance to the sample mean, s 2x/ X nJ is too large. This test 
is good against alternatives whose variance is greater than the mean, 
such as the negative binomial distribution or any other mixture of 
Poisson distributions. _
(a) Find the asymptotic distribution of s \ / X n for general distributions.
(b) Find the asymptotic distribution of x \ /X n under H0 and show that 

it is independent of A.
6. Suppose we are interested in estimating the variance, g( p)  = p (l — p), 

of the Bernoulli distribution with probability p  of success, based on a 
sample of size n. Let X n denote the proportion of successes, X n = X / n ,  
where X  has the binomial distribution, & ( n , p \  and consider the 
estimate g ( X n) = X n(\ -  X n).
(a) Find the asymptotic distribution of g ( X n). What happens when

P = I?
(b) What is the asymptotic expansion (11) for the distribution of g ( X n)l
(c) Take p  = 0.6 and n = 100. Compare the approximations to 

P( g ( Xn) < y ) given by (a) and (b) at the points y  = 0.23, 0.24, and
0.25.
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The Sample Correlation Coefficient

The last example of Section 6, namely, that

-  r ) / s n 0, 1),

shows that the t test is asymptotically robust or asymptotically distribution- 
free within the class of distributions with finite second moments. In 
particular, the confidence interval for the mean /a of a distribution, given 
by

~ (Sn/Jn ~ 1 K - l ;«  < M *„ + (^ /V n  -  1 )/„_ , . „ ,

has approximate probability 1 —2 a  whatever be the true distribution of 
the provided it has a finite variance and n is sufficiently large.

The usual test or confidence interval for the variance of a distribution 
when sampling from a normal distribution is based on the statistic (ns2) / a 2 
which has a \ n -1 distribution. Example 3 of Section 7 shows that this test 
is not asymptotically distribution-free. The asymptotic distribution of 
(ns2) / a 2 depends on the fourth moment of the true distribution. For the 
normal distribution, /xA = 3cr4, and so the usual test will be asymptotically 
valid for any true distribution with fju4 = 3 cr4. But we often expect 
sampling distributions to have somewhat thicker tails than the normal. For 
example, = 6.1 1 1 . . .  a 4 for the double exponential distribution with 
density f ( x ) — (1 /2)e~  *x|.

Even worse in this regard is the sample correlation coefficient, r = 
sxy/ s xsy9 when used for testing hypotheses concerning the correlation 
coefficient, p = axy/ a xcry. The asymptotic distribution of r , when sam­
pling from distributions with finite fourth moments, may be found by the 
methods of Section 7.

51
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Theorem 8. Let ( X l9 Y{), ( X 2, Y2X • • • be a sample from a bivariate distribu­
tion with finite fourth moments, E X 4 and E Y 4. Then,

(a)

r ^2 1 ** °i2 C(XX9 XX) C(XX, XY) C(XX, YY)
Sxy - ffxy C(XX, XY) C(XY,XY) C(XY, YY)

_ s y  _ \ C(XX9YY) C(XY,YY) C(YY,YY)

(b)

where

C(XX, XX)  = cov((* -  » xf ,  ( X  -  M*)2) = E (*  -  M-x)4 - { E { X -  /tx)2)2 

C(XX, XY)  = cov((X -  ^)2, ( X  -  /t,)(y -  /*,))

= E(X  -  /ix)3(K -  /*y) -  wfo,, etc.
&{ n { r  -  p)  0, y 2),

where

C ( X X , X X )  ^ C ( X X , Y Y ) C ( y r ,7 F )
-  - j -  2 -  -  - f -  -

cr, 2 2 < 7> /

C(XY, AT) C(AT,yy)_  _l_ -

ay

C ( XY,  X Y )
2 2 

Vx<Ty

Outline of Proof. The proof follows the steps of the last example of Section
7. Assume without loss of generality that /ix = \xy = 0. First, use the 
Central Limit Theorem to find the joint asymptotic distribution of Mn = 
( mx9 m y, m xx9 m xy9 m yy)T, where m x = (1 / n )  EJ Xj9 m xx = (1 /n )  E? X f  
and m xy = (l /n) lL]  XjYj9 etc. Then, apply Cramer’s Theorem to the 
function, g(Mw) = (m xx -  m 2x9 m xy m xm y9 m yy -  m 2y)T.

Moments o f the Bivariate Normal Distribution. To find the value of y 2 for 
the bivariate normal distribution, we may assume the means are 0 and the 
variances are 1 , because y 2 is independent of a change in location and 
scale in X  or Y. The moments E X 3Y9 et cetera, may be found by 
integrating, or by taking the appropriate derivatives of the characteristic 
function,

<p(t{, t 2) = e x p { - ( l / 2)(f? + 2pt^t2 + t l ) ) ,
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and setting (f,, l2) — (0,0). We find

E ( X  -  n x)4 = 3ax\  

E ( X -  imx) \ Y -  My)= 3 p < r> y,

and

Hence,

E ( X -  p.,) ( Y  -  ixy) = (1 + 2 p 2)<rx2<ry2.

y 2 = ( l / 4 ) p 2[2 + 2(2p 2) + 2] -  p[(3p -  p) • 2] + (1 + 2p 2 -  p2)

= p2[l + p 2] -  4p2 + 1 + p 2 =  (1 -  p2)2, 

so that for normal populations,

yfn(r -  p )  0 ,(1  -  p 2)2) .

Robustizing. The usual \ 2 test f°r a variance is based on the fact that for 
normal distributions (ns2) / a 2 has a x 2-\ distribution. For n large, the 
X 2-\ distribution is approximately J^n — 1,2(n — 1)). Hence, the confi­
dence intervals for a 2 obtained from this test are asymptotically those 
obtained from

ns2/ c r 2 -  (n — 1) {n

7 TA/2(«  -  1 ) cr
0, 1).

If the population is not normal, we should be using, as seen at the end of 
Section 7,

J n \ s l / a 2 ~  l]
\/p,4/ o -4 -  1

S ’ 0, 1).

Because ja4 is not known, this statistic cannot be used directly. However, it 
may be robustized by replacing the coefficient of kurtosis, /32 = /jl4/ <r4, by 
an estimate, b2 = m 4/ s 4, the sample coefficient of kurtosis. The confi­
dence interval resulting from
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may be written

1 +
< a* <

&
-■K/i l -

\fn '̂ Kx/2

The usual confidence interval based on the \ 2 distribution may be 
obtained from this, approximately for large /z, by replacing b2 by the 
coefficient of kurtosis for the normal distribution, namely, /32 = 3.

One may similarly robustize tests and confidence intervals for p by 
replacing the moments in y 2 by their sample estimates to obtain y 2 and 
using }fn(r -  p ) / y  — 1). However, these procedures must be used 
with caution; estimates of fourth and cross-second moments have large 
standard error.

Variance-stabilizing Transformations. For normal populations, yfn(r -  
p ) (1 -  p 2)2). We seek a transformation, g(r), such that ]fn(g(r)
—g( p )) —*Ji.0,1). Such a transformation is called variance-stabilizing. 
From Cramer’s Theorem ]fn(g(r) -  g( p )) 0, g(  p)2( 1 — p2)2), so we 
must solve the differential equation

g(  P )2( l  -  P2)2 = 1 or g ( p )  = 1 /(1  -  P2)- 

The solution is known as Fisher’s transformation:

1
s ( p )  =  j r — i d p =  /

1/2 1/2
1

+
1 +  p

1 1 +  p

d p = - lo g -------2 1 — p

also known as tanh 1 p. Therefore,

i
2'tog-,

l + r 1 1 + p 

2  1 —  p

&

EXERCISES

1. Find the asymptotic distribution of the estimate of the regression 
coefficient, ft = sxy/ s \ , when sampling from a bivariate distribution. 
What is its asymptotic variance when sampling from a bivariate normal 
distribution?

2. Find an asymptotically robustized version of the confidence intervals 
for axy.
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3. Find variance-stabilizing transformations for X n when sampling from
(a) the Poisson distribution, ^(A ), (b) the Bernoulli distribution,

4. The usual F  test for the equality of variances of two independent 
normal populations is based on the ratio of the two sample variances, 
s \ / s 2. Show that this test is not asymptotically distribution-free within 
the class of distributions with finite fourth moments, by finding the 
asymptotic distribution of { n ( s 2x/ s 2 — cr2/ c r 2) within this class. Sup­
pose both samples are of size n.
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Pearson’s Chi-Square

In this section we derive the asymptotic distribution of the Pearson x 2 
statistic as another application of the theorems of Slutsky. We first present 
three general lemmas relating quadratic forms in normal or asymptotically 
normal variables to the chi-square distribution. After describing multino­
mial experiments and the Pearson x 2 statistic for testing a simple null 
hypothesis, we present two derivations of the asymptotic distribution of 
Pearson’s x 2 under the null hypothesis. The first, contained in the proof 
of Theorem 9, is based on the matrix theory notions of rank and projec­
tion. The second uses the fact that Pearson’s x 2 ls just a version of 
Hotelling’s T 2 and is postponed to the exercises (Exercise 3). We also 
mention two important variations of Pearson’s * 2, one based on transfor­
mations (Hellinger’s x 2) and the other based on the principle of modifica­
tion (Neyman’s x 2 ° f Exercise 1).

Recall that the x 2 distribution with d degrees of freedom, denoted by 
Xd, is defined as the distribution of Xr X, where X is d-dimensional with 
X Gyf(0,1) [the sum of squares of d independent jK 0, l) ’s].

Lemma 1 . If  X X) with X nonsingular, then

Z = ( X - n ) rS - ' ( X - p )

Proof,: Let Y = X ~ l/2(X -  jjl) .  Then Y e ^ O ,  I) and Z = Yr Y. ■

Lemma 2. If X 1? X2, . . .  are i.i.d. with mean |x and nonsingular covariance 
matrix X, then

T 2 = (n  -  1)(X„ -  tt ) r S„-, (X„ -  n )  £  x l

56
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where S„ is the sample covariance matrix,

S„ = ( l  / n ) E ( X , . - X ) ( X , . - X ) r  
1

Proof. By the Central Limit Theorem, ]fn(Xn — j j i )  ^  Y X) ,  and
by the Weak Law of Large Numbers and Slutsky’s Theorem SM —> 2 . 
Hence by Slutsky, T 2 Y TX ' lY  g  x 2.

Note: T 2 is known as Hotelling's T 2. It is known that if XJ? X2, . . . ,  X„ 
is a sample from ^ tjx , X )  with X  nonsingular, then ((n — d ) / ( n  — 1 )d)T2 
has an exact Fdf n _d distribution.

The characteristic function of the x l  distribution is cp(t) = (1 —
2 i t y d' 2.

A square matrix X  is a projection if 2 2 = X.  (If y = Xx ,  then y is the 
projection of x onto the range space of X.  Further application of X  to y 
does not change it: X y  = X 2x  = X x  = y.) If in addition X  is symmetric, 
the projection is perpendicular onto its range. [That is, y = X x  is perpen­
dicular to x -  y = (I -  X)x: ( X x ) T(J -  X) x  = x TX T(l  -  X) x  = x T( X 2 -  
X) x  =  0 .]

Lemma 3. Let X 0, X).  Then Xr X e  ^  if and only if X  is a 
projection of rank r.

Proof. Since X  is symmetric, there exists an orthogonal matrix Q (Qr Q = I) 
such that D = Q 2 Q r i sa  diagonal matrix. Then,

X 2 = X  and X  has rank r

<=> D2 = D and D has rank r
<=> r of the diagonal elements of D are 1 and the rest 0.

Let Y = QX. Then Y g J (0 ,D )  and Yr Y = XrQ rQX = Xr X. If dj de­
notes the yth diagonal element of D, the characteristic function of Yr Y = 
Ey Y 2 is n / 1  -  2idj t)~{/2, which is equal to the characteristic function of 
Xr2, (1 -  2 it)~r/2, if and only if r of the dj are 1 and the rest are 0. ■

Note: The dj are the eigenvalues of X.  For any symmetric projec­
tion, X,

rank ( 2 ) = trace ( 2 ), 

because both are equal to the sum of the eigenvalues.
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Multinomial Experiments. Consider n independent trials, each resulting in 
one of c possible outcomes or cells and each trial having the same 
probability Pj > o of resulting in outcome j  for 7 = 1 , . . . ,  c. Let n} denote 
the number of trials that result in outcome j  for j  = l , . . . , c ,  so that 
E nj = n. Pearson’s \ 2 is defined to be

To find the asymptotic distribution of this statistic as n -> 0°, we use the 
following vector notation. Let e; denote the j th unit vector in c dimen­
sions (1 in the yth coordinate, 0’s elsewhere), and define the random 
vector X; to be e; if the /th trial resulted in outcome j. Then X v . . . ,  X n 
are i.i.d. with mean vector EX =  p and covariance matrix 2  = cov(X), 
where

2 =  y  (obs -  exp)2 = c (itj -  npj)2 

X cells eXP 1 nPj

and 2  =

P i ( l  ~ P i)
~ P \ P i

P i  P i  

P2O - P 2)
- P l P c

-P2Pc
P =

Pc
P lP c ~ P l P c

and Pearson’s x 1 may be written

where

p x 0 ••• 0
0 p 2 ••• 0

p  =

0 0 Pc

Note that 2  = P — pp7.

Theorem 9
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Proof. From the Central Limit Theorem, / n ( X „ - p ) ^ Y e / ( 0 , S ) .  
Hence, from Slutsky’s Theorem

X2 = ^ ( X „  -  p ) V '  ^ ( X „  -  p) ^  Y7 P -'Y .

To show that Y r P lY e  x 2-^  let z  = p ~l/2 Y> so that z 7 z  = Y TP *Y 
and Z e^KO, P~1/2 D P '1/2). To show that the covariance matrix of Z is a 
projection, replace X by P -  ppr to find that p _1/ 2X P " l/2 =  I -  
P “ 1/2ppr P " ,/2. It is easy to check that this is a projection and has trace, 
and hence rank, c — 1, using the fact that trace(AB) = trace(BA). ■

Transformed x 2- We may extend Theorem 9 by combining it with Cramer’s 
Theorem. We consider differentiable transformations of the form g(x) = 
(gi(*i), . . . ,  gc(xc))T, such that the j th component of the transformation is 
a function only of the yth component of x. As a consequence, the gradient 
g(x) is a diagonal matrix with the derivatives . . . ,  gc(xc) down the
diagonal. As in the proof of Cramer’s Theorem, ]fn(g(Xw) -  g(p)) is 
asymptotically equivalent to yfn g(p)(X„ -  p), so that in Pearson’s x 2-> we 
may replace }fn(Xn — p) by yfn g(p)~l(g(X„) -  g(p)) and obtain the trans­
formed x 2->

x ? = w(s(x «) -  g(p))Tg ( p ) " ' p ~ 1g ( p r 1(g(x„) -  g(p))

f  ( g y ( " y / » )  - 8 j ( P j ) ) 2 #  2
~ n Lu . , x2 Xc- 1 '

i Pjgj(Pj)

Example. Although the variance-stabilizing transformation for the bino­
mial distribution is the arcsin function (Exercise 3 of Section 8), the 
transformation that makes the denominator in Pearson’s x 2 a constant is 
the square-root function. We are led to investigate the transformed x 2 
with g(x) = (y^7, . . . ,  y^7)r . The transformed * 2, with gj(pj) — 0.5/ 

becomes

c 2
xl  =  4 n £ ( y / n y/ n  -  ftj) .

This is known as the Hettinger x 2 because of its relation to Hellinger 
distance. [The Hellinger distance between two densities, f ( x ) and g ( x \  is 
d(f ,  g)  where d(f ,  g )2 = j (y / f {x)  -  y/g(x)  )2 dx.]
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EXERCISES

1. Modified x 2- Pearson’s x 2 may be modified by replacing the expected 
number of observations in the denominator by the observed number. 
The resulting x 2 is known as Neyman’s x 2, Xn-

2 _  v  ( ° b s  ~  e x P ) 2 _  ^  ( n j  -  nP, ) 2
X n  Lmd t

cells °^ S 1 n j

Show that Xn X2- i •
2. Let X I), P symmetric. Show that Xr PX e  *r2 <=> P is a projec­

tion of rank r.
3. Alternate Proof o f Theorem 9. Define the (c -  l)-vector Y, to be X/ with 

the last component deleted, let q denote p with the last component 
deleted, and let <I> denote X with the last row and column deleted. 
Show the identity

Pearson’s \ 2 =  n(y n ~ <l)7'® " 1(Y/l -  q)*

Thus, Pearson’s \ 2 is just a version of Hotelling’s T 2, and we may 
conclude Theorem 9 directly from Lemma 2. (Let Q denote P with the 
last row and column deleted. Show <I> = Q -  qqr  and <1>-1  = Q -1  + 
1 • 1 T/ p c, where 1 denotes the (c -  l)-vector of all l ’s.)

4. What is the transformed \ 2 f°r the transformation that replaces each 
cell frequency by its logarithm? What is the modified transformed \ 2 
for this transformation?
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Asymptotic Power of the Pearson 
Chi-Square Test

It is important to be able to judge the sensitivity of the x 2 test 
distinguishing the null hypothesis from nearby alternatives. We would like 
to find the probabilities of rejecting the null hypothesis when some 
relevant alternatives are true; that is, we would like to find the power 
function of the test. In this section, we find an asymptotic approximation 
to the power function based on the noncentra] x 2 distribution. In addition 
to allowing us to measure the sensitivity of the test, this approximation 
helps solve the important problem of finding the sample size required to 
obtain a fixed power at a fixed alternative for a given level of significance. 
The Fix Tables (Table 3) for noncentral x 2 are *n a convenient form for 
solving this problem for levels 0.05 and 0.01.

Consider a multinomial experiment consisting of n independent trials 
with c possible outcomes having probabilities P \ , - - , P C as in Section 9. 
Let Pi , . - - , Pc  be a given set of probabilities with p f >  0 for all j  and 
with i l \p j  = 1, and consider testing H0: pj = p f  for j  = l , . . . , c .  The 
goodness-of-fit test based on Pearson’s x 2 rejects H0 if

2 = V  ( ° bs ~ eXP)2 = y  ( n) ~ nP ? f  
X cells eXP 1 "Pj

is too large, where denotes the number of trials that resulted in

61



Table 3. Fix Tables of Noncentral \ 2. The quantity tabled is that value of the 
parameter A that satisfies the equation

00 Xk °°
- ( A / 2 )  y  ___________________________________  f  x / + 2 * - l  - ( l / 2 ) x 2 J  =  O

kh k l 2 ^ f ^ r ( f / 2  + k)JXfMX ** P’
where /  = number of degrees of freedom and Ay(a) is such that

--------- ---------- f°° xf~le~{]/1)x2 dx= a
2^ f - ' r ( f / 2)JXf(a)

a = 0.05
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
2
3
4
5

6
7
8 
9

10

11
12
13
14
15

16
17
18
19
20

0.426
0.624
0.779
0.910
1.026

1.131
1.228
1.319
1.404
1.485

1.562
1.636
1.707
1.775
1.840

1.904
1.966
2.026
2.085
2.142

1.242
1.731
2.096
2.401
2.667

2.907
3.128
3.333
3.525
3.707

3.880
4.045
4.204
4.357
4.501

4.646
4.784
4.918
5.049
5.176

2.058 
2.776 
3.302 
3.737 
4.117

4.458
4.770
5.059 
5.331 
5.588

5.831
6.064
6.287
6.502
6.709

6.909
7.103
7.291
7.474
7.653

2.911
3.832
4.501
5.050
5.529

5.957
6.349
6.713
7.053
7.375

7.680
7.971
8.250
8.519
8.777

9.027
9.269
9.505
9.734
9.956

3.841
4.957
5.761
6.420
6.991

7.503
7.971
8.405
8.811
9.194

9.557
9.903

10.235
10.554
10.862

11.159
11.447
11.726
11.998
12.262

4.899
6.213
7.154
7.924
8.591

9.187
9.732

10.236
10.708
11.153

11.575
11.977
12.362
12.733
13.090

13.435
13.768
14.092
14.407
14.714

6.172
7.702
8.792
9.683

10.453

11.141
11.768
12.349
12.892
13.404

13.890
14.353
14.796
15.221
15.631

16.027
16.411
16.783
17.144
17.496

7.849
9.635

10.903
11.935
L2.828

13.624
14.350
15.022
15.650
16.241

16.802
17.336
17.847
18.338
18.811

19.268
19.710
20.139
20.556
20.961

10.509
12.655
14.172
15.405
16.470

17.419
18.284
19.083
19.829
20.532

21.198
21.833
22.440
23.022
23.583

24.125
24.650
25.158
25.652
26.132

a  =  0.01

/  p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 1.674 3.007 4.208 5.394 6.635 8.004 9.611 11.680 14.879
2 2.299 3.941 5.372 6.758 8.190 9.752 11.567 13.881 17.427
3 2.763 4.624 6.218 7.745 9.311 11.008 12.970 15.458 19.248
4 3.149 5.188 6.914 8.557 10.231 12.039 14.121 16.749 20.737
5 3.488 5.682 7.523 9.265 11.033 12.936 15.120 17.871 22.033

6 3.794 6.126 8.069 9.899 11.751 13.738 16.014 18.873 23.187
7 4.075 6.534 8.569 10.480 12.408 14.473 16.831 19.788 24.238
8 4.337 6.912 9.033 11.019 13.017 15.153 17.589 20.636 25.211
9 4.583 7.267 9.469 11.524 13.588 15.790 18.297 21.429 26.122

10 4.816 7.603 9.880 12.000 14.126 16.391 18.965 22.177 26.981

11 5.038 7.922 10.271 12.453 14.638 16.961 19.599 22.887 27.797
12 5.250 8.227 10.644 12.885 15.126 17.505 20.204 23.563 28.575
13 5.453 8.520 11.002 13.299 15.594 18.027 20.784 24.211 29.319
14 5.649 8.801 11.346 13.698 16.043 18.528 21.341 24.833 30.034
15 5.838 9.072 11.678 14.082 16.476 19.011 21.878 25.433 30.722

16 6.021 9.335 11.999 14.454 16.895 19.478 22.396 26.013 31.387
17 6.198 9.590 12.310 14.814 17.301 19.930 22.898 26.574 32.031
18 6.371 9.837 12.612 15.163 17.695 20.369 23.385 27.118 32.655
19 6.539 10.078 12.906 15.502 18.078 20.796 23.859 27.647 33.262
20 6.702 10.312 13.192 15.833 18.451 21.211 24.320 28.162 33.852
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outcome j. Under H0, this statistic has approximately a \ c - \  distribution 
when n is large.

If some alternative p = ( p {, . . . ,  p c) =£ ( /??, . . . ,  p °) = p° is the true 
value of the parameter, then the probability of rejecting / /0, using this test 
with a fixed size a , tends to 1 as « -> oo. To obtain an approximation to 
the power, we fix p and consider a sequence of null hypotheses, say H0(n ): 
p = p®, where p® = ( / ^ , . . . ,  /?^c)r  is a fixed sequence of values converg­
ing to p at rate 1 /  ]fn, say pJJ = p -  (1 /  i^T)& for some fixed vector 
8 = (Sl5. . . ,  8c)t . Note that because both p and pj| are probability vectors, 
we have £*St =  0. We show that the limiting distribution of the above x 2 
statistic is a noncentral x 2 distribution with c — 1 degrees of freedom and 
noncentrality parameter

The noncentral x 2 distribution with d degrees o f freedom and noncentral- 
ity parameter A = 878, denoted by x%( A), is defined as the distribution of 
Z  = X7X, where X e*/f(8,I) is a rf-dimensional vector. (It should be first 
noted that this distribution depends on 8 only through A = 8r 8.) We 
need the following generalization of the important half of Lemma 3 of 
Section 9.

Lemma. Suppose X 8, 2). If X is a projection o f rank r, and 2 8  =
8, then X TX e  *r2(8T8).

Proof. Find Q orthogonal such that D = Q 2 Q 7 is diagonal. Then D is a 
projection of rank r , so that r of the diagonal elements of D are ones and 
the rest zeros. Assume that Q has been chosen so that the first r diagonal 
elements of D are l ’s. Let Y = QX. Then Y g ^ Q 8, D) and Yr Y = Xr X, 
and DQ8 = Q 2 Q r Q8 = Q 2 8  = Q 8. The Yj are independent normal 
with variance 1 for j  = 1 , . . . ,  r and variance 0 for j  = r + 1 , . . . ,  d. Since 
Q 8 = DQ8, the last d -  r components of E Y are zero; thus, Yr+l, . . . , Y n 
are identically zero, so that Y7Y = Yj2 + ••• +Yr2. Moreover, the sum of 
squares of the means on the first r components is then (Q8)r (Q 8) = 
87Qr Q 8 = 878. Thus, Y7Y e  ^ 2(878). ■

c c

’nj-

The converse to this lemma can be proved, as for Lemma 3, Section 9, 
using characteristic functions.
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T h eorem  10. Let  p be the vector o f true cell probabilities, and let 8  =  
P ~  P°X Then

n J

where A = EJ &j/Pj-

Rem ark. There is a simple, easily remembered principle embodied here, 
namely that the noncentrality parameter may be found by replacing the 
observed frequencies, r i j / n ,  in Pearson’s x 2 by the expected values, p..

Proof. As in the proof of Theorem 9, let

2  =  P -  PPr,

r “i Pi 0 ••• 0 "

Pi 0 Pi ■•• 0
: , p = ;

Pc 0 0 •
"  Pc.

0 Pnl 0 0 ’

p° =

Pnl

IIPu*

0 Pnl • 0

P°rnc 0 0 pOFnc

and

X„ =

/ij /n

nc/ n

Then, V^(Xn -  p°) = ^ ( X „  -  p) + 8 ^  Y e^K S, 2 )  and P„° -> P. 
Hence from Slutsky’s Theorem,

X2 = V^(x„ -  p«)7'p„°-1̂ ( X „  -  p°) YP Y.

Let Z = P~ 1/2 Y. Then ZrZ = Y r P -1Y and

Z g ^ ( P - 1/28 ,P " 1/22 P ‘ 1/2) = J \ P - I/28 , I  -  P ' 1/2ppr P ~ ,/2).
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As in Theorem 9, I — P 1/2ppr P 1/2 is a projection of rank c — 1. In 
addition, (I -  P“ ,/ 2ppr p - ,/ 2)P“ >/28 = P 1/28 -  P 1/2pprP !8 = 
P_1/28, since pr P -18 = E^ = 0. Therefore, the theorem follows from 
the lemma. ■

Example. A die is tossed 300 times. Let / / 0 denote the hypothesis that all 
faces are equally likely, H0: /?, = £ , /  = 1 , . . . ,  6. To test / / 0, the x 2 test 
would reject H0 if * 2 = E? («y- -  50)2/5 0  were too large, where /iy is the 
number of times that face j  turned up. At the 5% level, we reject H0 if 
X 2 > 11.07, and at the 1% level, we reject H0 if x 2 > 15.09. What is the 
approximate power at the alternative p x =  p 2 = 0.13, p 3 =  p 4 = 0.17, 
Ps = Pe = 0-20? We compute the noncentrality parameter, A = E^ & 2/Pj  
or A° = E^ 8 2/pf -  (They are asymptotically equivalent.) Since 8 = yfn(p
-  p°), we have A° -  E? n(Pj -  p f ) 2/ p f ,  and

n(p ,  - P ?)2 n ( p 2 - p l ) 2 300(0.13 -  j ) 2

p °  p I ?  

» ( P 3 - / > 3 ° ) 2 =  n ( p *  - P a ) 2 =  

Pi  Pa 

n { P s - P ° s ) 2 n ( p 6 - p 06 f  ^ 

P°s P6°

Hence, A «= 2.42 + 2.42 + 0.02 + 0.02 + 2.00 + 2.00 = 8.88. From the Fix 
Tables (Table 3) of noncentral ^ 2, we find power approximately 0.61 at 
the 5% level, and power approximately 0.38 at the 1% level.

Approximately how large a sample size is needed to obtain power 0.90 
at this alternative when testing at the 5% level? We must increase n so 
that A = 16.470. Solving ( n / 300) 8.88 = 16.470, we find n approximately 
556.

EXERCISES

1. In a multinomial experiment with sample size 100 and 3 cells with null 
hypothesis H0: p x = p 2 = p 3 = what is the approximate power 
at the alternative p x = 0.2, p 2 = 0.6, p 3 = 0.2 when the level of signifi­
cance is a  = 0.05? a  = 0.01? How large a sample size is needed to 
achieve power 0.9 at this alternative when a  = 0.05? a  = 0.01?
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2. (a) Show ^ (A )  has mean r + A and variance 2r + 4 A.
(b) Show [ ^ ( A )  — (r + A)]/ ]/2r + 4A 0,1) as max(r, A) -* oo.
(c) Assuming (b), compare the value of A given in the Fix Table for 

a  = 0.05 and /3 = 0.5 and r = 20, with the asymptotic value.
3. Show that the transformed \ 2 has the same (first-order) power as 

Pearson’s x 2; that is, show

2 £  (gj (ni / n) ~ g j {Pni ) f  X  2 / \ \

1 P n MP n j )

as n -> ooy where A = T%8?/Pj.
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Stationary m-Dependent Sequences

In this section we prove a theorem that allows us to show asymptotic 
normality for sums of random variables for certain statistical problems 
with a limited amount of dependence between the variables. A sequence 
of random variables, Yl9Y29. . . 9 is said to be m-dependent if for every 
integer, s > 1, the sets of random variables (Yl9 . . . , Ys} and 

1 > ^n+5+2 > •) are independent. (For m = 0, this is equivalent to 
independence of the sequence.)

A sequence of random variables Yl9Y29...  is said to be ( strict sense) 
stationary if for any positive integers s and t9 the joint distribution of the 
vector (Yt9. . . ,  1^+J) does not depend on t. In other words, a sequence is 
stationary if the distribution of a sequence of any s consecutive observa­
tions does not depend on the time one starts observing.

We are interested in the asymptotic distribution of Sn = Yt for a 
stationary, m-dependent sequence of random variables Y , ,  Y2, . . .  . Such a 
sequence arises in time-series analysis, for example, in computing the 
asymptotic distribution of the autoproduct moment at lag m 9 which is 
defined for a sequence of random variables, X l9X 2, - . .  as Sn/ n  =  
(1 /ri)Y?i=i X iX i+m. If the X f are assumed to be i.i.d., then the sequence, 
Yt = X iX i+m forms a stationary m-dependent sequence.

Let the mean of the Yt be denoted by fx = EYt the variance by
000 = vaKF,), and the covariances by a 0i = cav(Yt9Yt+i). These quantities 
are independent of t due to the stationarity assumption. Also, tr0/ = 0 for
1 > m from m-dependence. The mean and variance of Sn are easily found

69
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to be ESn = n/x, and for n > m
n n

v a r ( 5 J -  E  E  cav(Yi9Yj)

= azctqo + 2(/i -  l)<r01 + 2(/i -  2 )cr02 + — + 2 ( n  -  rn)<r0m.

(1)

We have var(Sn) / n  a 2, where

°"2 ~ o’m + 2 cr01 -b 2 a Q2 + + 2 <r0m. (2)

For large the distribution of Sn/ n  is approximately normal with mean 
/x and variance a 2/ n , as in the following theorem. For an extension to a 
special stationary sequence without the assumption of m-dependence, see 
Exercise 7.

Theorem 11. Let F 1? Y2, . . . ,  be a stationary m-dependent sequence with 
finite variance and let Sn = Yv Then

where (i = EY{, and a 2 is given by (2).

Before presenting the proof, we give a useful lemma. First note that we 
may assume without loss of generality that /z = 0, because we can work 
equally well with Y} — /z. The method of proof involves splitting the sum 
Sn into two parts, one a sum of independent terms to which the Central 
Limit Theorem may be applied, and the other a hopefully negligible 
dependent part. Take n very large and break Sn into s pieces of length 
k  + m, where k > m. Write n =  s(k  + m) + r, where r is the remainder,
0 < r < k + m. Let Sn = S'n + S"n + R n, where

(5n - £ 5 „ ) / ( v a r ( 5 „)),/2 0,1),

or, equivalently,

] /n(S„/n -  fi) a 2),

r

s; = E vkj, 5: = E Wkj, and Rn = I l Y^k+m), i
i  =  1

where

and Wkj = E  ^(*+m)+«-
i = k + 1
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Then the V*j, for j  — 1 , . . . ,  s , are i.i.d. random variables with distribution 
depending on k. For k fixed and s large, S’n has an approximate normal 
distribution with mean 0 and variance var(,Sp = s var(5*). The theorem 
would follow if the other terms are negligible and we could take the limit 
first as « 00 and then k -» oo. This requires that the piece involving Snn 
be negligible uniformly in n as k -> oo. For this purpose the following 
lemma is used.

Lemma. Suppose Tn = Z nk 4- X nk for n = 1 ,2, . . .  and k = 1,2 , . . .  . If
p

(1) X nk —> 0 uniformly in n as k -> oo5
(2) Z„k —> Z k as n -> oo? for each k , and
(3) Z k Z & s k —* oo, then

r r  r yTn —> Z as n -> oo.

Proq/I Let e > 0 and let z e  C(FZ), the continuity set of Fz . Find 8 > 0 
such that P(\Z — z | < 8) < e and such that z + 8 and z — 8 are in the 
continuity sets C(FZ) and C(FZk) for all From condition (1), we may 
find K  such that P(\Xnk\ > 8)  < e for all k > K  and all n. From 
condition (3), we may find K' > K  such that for k > K \  \P(Zk < z  4- 8)
-  P( Z  < z + 5)| < e and |P ( Zk < z  -  8)  -  P ( Z  < z — 8)| > e. Now fix 
k > K'.

P(Tn < z) = P ( Z nk 4- X nk < z)

< P ( Z nk < z + S)  + P( \ Xnk\ > S)

^  P ( z nk <  2 +  5 )  +  e .

Now apply condition (2):

lim sup P(Tn < z )  <, P ( Z k < z  +  8)  + e
n

< P ( Z  < z  4- 5) 4- 2e

< P ( Z  < z) 4- 3e.

Similarly,

P(Tn < z )  = P ( Z nk+ X n k < z )

> P ( Z nk < z  -  8)  -  P ( \ Xnk\ > 8)

> P ( Z nk < z -  8 )  -  e,



72 A Course in Large Sample Theory

and
lim inf P(Tn < z )  > P ( Z k < z  -  8)  -  s

n

> P ( Z  < z  — 8)  — 2s

> P ( Z  < z )  — 3e.

Since this holds for all e > 0, we must have limw P(Tn < z)  = P (Z  < z).

Proof of Theorem 11. We let Tn = Sn/  }fn, Z nk = (S'n + Rn) /  {n , and
Xnk = Sn/  so ^ a t

S„ 51 + R.  s :

n yfc f t  f t

and we check the conditions of the lemma. First note from the Central 
Limit Theorem that for fixed k , S'n/ 4 s  ^JX0,vair(Sk)). Then, since 
s / n - > k 9 we have S'n/  {n  = ({s  /  yfn)S'n/  yfs ^K0, var(Sk)/k) .  The 
term R n/  4n has mean 0 and variance var(Sr) /n.  Now all covariances 
are bounded by the variance, |cr0; | < cr00 [var(lp = cr00 for all t 
and the correlation is bounded by 1], so var(7?w/  }fn) < r 2a m/n  < 
(k + m )2a m/n  -» 0 for fixed k. Thus Rn/  yfii 0, and hence Z nk 
has the same limit law as S'n/  { n , namely, Z nk —> Z k g ^ O ,  var(Sk) /k) .  
Thus condition (2) is satisfied. Moreover, since var(Sk) / k  -> cr2 as k -> °°, 
we have Z k Z  e ^ O ,  a 2), and condition (3) is satisfied.

To check condition (1), we note that var(Xnk) = s var(Sm) / n  < 
var(Sm) / k ,  independent of n, and by Chebyshev’s inequality, P(\Xnj\ > 8 )
< var(Xnk) / 8 2 < var(Sm) / ( k 8 2) -> 0 as k -> uniformly in ■

Application to the mth product moment. As an application, let us find the 
asymptotic distribution of Sn = E”=1 X iX i+m, for an i.i.d. sequence 
X 0, ATj, • * • w^h tnean fx and variance t 2. Then, Y) =  X iX i^m forms 
an ra-dependent stationary sequence so that the theorem applies. The 
mean of the Yt is EXiX i+m =  /jl2 and the covariances are

crQj — cov( X Q X m, X j X J +m) — E X q X m X j X j + m

°oo =  ( r 2  +  A*2 ) 2 -  /x4 =  t 4 +  2 t V ,

^ 0m = Â2( t 2 + p?) -  P4 = r V ,

(70y = 0, for j  #  0, j  =£ m.

4
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Hence by the theorem, ] /n(S„/n — fj?) cr2), where

0-2 =  O'oo +  2 o 0m == T4 +  4 t V -

EXERCISES

1. Success runs. Consider a sequence of i.i.d. Bernoulli random variables 
X 0, X x, . . . ,  with probability p  of success, P (X  = 1) = 1 -  P (X  =  0) 
= /?. For j  > 1, we say a run of successes begins at j  if X} = 1 and

, = 0. Let Yj■ = (1 -  denote the indicator of the event that
a run starts at j. Then Sn = Kj + ••• + Yw denotes the number of runs 
of successes in the first n trials. We are interested in the asymptotic 
distribution of the number of success runs, and to simplify the algebra 
we have omitted the run, if any, that begins at the zeroth trial, because 
that will not affect the asymptotic distribution. Find the mean and 
variance of Sn. What is its asymptotic distribution?

2. Runs o f length r. In a sequence of i.i.d. Bernoulli trials, X 0, X x, X 2, . . .  
with probability p  of success, a run of length r is a string of r 
consecutive l ’s preceded and followed by zeros. Let Zy denote the 
product Zy = (1 -  Xj _x)X} -  X} , r_x(\ -  Xj+r). Then Sn = Z x + 
••• + Z n represents the number of runs of length r in the sequence 

X 0, . . . ,  X n+r. Note that the Zy form an m-dependent stationary se­
quence (for what ml).  Find the asymptotic distribution of Sn.

3. Badminton scoring. Let X 0, X x, . . .  be a sequence of i.i.d. Bernoulli 
trials with probability p of success. Your side scores a point each time 
you have a success that follows a success. Let Sn = , X t _, X t denote 
the number of points your side scores by time n. Find the asymptotic 
distribution of Sn.

4. Autocovariance. Let X {, X 2, . . .  be i.i.d. random variables with mean jjl 

and variance r 2. (a) Find the joint asymptotic distribution of Xn = 
( l / « ) E t i  an4.Zn = ( l / n ) L ? =z{ X iX i+x. (Hint: Find the asymptotic 
distribution of aXn + bZn for all a and b, and apply Exercise 2 from 
Section 3.) (b) Find the asymptotic distribution of the autocovariance,

-  x l
5. Runs o f increasing values. Let X 0, X x, X 2, . . .  be i.i.d. random variables 

from a continuous distribution, F(x).  Let Zy be one if there is a 
relative minimum at /, ad zero otherwise; that is, Z; = l {Xj_x > Xj <  
Xj+x}. Then Sn = £y=1 Zy represents the number of relative minima in 
the sequence X 0, X x, . . . ,  X n+,. It is also within one of the number of 
runs of increasing values in X 0, X x, . . . ,  X n+,, because, except for the 
possible run starting at zero, a run of increasing values begins at j  if 
and only if Z- = 1. Sn may be used as a statistic for testing the null
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hypothesis of randomness of a sequence. Find the asymptotic distribu­
tion of Sn.

6. Autocorrelation. Let X x, X 2, . . .  be a sequence of i.i.d. random vari­
ables with finite fourth moment. Let us define the autocorrelation of 
lag 1 based on the first n + 1 observations to be

( 1 / n )  £x,X,+1 -Xl
_ _____ i = 1____________

(i/« ) £  xf - xl
i= 1

Assume the mean of the distribution of the Xj  is zero. (The limiting 
distribution of rn does not depend on this assumption.)
(a) Let Z, = (X„ Xf ,  X tX l+l)T and show i/^(Z„ -  |i)  2 ),

where

' 0 ' V /*3
\

0
^  = o-2 and 2  = ^3 fi4 -  a-4 0

0 J , 0 0 O’4;
§..

(b) Show yn rn 1). It is interesting to compare this robustness of
the autocorrelation with the drastic nonrobustness of the correla­
tion coefficient found in Section 8.

7. Let . . .  9X _ l9 X 0, X l9. . .  be a sequence of unobservable i.i.d. random 
variables with mean £ and variance t 2, and let . . . ,  z_,,  z0, z l9. . .  be a 
sequence of real numbers such that E ^ k y l  < °°. The observations are 
Yt = E /J U  ZjXt_j for t = 0 ,1 ,2 , . . .  . Although not m-dependent for 
any finite m 9 they form a stationary sequence with mean /i, = EYt — 
£ E/T-oo and covariances

+ 00
<r0, = cov(y0, l^)  = r 2 £  ZjZt+j.

7 =-00

Let S„ = E-., y(.
Show that ]fn(S„/n -  pi) -S./K0, <r2), where

oo

0-2 = o'oo + 2 E <7or
,=,1

[Hint: The truncated version of Y„ Y,<k) = T.m&k is a (2A:)-
dependent stationary sequence to which Theorem 11 applies. Let 
S(nk) =  E"=i Y'(k> show that Sn — S k̂) 0 uniformly in n as k -* 
and use the lemma of this section.]
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Some Rank Statistics

Let R Nl, R N2, . . . ,  denote a random permutation of the integers 1 
through N, with each of the Nl  permutations being equally likely. In this 
section, we investigate the asymptotic distributions of sums of functions of 
the form

N
SN = £  z NjaN( R Nj),  (1)

where z NU. . . ,  z NN and aN( 1) , . . . ,  aN( N )  are given sets of numbers. To 
simplify the notation, we will usually drop the subscript N  for z, a, and R , 
and so write

(! ')

For most of the discussion to follow, N  is fixed and no confusion will 
result. When we let N  tend to infinity, we will remind you that the 
distribution of R depends on N  and that z and a may depend on N.

Note that the distribution of SN in (1) is unchanged if we reorder all 
subscripts. Thus, we may assume without loss of generality that the a( j ) 
(or the Zj or both) are arranged in increasing order. Similarly, the 
distribution of SN is unchanged if we interchange a( j ) and z; , because we 
may write SN = i a( j ) z R'? where /?' is the inverse permutation of Rf, 
that is, Rj = i iff R\ = j . From this, we expect the conditions for asymp­
totic normality of SN to be symmetric in z and a.

75
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Example 1. Sampling. Suppose that a random sample of fixed size n >  1 
is drawn from a population of values {z,,. . . ,  z N} without replacement. If 
SN denotes the sum of the sampled values, then SN may be written in the 
form ( 1), where

/ l ,  for 1 < j < n ,
\ 0, for n + 1 < j < N .  ^

This is equivalent to including Zj in the sample if in a random permuta­
tion, jRj, R 2, . . . ,  R n , of 1, . . . ,  N, we have Rj < n. We may use SN/ n  to 
estimate the population mean, or NSN/ n  to estimate the population total.

Example 2. The Two-Sample Randomization t-Test. In the two-sample 
problem of comparing treatment and control, a set of N  experimental

units is given and a set of size m < N  is chosen at random, all |  ^  j
choices being equally likely. Members of this set of size m receive the 
experimental treatment and the remaining n = N -  m units serve as 
controls. Let X l, . . . , X m denote the outcomes of the treatment group, 
and let Yl9. . . 9Yn denote the outcomes of the control group. The usual 
test of_the hypothesis of no treatment effect is based on the statistic 
X m - Y n divided by some estimate of its variance. The randomization test 
is done conditionally on the values of the observations and is based only 
on the randomization done by the statistician. If the values of X {, . . . ,  X m, 
Yl, . . . , Y n are denoted by z l9. . . ,  z N, then by virtue of the randomization, 
each of the subsets of size m is equally like to be X l9. . . ,  X m. The statistic 
X m — Y„ may then be written in the form (1) if we define

/  l / m ,  for 1 < j < m ,
a[ ] )  1 - 1  / » ,  for m +  l < j < N .

Example 3. The Rank-Sum Test. The Wilcoxon rank-sum test is similar to 
the randomization t test, but the actual values of the observations are 
replaced by their ranks in the ranking of all N = m + n observations. 
Instead of using the difference of the mean ranks, it is customary to use 
the sum of the ranks of the treatment observations. The rank-sum statistic 
under the hypothesis of no treatment effect may be written in the form (1 ), 
where
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Example 4. Randomization Test against Trend. When observations 
X {, . . . , X N are taken sequentially, one is often interested in testing 
randomness against a tendency of the observations to increase (or de­
crease) in time. A simple test statistic for use in this problem is based on 
the product moment of the observations with time, SN = E j l , jXj.  As the 
null hypothesis in the randomization model, it is assumed that the obser­
vations are put in random order, all TV! orderings being equally likely. This 
leads to a statistic of the form ( 1), where the z; are the values of the 
observations in some order, and a(j )  = j.

Example 5. Spearman's Rho. Another nonparametric model for testing 
against trend arises if, in the randomization test against trend, the obser­
vations are replaced by their ranks. The resulting statistic is SN =  Ey=I jRj,  
where Rj is the rank of the yth observation. This is related to Spearman’s 
rank correlation coefficient, pN, which is defined as the correlation coeffi­
cient between the time of observation and the rank. Because both have 
mean ( N  + l ) / 2  and variance ( N 2 -  1)/12, the correlation coefficient
may be written pN = 12[(l/A^)Ey/v=J jRj -  ( (N + l ) / 2 )2] / ( N 2 -  1). This
statistic and Kendall’s r  (see Exercise 7 of Section 5) are competitors used 
for measuring the agreement of two rankings of N  objects.

Example 6. The Hypergeometric Distribution. If

then the statistic (1) has a hypergeometric distribution, <%in, m, N).

Asymptotic Normality. The remarkably simple theorem, presented below, 
giving conditions under which the statistic (1) is asymptotically normal, 
stems from the work of Wald and Wolfowitz (1944), Noether (1949) and 
Hoeffding (1952). Our treatment follows the method of Hajek (1961), 
which gives the result as an application of the Lindenberg-Feller Theo­
rem. See the book of Hajek and Sidak (1967) for a fuller account and for 
generalizations.

for 1 < j  < m ,
for m + 1 <7  < N, (5)

and

for 1 < j  < n, 
for n + 1 < j  < N,



First we compute the mean and variance of the statistic Sn given in (1). 
Note that the means and variances of the a(Rj)  are

Ea( Rj)  = i \ / N ) £  a( i )  = aN
i= 1

and

var(a(R j)) = ( 1 / N )  £  (a( i )  -  a Nf  = aa2,
i=  1

independent of j. We use zN = (1 /./V) ! Zj to denote the mean of the 
zy, and cr22 = ( l/A r)E y/l 1 (zy -  zN)2 to denote the variance.

Lemma 1. ESjy == Nzpjttjy, cifid

N 2 , ,
varS"  = ~n ~ [ (T* (T‘‘ ■ ( 6)
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Proof.

N  N

ESn =  £  ZjEa(Rj )  =  Y , Z j a N = N z Na N. 
y - i  y—l

Note that cov(a(/?J), a(Rk)) for y & is independent of y and A:. Since 
P ( R { = /, /?2 = j )  =  l / ( N ( N  -  1)) for all i #  y, we have

1
co v (a (/? !),f l(^ 2)) = [ y L  L W O  - s * ) (« ( ; )  - « w)

■ “  N ( N -  1 ) , 5 W 0  “  Sn)I
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From this, the variance of SN is

N

=  E z? var a (
1

N

II T . z J -
.7=1

"fe­ll I > 2 -

J* k

}*k

T . z ? ------------( H z . )  + ---------H z 2‘- I  N  -  I t-1 j

N 2 ,  ,

■
To prove the asymptotic normality of SN, we find a related sum S'N of 

independent random variables to which the Central Limit Theorem ap­
plies and show that the normalized versions of the sums SN and S'N are 
asymptotically equivalent.

For this purpose, Let U{, U2 , . . . ,  UN be i.i.d. ^ ( 0 , 1 )  random variables, 
and let R} denote the rank of Uj in the ordering of I / , , . . . , UN from 
smallest to largest. Then ( R {, . . . ,  R N) is a random permutation of the 
integers 1 through N  and may be used in (1). Moreover, R j / N  should be 
fairly close to Uj. [One can show corr(Ujy R j / N )  -> 1 as n  -> «>.] Thus we 
may hope that in replacing the R} in the sum (1) by [NUj] to obtain a sum 
of independent identically distributed terms, we have not changed the 
value of the sum much. We note

N

SN — ES n =  E  ( zj ”  * w ) ( a ( ^ ; )  ~~ **n ) ’ 
y-i

and define

S’N =
7-1

Then ES'N = 0, and

var(S^) = E  ( zj - z w ) 2var(a (/? ,)),
1

(7)



since the \NUj] are i.i.d. with the same distribution as R x, namely, the 
uniform on the integers from 1 to N. The normalized versions of s N and 
S'N are asymptotically equivalent if their correlation tends to one (Exercise
4 of Section 6). We first reduce the correlation to a simpler form.

Lemma 2. Cort(SN,S'N) =  ^ N / ( N  -  1) corr(a(^,),a([/W ,D ).

Proof.

cov(SN, S ’N) =  £  £  ( Z j  ~ z N) ( z k - z N) c o v ( a ( R j ) , a ( \ NUk])).
j = \  k  =  1

The value c x = cov(a(Rj),  a(\NUj])) is independent of j  and the value 
c2 =  cov(a(Rj),  a(\NUk])) for j  & k is independent of j  and k. We find

N N N
COV(SN, S'N) = C { 5 3  (z;- — Z N )  + c2 X I  H  ( Z ;  — Z n ) ( Z & —  Zn)

7 - 1  7 =  1 * - 1

= (c, -  c2) E  (zy - z Nf .  (8)
/*= i

Since Ej l j  a(/?;-) is a constant,

0 = covj £ a ( r t y) , a ( [ M / Al)] = £  cov(a(K; ), a(f NUk]))
U = i  I  j - 1

= c, + ( yv -  i ) c2.

This shows that c2 = —c x/ ( N  -  1). Substituting this into (8), we find

Ncx *  2COv(SN, S’N) = £  (zy -  z„) .

Using the variances found in (6) and (7), we have

co n ( S N, S ’N) = y l N / ( N  — 1) corr(a(7?,),a ( [ NUx 1)). ■

We wish to show that corr(SN, S'N) tends to 1, and since

£ ( a ( K , )  - ^ [ A T i / .D f /v a r ^ T ? ,) )  = 2(1 -  corr(«(/?,), A î7,1))),

it is sufficient to show E(a(Rx) — a( \NUX]))2/ var (a(Rx)) -> 0. The follow­
ing lemma of Hajek (1961, Lemma 2.1) gives a bound for this quantity. 
Although this result is valid in general, we give the proof only for the 
important special case of a(j )  given by (2). This allows treatment of

80 A Course in Large Sample Theory
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Examples 1, 2, 3, and 6 above. The other important special case, a( j ) = j  
found in Examples 4 and 5, is treated in Exercise 3.

Lemma 3 (Hajek). Assume that a(j )  is monotone. Then

.2 2l/2" / " £ ,  , . x _  ,2
E ( a ( R l) - a ( \ N U i ] ) )  < —— max |« ( ; )  -  aNU £  («(i )  -  aN) .

N J V

Proof. For the a(j )  of (2), we have max; \a(j) — aN\ = max{n/N,  (n — 
N ) / N ] ,  and E jL\(a(i) — aN)2 = n((n -  N ) / N \  so we are to show

2 2^2 f n n 
£(«( /? , )  - « ( f M / , 1)) ^ l T maX\ N ’ 1 - N

We show the slightly stronger

E { a ( R {) -  a ( [ M / , l ))2 < ^ [ n ( l  -
1/2

We compute this expectation conditionally given the order statistics, 
t/(i) < J7(2) < < U(Ny The key property is that the ranks ( R x, . . . ,  R N) 
are independent of the order statistics t/(<) = (t/(1), . . . ,  U{N)). (Given the 
order statistics, the actual ranking of the Uj is equally likely to be any of 
the N\  rankings.) Note that if R x is the rank of £/,, then U{ = U(R y Thus,

E(« (R .)  l))2 = £ [ £ { (« ( / ? , )  - a ( f W (Ri)D ) 2|(/()}]

O / A O E  ( a ( j )  - « ( [ O T /(/)]))2
;= 1

Each of the terms of the sum S = E7AL1(«(y) — aQNU^]))2 is 1 or 0, and S 
represents the number of discrepancies. If there are exactly n Uj’s less 
than n / N , then S is zero; but as this number increases or decreases by 1,
S increases by 1. Thus, S = \K — n\,  where K  is the number of Uj < n / N.  
K  has a binomial distribution with sample size N  and success probability 
n/ N.  Hence,

E ( a ( R l) — a ( [ M /,]))2 =  { \ / N ) E [ \ K  -  n\]

< ( 1  / N ) ( E { K  -  n ) 2) l/1

( \ / N ) ( n { N  -  n ) / N ) 1/2
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We are now in a position to let N  tend to infinity, so we return the 
subscript N  to the notation.

Theorem 12. If

2 2 max( z Nj -  z N) max ( a N( j )  -  aN)
8 „ = N - i --------------------- j,------------------------- >0, (9)

£  i.z Nj—zn ) £  ( flw(y) — qn )
7 =  1 7 - 1

(SN £ 5 Ar)/(v a r(S N)) /  —̂ ^ ( 0, 1 ).

Proof. First we note that (9) implies that

-  \2max ( a N( j )  -  aN)

w------------------------- >o>-  \2

since

L  ( aN( j )  ~ «jv) 
y'=i

m ax(z„, - z N)2
N - k

N  2 
X )  { Z N j  Z / v )

7 - 1

is bounded. Assuming without loss of generality that a( j ) is nondecreas­
ing, this together with Lemma 3 implies that

£ ( « ( * , )  -  «(f l ) ) V v a r ( « ( )) -  0, ( 10)

which from Lemma 2 and Exercise 4 of Section 6 implies that 
S^/(var(S^))1/2 and (SN -  ESN)/(varCS^))1/2 have the same asymptotic 
distribution. We complete the proof using the Lindeberg-Feller Theorem



to show that condition (9) implies S'N/(vaT(S'N))'/2 1). We let
Bj, = var(S'N), and note that the variables X Nj = ( z Nj -  z NXaN(\ NUj]) -  
aN) have mean 0. We check the Lindeberg condition. Let e > 0.

- T  E  E { x y ( \ X Nj\ > e ^ ) }
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J= i

E £ { ( z n / - ^ ) 2K ( [ ^ 1) -  aN)2
i = i  v

X l ( ( z NJ - z N) \ a N( \ N U ] )  -  aNf  > e2S 2)}

i a

&N y- 1
E  ( z N j  z n )  aN) l ( S N >  e2) |

= l ( 8 N > e 2).

From (9), this is zero for N  sufficiently large, completing the proof. ■

Application to Sampling. We illustrate the use of this Theorem on Exam­
ple 1. The aN(j )  are given by (2), where n may depend on N.  So 
aN = n / N , and

0 /W ) E  ( M ; )  -  5n )2 = var(a w ( ^ i ) )
y= i

= var(aA,(fiV£71l))  = (« / /V ) ( l  -  ( n / N ) ) .  

Since \ <  maxj(aN(j )  -  aN)2 < 1, condition (9) is equivalent to

max ( z Nj - z N)2 N

N ~ X ---------------------7T7-— r - ° -  ( 1 1 )
n )

In particular, (9) will be satisfied if either min(n, N -  n) °° and

max(z Nj - z N)2 
N~~l------------------js bounded,
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or min(n, N -  n ) / N  is bounded away from 0 and

x2max ( z Nj - z N) 
_  ~  

] C  ( Z N j  ~  Z n )

7 =  1

0.

The conclusion drawn from this is that

SN — ESn ( Sn/ N ) — z N

v/var(SN) “  y / s U N - n) / ( N  -  1)

This leads to the standard procedure used in sampling theory to get a 
confidence interval for the population mean. However, one must use some 
estimate of the population variance such as the sample variance. The 
conditions needed for approximate normality are that n and N  — n be 
large and ( N / ( n ( N  -  n)))maXj(zj -  z N)2/ s z be small. Since the latter 
condition involves the unobserved z %  this requires a certain amount of 
faith.

In the application of Theorem 12 to the two-sample randomization test 
of Example 2, this leap of faith is not required because we can see all the 
observations. The asymptotic theory for the two-sample permutation test 
follows directly from the above application to sampling. Namely, (SN -  
ESn ) /  -\Jv2lx(Sn ) 1) under the same condition (11). In addition,
s\  is calculable and does not need to be estimated.

EXERCISES

1. (a) For the rank-sum test statistic, SN, of Example 3, find ESN and
var(SN), and show that (SN -  ESN)/(var(SN))[/2 0,1) pro­
vided m in(m,N — m)  -» oo.

(b) Suppose m / N  -> r as N  -» oo5 where 0 < r <  1. Is it true that

J N { { S N/ N 2) -  ( r / 2)) ^ ( 0 , r ( l  -  r ) / 12)?

2. Consider the hypergeometric random variable, SN, of Example 6.
(a) Show that (SN — ESN)/(var(SN))l/2 ^ ^ K 0 , 1) provided (n(N — 

n)m(N  -  m ) ) / N 3 —> oo5 in particular provided min(n, N — n) 
and min(m, N  -  m ) / N  is bounded away from 0.

(b) In the borderline case n -» oo5 m -> oo5 and nm / N  -> A, 0 < A < oo5 
show that SN ^ (  A).
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3. Consider Example 4 in which a( j ) = j.
(a) Show £(/?, -  M /,)7 v a r(f ii)  -> 0.
(b) Show E(\NUy] -  NUf f / v a r i Ry )  -> 0.
(c) Show (x + _v)2 < 2 x 2 + 2y 2 for all x and y, and conclude that

£ (/? , -  [ NUt ])2/v ar( /?,) -» 0,

so condition (10) is satisfied.
(d) Show for the randomization test against trend, (SN — ESN) /  

(var(SN))X/2 1) provided

max( z N] - z Nf
- L ----------------- > 0.

E  { z N j  ~  z n )
J =  1

4. For the statistic SN =  E jRj  of Example 5, related to Spearman’s p, find 
ESn and var(SN) and show that (SN — ESN) /  (var(SN))l/2 1).

5. What conditions on the z} are needed to satisfy condition (9) if
(a) a(j )  =  log(j).
(b) a(j )  = 1 /  { J .
(c) a{j) = l / j .

6. Prove the following theorem of Hajek. Let <p(u) be a nondecreasing 
function defined on (0, 1) such that 0 < a 2 = Jq(<p(u) — Ip)2 du < oo5 
where 7p = fQ<p(u)du. Define aN(j )  = <p(j / (N + 1)). Then, for SN 
given by (1), (SN -  ESN) /  ^j\zx{SN) 1) provided

max ( z Nj - z N)2
- i --------------------- > 0.

] C  ( Z N j  ~~ Z n )  

j -J

[Hint: (a) Let Ul9. . . , U N be i.i.d. ^(0 ,1 ) random variables, and let 
S'N =  EjLi (zNj -  z NX<p(Uj) -  7p). Show

S y  \/var( S 'N) —>.^(0,1)

(Exercise 6 of Section 5).
(b) Let R Nj denote the rank of Uj in U{9. . . ,  UN. Show that

corr(SN,S'N) =  ^ N / ( N  -  1) corr(a(Rm ),  «£>({/,)) 

(Lemma 2).
(c) Show R Ni/ N  Uu and a(RNl) <p({/,) (Glivenko-Cantelli).
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(d) Show Ea(RNl)2 -> E<p(U})2 (Riemann approximation to an inte­
gral).

(e) Show E(a(RNl) -  <p(U{))2 0 (Exercise 7 of Section 2).
(f) Show the normalized versions of SN and S'N are asymptotically

equivalent (Exercise 5 of Section 6).
7. A k-Sample Problem. A sample of size n- is taken from population i for

i = 1 , . . . ,  k, for a total sample size of N  =  £ f=1 nt. All N  observations 
are ranked and each observation is replaced by its rank. Let St denote 
the sum of the ranks of the observations in population i. Suppose for 
all i that n J N  -> p x, as n -> oo for some numbers p t >  0. Note that 
E?=i Pi, = 1. Let S = (S„ . . . , S A), p = (pj,  . . . , p k) and p* = 

nk) / N.  Let P and P* denote the matrices

p , 0 
0 p 2

0 0

0
0

Pk

and

(a) Show

(b) Deduce 

3 ( N +  1)

}/3N

n, 0 
0 n2

0 0

0
0

N ( N +  1)
S -  p* I 0 ,P  -  ppT).

N ( N +  1)
S -  p* P

) " p *

This is the Kruskal-Wallis statistic that generalizes the rank-sum 
statistic to problems of comparing more than two populations.
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Asymptotic Distribution 
of Sample Quantiles

Let X x, . . . ,  X n be a sample from a distribution F on the real line and 
assume that F is continuous so that all observations are distinct with 
probability 1. We may then arrange the observations in increasing order 
without ties, X (n:]) < 2) < '** < X(n:ny These variables are called 
the order statistics. For clarity, we will usually drop the dependence on n 
in the notation and write simply X^k) = X (n:k) as the kth order statistic 
and let X 0) < ••• < *(«> denote the order statistics. For 0 < p  <  1 , the 
pth quantile of F is defined as xp = F~](p),  and the pth sample quantile 
is defined as X (k) where k = \np1 = the ceiling of np (the smallest 
integer greater than or equal to np). If the density f i x )  exists and is 
continuous and positive in a neighborhood of some quantiles, then the 
joint distribution of the corresponding sample quantiles is asymptotically 
normal. We give the proof for two quantiles; the extension to many 
quantiles is easy.

The transformation UU) = F(X(j)) for j  = 1 , . . . ,  n gives U(]), . . . ,  U(n) as 
the order statistics of a sample from a uniform distribution, ^(0,1). We 
first prove the theorem for a uniform distribution and then derive the 
general result using the inverse transformation g(u)  = F~x(u) in Cramer’s 
Theorem.

The joint distribution of the order statistics U(l) <  ••• < U(n) from 
^ ( 0, 1) has the following well-known representation as the distribution of 
ratios of waiting times. The proof is left as an exercise.

87
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Lemma 1. Let Yv Y2, . . . ,  Yn+{ be i.i.d. exponential random variables with 
mean 1, ( ^ ( 1 , 1)), and let Sj = E/»i Yt for j  =  1 , . . . , «  + 1. Then the 
conditional distribution of

given Sn+] is the same as the order statistics o f a sample o f size n from

This lemma implies that the joint distribution of Û k2)) is the same 
as that of

Since the latter is a function of sums of i.i.d. random variables, it will have 
an asymptotic normal distribution that can be computed by the methods of 
Section 7.

To see this note that the Central Limit Theorem implies yfk(( 1 / k ) S k — 
1) —» > t0 ,1) as k -> oo because ^ (1 ,1 ) has mean 1 and variance 1. Hence, 
if n -> oo and k x/ n  -> p }, then

Sx Sn

ar(o, l).

yfnT T
1

n + 1 /
_ r  i

Similarly, if n -> oo, k x/ n  -»/?,, and A:2/ «  -» /?2, then

/k 2 — k

n +  1

and
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Lemma 2. If Y,, Y2, . . .  are i.i.d. .?’(!, 1), and 4 n (k \/n  — p ,) 0 and 
\fn(.k2/n  — p 2) —■* 0 as n —■► then

i/n + 1

1
n + 1 P i

n + 1 (5*2 5*i) (P2 Pl )  

^ r r ( s „ ,  - * )

p  i 0 0

», 0 P2 -  Pi 0

i 0 0 1 -/>2

/V oo/. Since the difference between

and

is

}/n 4- 1

VflTTT

l
~ P i

]/n 4- 1
/I 4- 1 “ Pi

which —> 0, they are asymptotically equivalent. So,

1
VaT + T ■■S’*. - P i

se

The situation is similar for the other two terms. Since Sk , Ski -  Sk , and 
Sn +1 -  Ski are independent, and each is asymptotically normal, they are 
jointly asymptotically independent normal. ■

Theorem 13. If U(l) < ••• < U(n) are the order statistics o f a sample o f  
size n from ^ (0,1), and if n -+<*>, k r °°, and k 2 -> 00 /« swc/z a way that
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where 0 < p x < p 2 < 1 , then

U(ki) P 1 
U(k2) ~  Pi

S ’
*  0,

P l ( l - P l )  P 1 0 - P 2) 
P 1 0 - P 2) P l ( l - P l )

Proof. Let

Then

g ( x v x2, x 3) =
Jtl + Jt2

^« + i

which by Lemma 1 has the same distribution as 

Theorem 7 applied to Lemma 2,

[ ^ 2) Pi

Here,

1
g(x,,  x2, x 3) = 

so that

U,(*i)

(*2)
. Then, with

x 2 +  X 3 ~ X \

(x , + x 2 + x 3)

- X ,

x 3 x 3 ~ ~ ( x l  +  x 2 )

g (n )  = i ( P \ , P i  - P \ A  -  P i ) =
i -  Pi ~Pi - P i
1 -  P 2 1 -  P 2 - P 2

Then it is merely a matter of checking that

Pi 0 0
g(|A.) o P2 - P i  o |g (n )T =

0 0 1 — p 2

P l ( l - P l )  P i ( l - P z )  
PiO - P i )  P i i ^ - P i )
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Corollary. If JSQt) < •** < X (n) are order statistics o f a sample o f size n 
from a distribution F having a density f i x )  continuous and positive in a 
neighborhood o f the quantiles xp  ̂ andxpi with p { < p 2, then

X l \ * P i  1) X Px 

X (]nP2\) ~~ Xp2
&

Pl(l  - P l ) p  iC1 - P i )  1

0,
f ( xp f f ( xPl) f ( x P2)

Pl( l  - P l ) P2O ~Pi )

1

* A * * )2 [

Proof. Applying the transformation gi y x, y 2) = (F  1 (j î X F ' (y i ) )T to the 
variables -  p u U([npi]) -  p 2)) of Theorem 13, and noting

g (yt , y2) =

1

0

0

1

f ( F- l(y2))

the Corollary follows immediately from Theorem 7. ■

Note: For one quantile, this theorem says that

For a given small number, Ax,  / ( xp) A x  represents the approximate 
proportion of observations that fall within an interval of length Ax  
centered at xp. These are the observations that for large n will determine 
the accuracy of the estimate of the pth  quantile. As n increases, the 
number of relevant observations goes up at a rate proportional to f ( x p), 
so the standard deviation of the estimate of xp will be proportional to

Exam ple 1. Let m n represent the median of a sample of size n from 
a normal distribution j K / j l , ( t 2). Then because / ( /x) = \ /(y[2rr cr), 
]fn(mn -  / j l )  (* )//(  aO2) = ^ t0 , rra 2̂ 2 ). This may be compared
with X n as an estimate of /jl, 4 n ( X n -  / i )  0, cr2).

Asymptotic Relative Efficiency. If 0 { and 02 are two estimates of a parame­
ter 6, and if yfn(6x -  6) —*JX09 or2) and ]fn(02 -  6) 0, cr22), then
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the asymptotic efficiency o f 01 relative to 02 is defined to be the ratio, 
0-2 / 0-2. Thus, in Example 1, the asymptotic efficiency of the median, m n, 
relative to the mean X n, as an estimate of the mean, / i , is a 2/ ( i r a 2/2 )  = 
2 / i t  =  0.6366. . . .  This means that if you are using m n to estimate the 
mean of a normal population, you may use X n instead and get the same 
accuracy based on only 64% of the observations. In other words, for large 
samples, if you are using m n instead of X n to estimate /jl, you are 
throwing away about 36% of the observations. The asymptotic relative 
efficiency is defined as the ratio of the variances, rather than as the ratio 
of standard deviations, so that it has this immediate interpretation in 
terms of sample size.

Example 2. The Cauchy distribution &(/ i ,  a )  has density
1 1

/ ( * )  = m r j  + [ ( x -  i x ) / a ]

It has median p,, first quartile x l/4 = fx — o-, and third quartile x3/4 = 
Ijl + o'. Thus, o' is the semi-interquartile range, o' = (jc3/4 -  x l/4)/2.  For 
the sample median,

] / n (mn -  p,) j o ,
2 2

T T C T

To find the asymptotic distribution of the sample semi-interquartile range, 
first find the asymptotic joint distribution of X {n/4) and X {3n/4). (We use 
the notation X {t) for 0 < t < n to represent the order statistic 
From the corollary,

X,( « / 4 )

x,(3n/4)

~ ( i t  -  tr)
-  ( ix +  a )

SC 0, 7T2(J2
1 i
4 4

1  1
4 4

Hence,

4n ^ ( 3 n / 4 )  4) — cr & ^f(0, 7r2cr 2/ 4 ) .

EXERCISES

1. Prove Lemma 1.
2. The maximum likelihood estimate of the mean of the double exponen­

tial distribution with density / ( x)  = |e x p { - |x  -  /jl\} is the sample 
median. Find its asymptotic distribution.
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3. Find the asymptotic distribution of the midquartile range, (X(3n/4) 4- 
X(n/4>)/2, when sampling from the Cauchy distribution, /z, a). What 
is its asymptotic efficiency relative to the median?

4. Let X v X2, ... be a sample from ^(0,2 fi).
(a) Find the asymptotic distribution of the median.
(b) Find the asymptotic distribution of the midquartile range.
(c) Find the asymptotic distribution of \X{3n/Ay
(d) Compare these three estimates of the mean.

5. Let X {, X 2, ... be a sample from the exponential distribution, ^(1, 0), 
with density f i x ) = ( l / 0)ex|>{ — x/$}f tx  > 0).
(a) For some constant c, yfn(cmn — 0) 0, a 2\  Find c and the 

asymptotic variance, cr2.
(b) Do the same for X(np) in place of the median. For what value of p 

is the asymptotic variance a minimum? (Answer, 0.797...).
6. Let X j , . . . , X n be a sample from the beta distribution with density, 

f (x\0)  = 0xe~xI{0 < x < 1), where 0 > 0.
(a) Let Mn denote the sample median, and m(0) denote the popula­

tion median as a function of 0. What is the asymptotic distribution 
of — ra(0 ))?

(b) Let 0n = log^/log(Mn). Show 0n 0.
(c) What is the asymptotic distribution of ]fn(0n — 0)?



14

Asymptotic Theory of Extreme 
Order Statistics*

Let X t, X2, ... be i.i.d. with continuous distribution function F(x) and 
let Mn denote the maximum of the first n observations, Mn = max; <n Xjm 
Then the distribution function of Mn is P(Mn < x) = F(x)n.

The problem is to determine if there exists an asymptotic distribution of 
the maximum in the sense that there are sequences an and bn > 0 such 
that (Mn -  an)/bn has some limiting distribution or, equivalently, such 
that

—  a „  \  n
b < xj = P(M„ < «„ + bnx) = F{an + bnx) ' ^ G ( x )

for some distribution function G. The problem for min can be treated by 
looking at max for —Xj.

It turns out that there are three different classes of limiting G’s.

D efin itio n . A function c: [0, o°) -> U is slowly varying if for every x >  0, 

c(tx)
c( 0

1, as t

Any function c(x) converging to a positive finite constant as x -> oo is 
slowly varying. But so also are some functions that tend to 0 or oo as 
x °o? such as c(x) = log x or even c(x) = (log x)y. Not slowly varying is 
c(x) = x y for any y ¥= 0, since (tx)y/ t y -> x y.

*(Ref: Book of that title by J. Galambos (1978) John Wiley & Sons).

94
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Theorem 14. Let F{x) denote the distribution function of a random vari­
able X, and let x0 denote the upper boundary, possibly + °°, of the distribu­
tion ofX: x0 -  sup{jt: F(x) < 1}.

(a) I fx 0 =  oo, and 1 — F(x) =  x yc(x) for some y >  0 and some slowly 
varying c(x\  then

F { K X)" -*  G Uy( x ) =
_ j exp{ - x  y}, for x > 0, 

0, for x < 0,

where bn is such that 1 — F(bn) = 1 /n.
(b) If  x0 < oo, and 1 — F(x) = (x0 — x)yc( l / (x0 — x)) for some y > 0 

and some slowly varying c(x\  then

F(x0 + b„x)n -* G 2 y(x)  = / exp{ { ~ x) r}' for * < 0 ,
\ 1, for x > 0,

where bn is such that 1 — F(x0 — bn) = l /n.
(c) If  there exists a function R(t) such that for all x,

l - F ( t + x R ( t ) )
---------------------------------- > e x

1 - F ( t )  

as t -> jc0 (finite or + <*>), then

F(a„ + bnx ) n G 3( x ) = exp{ —e~x}, 

where 1 — F(an) == 1 / n  and bn = R(an).

Note: Part (c) is considered the general case, and G 3 the extremal 
distribution. Moreover, EX+ < in this case and R(t) can be taken to be 
R(t) = E(X -  t\X > t). The three families of distributions may be related 
to the exponential distribution as follows. If Y  e  ^ ( 1, 1), then G[ y is the 
distribution function of Y~l/y, G2>y is the distribution function of - Y l/y, 
and G 3 is the distribution function of -  log(Y).

Example 1. The tv distributions have density

f ( x )  -------------——— ~ cx~(v*l).
v ( p  + x 2f +u/2

The symbol ~ stands for asymptotically equivalent and means that the 
ratio of the two expressions tends to 1 (here, as x -> <*>). Thus, 1 — 
F(x) = x~vc(x) for some function c(x) -> c/v.  Hence, case (a) holds with



y — v, and
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c 1 / cn \ {/ v

For the Cauchy distribution, v = 1 and c = l / r r  so that
7T Q?

Example 2. The J?e(a, /3) distributions have density

/ ( * )  = oc"_1(l — ’ /(O < x < 1),

where c = T(a + )8)/(r(a)r(/3)). So xQ = 1, and as i /  1, f(x) ~ 
c( 1 -  jc)p -\  and

1 — F(jc) ~ c f '(1 — m)^_1 rfw = c(l — x ) p//}.
JX

Hence, case (b) holds with y = j8 and jc0 = 1. The equation 

1 -  F(1 -  b„) = \ / n  yields b f  ~ P/(nc),

so we may take

T ( a ) T ( p +  l ) ' ,/p
b. =

For the ^(0,1) distribution, n(Mn -  1) ^  G2J = —® tl,1). 

Example 3. The Exponential Distribution. In case (c), note that 

1 - F ( t  +xR(t))
l - F ( t )

= P ( X > t + x R ( t ) \ X > t ) ,

so that the condition that this converge to e~x means that there is a 
change of scale, R (t\ so that this conditional distribution is approximately 
exponential with parameter 1. If F(x) is this exponential distribution, then 
P(X > t + x\X > t) = exp{— x] exactly, so we have R(t) = 1 for all t and 
hence bn = 1 for all n. Since 1 -  FO) = exp{-jt}, we may solve for an:

exp{ - an} = \ / n  => an = log n; that is, Afn -  log n —> G3.
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Example 4. In case (c), x0 can also be finite. For example, let Fit) = 1 — 
exp{l/f} for t < 0 (so x0 = 0). Then

1 — F(t) e W \ t + x R ( t )  t j  CXP\ (t + x R (t))t)

We want to choose R(t) so that R(t)/((t + xR(t))t) -> 1 as t /* 0. Clearly 
R(t) = t2 works. \ / n  = \ — F(an) = exp{l/ an} => an = — 1 /log n and 
bn = (1/log n)2. Hence, (log n)2(Mn + 1/log n) ^  G3.

Proof of Theorem 14
(a) Note that bn -» oo? so that

1 -  F(t  + xR(t)) xR(t)

F ( b n x Y  = (1 “  ( bnx) yc(bnx) )n

= exp{ — x y} from the definition of bn.

(b) For x < 0,

F(x0 + bnx ) n = (1 -  ( - bnx ) yc ( l / ( - b nx)))"

= e x p |- ( —jc)t lim nb*c(l/bn) \  = e x p { -(-x )r }
v n-* oo /



98 A Course in Large Sample Theory

Note: It is a remarkable fact that the converse to Theorem 14 is true: If 
for some normalizing sequences an and bn, (Mn -  an)/bn —> G nonde­
generate, then G, up to change of location and scale, is one of the types 
G{ y for some y > 0, Gl y for some y > 0, or G3. Furthermore,

(a) G is of type Gx y <=> x0 = oo and Fix) = 1 -  x~7c(x) for some 
slowly varying c(x)\

(b) G is of type G2 y <=> x0 < °° and F(x) = 1 — (jc0 — x)yc( 1 / ( x 0 -  *)) 
for some slowly varying c(x); and

(c) G is of type G3 <=> for all x,
1 - F ( < +*«(<)) ,  ,

— w x o --------------------------------------

as t -* jc0, for some function, R(t).
This result goes back to Fisher. See the book of Galambos for details.

Example 5. Fix) = 1 - 1  /log x for x > e. If there exists a limit, it 
cannot be of type G2,r , since x0 = <*>. It cannot be of type G3, since 
EX4 = EX == oo, and it cannot be of type Gt 7, since 1 -  F(jt:) == 1 /log jc 
is slowly varying and we must have 1 — F(jc) = x yc(x) with y positive. 
Therefore, no normalization (Mn — an)/bn converges in law to a nonde­
generate limit.

However, we can still say something about the asymptotic distribution of 
Mn. Let F = log X. Then FY(y) = P(\og X  < y) = P(X < ey) = 1 -  l/y , 
for y > 1. This is case (a) with y = 1 and = n. So (l//i)log Afn ^  Gt

Example 6. The Normal Distribution. We show that the standard normal 
distribution falls in case (c). Let

\ fx ( u2)
F(x) ~ H x )  ~ 7 s ? / - . “ ’’( “ r " '

denote the distribution function of J^O, 1).

Lemma

____ -00 1
— <I>(^)) = / exp{ — u2/2) du ~ — exp{— x2/2] as x -> oo.

Proof. By LHospital’s rule, f* exp{—u2/2} du/x~l exp{-JC2/2} has the 
same limit as

-exp{-jt;2/ 2} jc2
-x 2 exp{—jc2/ 2} — exp{ — x 2/2)  1 + x 2

1.



The lemma implies that

1 — <!>(/+ xR(t)) exp{ — (t 4- xR(t))2/ l }  t
1 -  <&(*) t + xR(t) exp{-r2/2}

■  (7T * R (! ) )e’q^ “' a R < ,)- * 2« ( 0 2/ 2}-

This converges to e~x if we let R(t) = \ / t .  Thus we have case (c) with 
bn = 1 / a n and 1 -  ®(an) = 1/n , and conclude that an(Mn — an) —> G3.

Rem ark. To find an asym ptotic expression for an in this exam ple, write 
1 -  <1>(an) =  1 / « ,  using the lem m a, as

^ - e x p { - ^ / 2) -  1.

To solve this asymptotically for an, we first approximate by solving 
exp{—al/2} = 1/n to get an = y/2 log n . Then we replace an by y/2 log n
-  a!n, and solve for a!n

n 2 n exp |  -  (log n -  a 'j2  log n + a'„2/ 2)}
- ^ - e x p { - a „ / 2 }  -  - j =  | / 2 log n -  a'n

= 1 exp R V 2 lqg n ~ < 2/ 2}
yf2it ^2 log « -  a'M

If this converges to 1, then -> 0 in which case we may ignore the a!n in 
the denominator and the a„/2 in the exponent. Solving

exp[fl'n/ 21og n } = ^27r21og /i

gives

<  = (l /y/2\ogn)\og y/47r log n ,

so

= /2log n — (loglogn 4- log47r )/2y/2\ogn .

Since bn = 1 / a w -  1/  ^2 log n , we can replace (but not an) by this 
simpler form, and reduce (Mn -  an)/bn to

y/2\ogn Mn — 21og n 4- (1 /2 ) loglog n 4- l / 21og47r ^  G3.

Asymptotic Theory of Extreme Order Statistics 99
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EXERCISES

1. For the following distributions, find the normalization such that 
(Mn -  a„)/bn has a nondegenerate limit if any exists.
(a) f ( x ) = e l  (x < 0).
(b )/U ) = (2A 3) / 0 t >  l).
(c) Fix)  = 1 -  exp{— x / ( l  — x)}, for 0 < x < 1.
(d) f ix)  = ( \ /Y(a) )e~xx a~xI(x > 0), the &(a,  1) distribution. [First 

prove 1 — F(x) ~  (1/T (a))e~xx a~l .]
2. Let X u . . . , X n be i.i.d. with a geometric distribution with probability

P(X = j) = l / 2 ; + 1 for j  = 0,1,2,. . .  . Show that the distribution of 
Mn converges to a discretized version of the general case, G3, in the 
following sense. Let min) =  llog2(w)J (the floor of log2(n)) and sup­
pose that n -* oo along a subsequence, n(m) for m = 1,2,. . . ,  such 
that n(m) / 2m -» 6 as m -» oo( with 1 < 0 < 2; then,

p ( M n(.m) -  m < j )  -+ exp{ - 0 2 ~ ’ } , for; = 0, ±  1, ±  2, . . .  .

3. Let Mn denote the maximum of a sample of size n from the distribu­
tion G 3. Does there exist a normalization, ( M n — an)/bn, with a nonde­
generate limit? If so, find it.
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Asymptotic Joint Distributions 
of Extrema

The following theorem is useful for finding the asymptotic distribution 
of the range of a sample or of the gap between the largest and next largest 
value of a sample.

Theorem 15. Let U(n . 1)?. . . ,  U{n. n) be order statistics of a sample of size n 
from ^(0,1). Then for fixed k,

(a) n(Uin.A), . . . ,Uin:k)) % ( S u . . . , S k)

where Sj = E/= j Yi and the Yt are i.i.d. exponential, ^(1,1).
(b) For fixed values of 0 < p { < < pn < 1, the three vectors

n{P(n:i)’ * • * > U(n:k))>

~ Pl> - ■ ■ ,U(n:npk) ~ Pk)>

and

n (  1 — U(n : n y . . . ,  1 — U(n:n_k+j ) )

are asymptotically independent, with distributions of the first and third 
vectors as in (a), and of the second as in Theorem 13.

101
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Proof, (a) Let U„ k = W(n.]), . . . ,U(n.ky)T. We show the densities of Un k 
converge and conclude the result by Scheffe’s Theorem:

/□„,(“) -»(»-!)•••(«-* + 1 ) ( 1 ~

Let S = hU„ k. Then

/»(«) =

X/(0 < M, < ••• <Uk < 1). 

n(n — 1) ••• (n — k + 1)
nk

( s \ n~k
1 _ “ J /  (0 < s, < ••• < sk < n) 

exP( (0 < s, < •• < sk < «),
which is the density of the distribution described in the theorem,

(b) Omitted.

Note: The limiting distribution of nU(n.k being the sum of k indepen- 
d e n t « l , 1) ,iS « M ) .  ' ’

Note: Part (b) of Theorem 15 holds in general (for distributions other 
than uniform); the lower extreme order statistics, the upper extreme order 
statistics, and the quantiles are asymptotically independent.

Example 1. The Range. Let Rn =  U(n:n) — U(n:i) denote the range of a 
sample of size n from a uniform distribution, ^(0,1). Then n( 1 -  Rn) = 
n( 1 -  U(n.n)) 4- nU(n.{) —► Y{ 4- Y2, where Yj and Y2 are independent 
J?(l,1). Thus, n(l -  Rn) £  W(2,1).

Example 2. The Midrange. Let Mn =  \(U{n. I( +  U(n:n)) denote the 
midrange. Then

n(Mn -  i )  = i(nf/(„:1) -  n( 1 -  t/(n;n))) 3  ±(y, -  V2),

where Yj and Y2 are as in Example 1. This has the Laplace (double 
exponential) distribution with density f ( z ) = e~2|2*.

Remark. If . 1}, . . . ,  X(n. n) are the order statistics of a sample of size n 
from an arbitrary continuous distribution F(x\  then n(F(X(n:l)),. . . ,  
F(X(n:k))) —» (S1?. . . ,  S*) of part (a). Sometimes, the method of transfor­
mation of Slutsky’s Theorem applied to some form of the inverse function 
F~1 (5) will work to give the asymptotic distribution of (X(n. 1)9. . . ,  X(n. k)\
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as in the Example 3, below. Such considerations lead to a generalization of 
Theorem 14. The limiting distribution of (X(n:l)9. . . ,  X(n:k)) properly 
normalized is as ( - S xl/y, . . . ,  ~Sk l/y) for case (a), as (Sl/ y, ... , S lk/y) 
for case (b), and as (log 5 ,, . . . ,  log Sk) for case (c).

Example 3. Let Z l n be the largest, and Z 2n the second largest, of a 
sample of size n from a Cauchy distribution, ^(0,1). To find the large 
sample joint distribution of Z X N and Z2/z, we first note that n(( 1 — 
F(Zl n) \ 0  -  F(Z2 n))) ^  (Slf 52), where Si and S2 are as described in 
Theorem 15, and F is the distribution function of W(0,1). Then, since

are asymptotically equivalent, and so have the same limiting distribution, 
namely, that of (Sl, S2). Finally, an application of Slutsky’s Theorem using 
the reciprocal transformation shows that

From this, we may deduce an interesting property for the top two record 
values of a sample from a Cauchy distribution, namely, that the ratio 
Rn = Z2n/ Z l>n, of the second largest to the largest observation converges 
in law to St/ S 2, which has a uniform distribution, ^(0,1). Moreover, Rn 
and Z2 n/ n  are asymptotically independent (since Sx/ S 2 and S2 are 
independent).

EXERCISES

1. Let X(n:i)9. . . 9X(n:H) be order statistics of a sample of size n from 
1). Find the proper location and scale normalization (using Exam­

ple 6 of Section 13) of the midrange such that the limit distribution 
exists, and find the limit (logistic). What is its asymptotic efficiency 
relative to Xn?

00,

we conclude that n(( 1 -  F(ZX n) \ (  1 -  F(Z2 n))), and



104 A Course in Large Sample Theory

2. Let Z l n and Z2 n be the largest and second-largest record values 
(order statistics), respectively, of a sample of size n from the exponen­
tial distribution, ^(1,1). (a) Find the density of the limiting joint 
distribution of Z l n and Z2n, properly normalized, as n -> <*>. (b) Note 
that (asymptotically) n -  Z 2 n and Z2 n are independent, and that 
Zu n -  Z 2 n has an exponential distribution.

3. Let X {, . . . , X n be a sample from a uniform distribution on the interval 
(0 — 0.5, 0 + 0.5). Among the various estimates of 0, one may use the 
median, 0y = X(̂ n/2]), and one may use the midrange, 02 = (max(A^) + 
min(Ar/))/2. Compare the 95% confidence intervals for 0 obtained 
from these two estimates, when n = 100.

4. Let Zj n and Z2 n be the largest and second-largest order statistics 
from a sample of size n from the normal distribution, ^f(0,l), and let 
an be defined by 1 — &(an) = 1 /n.  Show that

< * n (Z ln  -  -  a „) ^  ( - lo g  5,, —log S2),

where and S2 are defined as in Theorem 15. Conclude that Un ~ 
exp{an(Z2n -  Z ln)} has asymptotically a ^(0,1) distribution, and that 
Un and an(Z2n — an) are asymptotically independent.



4

Efficient Estimation and Testing



http://taylorandfrancis.com


16

A Uniform Strong Law 
of Large Numbers

Certain important statistical problems have the following form. Let 
X {, X2, ... be a sequence of i.i.d. random variables with common distribu­
tion function F(x\  and let U(x, 0) be a measurable function of x for all 0 
in some parameter space ©. The statistic of interest for purposes of 
estimation or testing hypotheses is (1/«)E^ 1 U(Xh 0). If it is assumed 
that

IL(0) =EU(X,  0) = f u ( x , d ) d F ( x ) (1)

exists and is finite for all 0 6  0, then by the Strong Law of Large 
Numbers

1
~ L U ( X j , 0 )  v (0) ,  as n (2)

for each 0 e  ®. It is important to strengthen this conclusion so that the 
convergence is uniform in 0 in the sense that

sup
0 e 0

1
- L U ( X j , 6 ) - r t 9 ) 0 , as n (3 )

As an example of the use of (3), suppose we have a sequence 0n of 
estimates of 0 (possibly dependent on X {, . . . ,  Xn) such that 0n 0O as

107
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n - » oo, where 00 can be considered the true value. Suppose also that fx(0) 
is continuous in 0. We would like to conclude that

1 "
- L u ( X j , O n) as n (4 )

By itself, (2) is not strong enough to give this result. However, (4) follows 
easily from (3):

1

-  YiU{Xj> k )  -  v(dn) +1 V-ik) -  M(®o)|

+ I /*($.) “ /*(®o)|< sup
0e@

-^ > 0, as n -> oo, (5)
using 6n 0O, continuity of /z(0) and Slutsky’s Theorem.

The theorems below, due to Le Cam, give conditions on U and the 
distribution F under which (3) holds. If © were finite, then (3) follows 
directly from (2), because the intersection of a finite number of sets of 
probability 1 has probability 1. So one expects (3) to hold also if © is 
compact and U(x, 0) is continuous in 0 for all x. Under a uniform 
boundedness condition, this is so.

T heorem 16(a). If
(1) © is compact,
(2) U(x, 0) is continuous in 0 for all x,
(3) There exists a function K(x) such that EK(X) < oo and \U(x9 0)1 < 

K(x\  for all x and 0.
Then

We also prove a one-sided version of this theorem for use in the next 
section. A real-valued function, /(0), defined on © is said to be upper 
semicontinuous (u.s.c.) on ©, if for all 0 in © and for any sequence 0n in © 
such that 0n -> 0, we have limsup„_oo/ ( 0„) < / ( 0) or, equivalently, if for 
all 0 in ©, sup|^_0|<p/ ( 0 ') -> /(0) as p -> 0.
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Theorem 16(b). If
(1) 0  is compact,
(2) U(x, 0) is upper semicontinuous in 0 for all x,
(3) there exists a function K(x) such that EK(X) < oo and U(x, 0) < K(x) 

for all x and 0,
(4) for all 0 and for all sufficiently small p > 0, sup)6l/_0,<p U(x, 0') is 

measurable in x,
Then

Then (p is measurable in x for all sufficiently small p > 0 by (4), cp is 
bounded above by an integrable function by (3), and (p(x, 0, p) \  U(x, 6) 
as p \  0 by (2).

Therefore, by the Monotone Convergence Theorem, as p \  0.

Let e > 0. For each 6, find pe so that f(p(x, 0, pe) dF(x) < p(0) + s. The 
spheres S(0, Pe) = {O': \9 -  0'\ < pe} cover 0  so by (1) there exists a 
finite subcover, say, © c U i” S(0;, Pe )• For each 0 e © there exists an 
index j  such that 6 €  5(0., Pe). From the definition of (p, U(x,6)< 
<p(x, 0j, pe ) for all x. Hence,

Proof of part (b). Let

cp(x,0,p)= sup U(x,0').
I O ' - O K p

j<p(x, 0, p) dF(x) \  jU(x ,  0) dF(x) = /x(0)

so that

1 " 1 "



Now apply the strong law of large numbers to (1 /«)£" <p(Xj, 0jt p9):

p{ lim -E<p(Xj ,  0j, pe ) < fi(0j) + e ,fo r; = 1, 2 = 1,I fi —> oc Yl j I

Pi. lim sup sup -  £<p(Ar/, 0j, p9) < sup /a(0; ) + e j = 1,
\  n->oo 1 < ; < w n  i 1 1 <j  < m  j

p \  limsup sup — , 0 ) < sup fi(0) + ej = 1.
\  n -> oo 0e@ n  l 0 e ©  /

Because it is true for all e > 0, it is true for e = 0. ■

fa). First note that, U(x, 0) being continuous in 0, condition (4) 
of part (b) is automatically satisfied because

sup U(x ,0 ' )=  sup U(x,0')
\ e ’- e \ < p  0 ' ^ d

for any denumerable set D, dense in {0': \0' — 0\ < p}.
Next note that fi(0) is continuous:

lim ia(0') = lim fu(x, 0') dF(x) — fu(x, 0) dF{x) = /*(0) 
e ' - *e  0^0  J J

by the Lebesgue Dominated Convergence Theorem, since U is bounded 
by K , an integrable function. Therefore, if Theorem 16(a) were true for 
/x(0) = 0, it would follow for arbitrary /jl(0) by considering U(x, 0) — /jl(0), 
continuous in 0 and bounded by K(x) + EK(X).  Thus, we assume 
/a(0) = 0. From the one-sided theorem applied to U(x, 0) and ~U(x,  0),

Pi limsup sup -  E U ( X j9 0) <; o) = 1
\ n->00 0<=@ n ! J

and

Pi lim sup s u p -----£ l / ( X ,  0 ) < 0} = 1.
\ n->oo 0 e ©  n j J

The conclusion follows from this because for an arbitrary function g,

0 < sup|§ ( 0 ) | = max/supg(0),  sup - g ( 0 ) \ .  ■
a v a a t
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Remark. We note for use in the next section that under the conditions of 
Theorem 16(b) the function /x(0 ) is upper semicontinuous (i.e., for every
0 e  ©, lim supr  e /x(0') < /i(0)\ The proof is analogous to the proof of 
continuity of /x(0) for Theorem 16(a), namely,

lim sup /jl( O ' )  = lim sup EU(X,  O')
d'-*0 0'->0

<E  lim sup U(X,  0') < EU(X,  0 ) — m(0)
0'->0

using the Fatou-Lebesgue Theorem (the one-sided dominated conver­
gence theorem) since t/(x, 0) is bounded above by an integrable function, 
K(x).
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Strong Consistency 
of Maximum-Likelihood Estimates

A sequence of estimates {0n} of a parameter 0 e  © is said to be weakly 
consistent (resp. strongly consistent) for 0 e  © if for every 0 e  ©, 0n —» 0 
(resp. 0n 0) when 0 is the true value of the parameter. In this section, 
we show that under fairly general conditions, the maximum-likelihood 
estimates are strongly consistent as the sample size tends to infinity.

Let X u . . . , X n be i.i.d. with density f(x\6)  with respect to some 
<r-finite measure v (usually Lebesgue measure or counting measure), 
where 0 g© .

The likelihood function is defined as

L n( 0 )  = L  n( 0 \ X i , . . ' , X n )  =  n / ( x y | 0 )

when the observed values of X l9. . . ,  Xn are xv . . . , x n. The log likelihood 
function is denoted by ln(6) = log L„(0).

A maximum-likelihood estimate (MLE) of 0 is any function, 0n = 
0n(xu . . . ,  xn), such that L n(0n) = sup0 e 0 Ln(0) or, equivalently, ln(0n) = 
suP0€E© /̂|(®)* A MLE may not exist. When it does, it may not be measur­
able and it may be consistent. It certainly exists if © is compact and 
f(x\6)  is upper semicontinuous in 0 for all x, since then Ln(6) is upper 
semicontinuous on a compact set, and an upper semicontinuous function 
on a compact set achieves its maximum.

The proof of consistency of the MLE is based on the following lemma. 
Let / 0(x) and /,(*) be densities with respect to a cr-finite measure v. The
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Kullback-Leibler information number is defined as

M X )  , /oO )
W o > /i)  = E0 l o g = / l o g j - ^ f 0(x )dv (x ) .

In this expression, l o ^ f0(x ) / f l(x)) is defined as + °° if J\(x) = 0 and 
f 0(x) ^ 0, so the expectation could be ~I- oo. Although lo^ fo^x^ / f  j(jc)) is 
defined as — oo when f x(x) > 0 and f Q(x) = 0, the integrand, 
\ °&h(x) / f x(x))f0( x \  is defined as zero in this case. K(f0, f {) is a 
measure of the ability of the likelihood ratio to distinguish between / 0 and 
/j when / 0 is true.

Lemma (Shannon-Kolmogorov Information Inequality). Letf0(x) andfx(x) 
be densities with respect to v. Then

f 0( X)  f f 0(x)
K ( / o > / . )  =  E° lo g y ^ y  =  f logJ ^ fo(x) dv{x) -

with equality if and only if f x(x) = / 0(x) (a.e. dp).

Proof \ Since log x is strictly convex, Jensen’s inequality implies

f x( X)  f x( X)
- * ( / „ , / , )  = E0 log -ry -^  < log E0— - ^ ,

Jo\A ) Jo \A )

with equality if and only if f l( X ) / f 0(X)  is a constant with probability 1 
when X  has density / 0. But

E°T T x \ = / 7 7 TV/o(JC) dv(x)  = j  f x(x) dv(x)  < 1,
Jo\A ) J JoKx ) Js0

where S0 = {x: f 0(x) > 0}, with equality if and only if S0 has probability 1 
under f x(x). The combination of these two inequalities gives the result.
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This lemma is used in the proof of consistency of the MLE as follows. 
Let 0O denote the true value of 0. The MLE is the value of 0 that
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maximizes

l„(0) -  = >og K ( » )  -  log Ln( 0o)

1

From the Strong Law of Large Numbers and the lemma,

1,  1 f ( X , \ t )  „  , f t x l«>
n '  n ?  l087 ( W  ^  £-  “ ' / T O  '  - K(S«’9) < "•

unless f(x\0)  = /(jc|0o). So eventually the likelihood function will be 
larger at 0O than at any specific value 0 provided different 0 correspond 
to different distributions (the condition of identifiability). This gives a 
meaning to the numerical value of the Kullback-Leibler information 
number. When 0O is the true value, the likelihood ratio, Ln(O)/Ln(0o\  
converges to zero exponentially fast, at rate exp{—nK(00, 0)}.

This already implies that if © is finite the MLE is strongly consistent. In 
the following theorem, this observation is extended to compact © when 
f(x\0)  is upper semicontinuous in 0.

Theorem 17. Let X {, X 2, . . . b e  i.i.d. with density f(x\ 0), 0 E 0 ,  and let 0O 
denote the true value of 0. If
(1) © is compact,
(2) / ( x\ 0) is upper semicontinuous in 0 for all x,
(3) there exists a function K(x) such that E0JK(X)\  < oo and

U(x, 0 ) = log/(jc|0) -  log /(x |0o) < K(x),  for allx and 0 ,

(4) for all 0 e  © and sufficiently small p > 0, sup,0/_0[ < p / ( x \0') is mea­
surable in x ,

(5) (identifiability) / ( x\0) = f ( x |0O) (a.e. dv ) => 0 = 0O,
A

then, for any sequence of maximum-likelihood estimates 0n of 0,

ft. ^ > 0n.

Proof. The conditions of Theorem 16(b) are satisfied for the function 
U(x, 0). Let p > 0 and S = {0: |0 -  0O| > p}. Then S is compact and 
from Theorem 16(b),

P0J  lim sup sup — E,tS(Xj, 0) < sup m (0)| = 1,
°\ n-*oo QeS n 1 Qes I
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where p,(0) = —K(0O, 0) = fU(x, 0)f(x\0o)) dv(x) < 0 for 0 e  S from 
the lemma. Furthermore, pi0) is upper semicontinuous (Section 16) and 
hence achieves it is maximum value on S. Let 8 = sup0e5 fju(0); then 
8 < 0, and

PA limsup sup — Y,U(Xj, 0) < S j = 1.
\ n-*oo 0&S n 1 j

Thus, with probability 1, there exists an N  such that for all n > N,

sup — J^U(Xj9 0) < 8/2 < 0,
0<=S n  l

say. But

-  £  u(Xj, 0„) = sup - Z v {  Xj, 6) > 0 , 
ft j 0e 0  ft j

since the sum is equal to 0 for 0 = 0O. This implies that 0n £ S for n > N ; 
that is, 10n — 0\ < p. Since p is arbitrary, the theorem follows. This proof 
is due to Wald (1948). ■

Note: Allowing f (x\0)  to be upper semicontinuous in 0 (rather than 
requiring continuity) covers cases like the uniform, U(0,0 + 1). In such a 
case, the density is chosen to be the upper semicontinuous version, 
f i x 16) = 1(6 < x < 0 + 1). We note that if f i x 10) is continuous in 0, then 
condition (4) is automatically satisfied.

Note: Nothing in the theorem requires 0n to be measurable. In this 
theorem, MLEs are strongly consistent even if they are not random 
variables! (Here, convergence almost surely does not imply convergence in 
probability.) In general, 0n can be chosen to be measurable according to 
the following result which follows from a selection theorem of von Neu­
mann (1949). (See for example Parathasarathy (1972), Section 8.) If%?is a 
Borel subset of a Euclidean space, and if 0  is a compact subset of a 
Euclidean space, and if cp(x, 0) is jointly measurable in (x, 0) and upper 
semicontinuous in 0 for each x e  if, then there exists a Lebesgue measurable 
selection 6(x) such that

<p(*, 0 (*)) = sup cp(x, 0 ), for all x.
0e@
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Counterexample to the removal of condition (3). Consider the following 
densities on [ — 1, 1] with parameter space © = [0, 1],

\x -  9\ \ 1 
1 -  - ^ y - J / ( l *  -  e\ < 8(6)) + e-I(\x\  < 1),

where 8(6) is continuous decreasing with 8(0) = 1 and 0 < 8(0) < 1 — 0. 
This provides a continuous parametrization between the triangular distri­
bution when 0 = 0, and the uniform distribution, when 0 = 1.

Clearly, conditions (1), (2), (4), and (5) of Theorem 17 are satisfied. We 
show that if 8(0) 0 sufficiently fast as 0 -> 1, then 0n 1 whatever 
be the true value of 0 g ©.

Given a sample X x, . . . , X n from /, 0n is that value of 0 that maximizes

0
= «# log- + log

U,-0| <8(0) 8 ( 0 ) 8( 0)

where ne is the number of Xf not in {x: \x — 0\ < 8(0)). For every fixed 
number a < 1,

max —ln( 0) < max log
n 0<,6<a

1 - 0  0 
8( 0) +  2

< log
1 1 

8 ( a )  + 2

We will show that 0n 1 whatever be the true value of 0 if 8(0) -> 0 
sufficiently fast as 0 -> 1 by showing

i /  /i \ a .s.max —ln( 0) — ► oo.
o<0<i n

Let Mn = m axf^ ,. . . ,  Xn}. Then Mn 1 whatever be the true value 
of 0, and

1 1 n -  1 Mn 1
max —ln(0) > —ln(M ) > -------log—  + — log

0 ^ 1  n nV 7 n nV 111 n 6 2 n 6
Afw

5(A/„) 2
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Whatever be the value of 0, Mn converges a.s. to 1 at a certain rate the 
slowest rate being for the triangular distribution (0 = 0). Thus we can 
choose 8(0) -> 0 sufficiently fast as 0 -> l, so that (l/«)log((l -
Mn)/8(Mn))^f»°o. m

How fast? First note that (n)1/4( 1 -  Mn) 0, because for 0 = 0, 

Z P o { n l /4( l  -  Mn) >  s )

= I , P 0(Mn < 1 -  e / n ^ )  = E(1 -  s2/(2^))"

<  E( exP = E e x p { s 2V n V 2 )  <  oo,

and the Borel-Cantelli Lemma implies P0{«1/4( 1 — Af„) > e i.o.} = 0. 
Then, for

EXERCISES

1. Check the conditions of Theorem 17 for the ^(0,0) distribution, 
f ( x \0) = (1 / 0)I[O,0](X\  when 0  = [1, 2].

2. [Oliver, (1972)] Let X l9. . . 9Xn be a sample from the triangular distri­
bution on [0, 1] with mode 0,

and let Xm = 0, X({)9. . . ,  X(n), X(n + j) = 1 denote the order statistics.
(a) Show that for < 0 < .A^+i) the likelihood function is decreas­

ing if 0 < k/n  and increasing if 0 > k/n.
(b) Conclude that the maximum likelihood estimate is equal to one of 

the X(k)  for which (k — 1 )/n < X(k) < k / n . In fact, the likelihood 
function has a local maximum at each such *(*>•

Therefore,

8(0)  = (1 -  0) exp{ —(1 -  0 )~4},
we find

00.
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3. [Neyman and Scott (1948)] Suppose we have a sample of size d from 
each of n normal populations with common unknown variance but 
possibly different unknown means

Xfj p. , a 2), I = 1, . . . ,  n, j  = 1, . . . ,  d,

where all the Xi} are independent.
(a) Find the maximum-likelihood estimate of a 2.
(b) Show that for d fixed, the MLE of a-2 is not consistent as n oo. 

Why doesn’t Theorem 17 apply?
(c) Find a consistent estimate of a 2.
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Asymptotic Normality 
of the Maximum-Likelihood Estimate

To obtain asymptotic normality of the MLE, more restrictive conditions 
on f ( x |0) are needed. In particular, it will be assumed that (d2/ d02)f (x |0) 
exists and is continuous. This will rule out cases like the uniform distribu­
tion on the interval (0, 0), 0 > 0, where the maximum-likelihood estimate 
is the maximum of the sample, converges to the true value at the much 
faster rate of 1/n, and is not asymptotically normal. (See Example 2 of 
Section 14.)

When (<?/<?0)/(x|0) exists, one can seek the MLE, 0„, as a solution of 
the likelihood equation,

There may be many solutions to /n(0) = 0 even if the MLE is unique, 
however, there generally exist solutions of this equation that are strongly 
consistent even if the MLE is not consistent! The reason for this is as 
follows. If the true value 0O lies in the interior of 0  c  [R*, if 
(d/dd)\og f(x\d) exists and is continuous in 0 for all x , and if the 
conditions of Theorem 17 are satisfied for some compact neighborhood ©' 
offl0, ©' c  0 , then the MLE within ©', call it 0M, converges a.s. to 0O, and 
once 0n is in the interior of ©', it will satisfy /(0n) = 0.

/„(«) = ^  log l„ (o ) = t  iog/(*,ie) = o.

Let

a k vector,

119
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and

dl
0) = — 2 log/(jc|0 ), a A: by A: matrix.<9u

Then, Fisher Information is defined as

J^O) = £ #̂ ( X ,0 ) ^ ( Z ,e ) 7', a A: by A: matrix.

Assuming that the partial derivative with respect to 0 can be passed under 
the integral sign in f f (x\d)dv(x) = 1, we find

If the second partial derivatives with respect to 0 can be passed under the 
integral sign, then f (d2/dQ2)f(x\Q) dv(x) = 0, and

Example 1. The Poisson distributions, <^(0). f ix\0) = e~0Ox/x\ x —
0, 1, 2 ,.. ., log f i x  10) = c — 0 4- x log 0, and tyix, 0) = — 1 4- x/0.  
Therefore, J t0 )  = var6( - l  4- X/ 0 )  = 0/ 02 = 1/0. We may also com­
pute J^O) using iftix\0) = - x / 0 2, so J t0 )  = EeX / 0 2 = 0/ 0 2 — 1/0. 
Derivatives may be passed under the integral sign since the Poisson 
distributions form an exponential family.

E ^ ( x , e )  = /
(d/dB)f(x\Q)

/(*  I®)
f(xB) dv(x)  = J  I©) dv(x)  = 0,

so that J*t0) is in fact the covariance matrix of 

S(B)  = vare (<P(X ,0)).

£ > (* ,» )  = /

/
f(x\e)(d2/d»2)f(x\») -  ((d/d»)f(x\6))T((S/dB)f(x\B))

f ix  ie>2

Xf(x\9)dv(x)

0 -  Jty(x,B)W(x,B)Tf(x\B)dv(x).

Thus,

J^e) = —E9ty(x,  e).
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Example 2. The normal distributions, yK ft, cr2).

log f (x \n ,  a )  = -log '/Itto- -  ( l / 2cr2)(jc -  ft)2, 

(x  -  f i ) / a 2
xV( x , ( [L ,a )) = 

( fi ,  a ) )  =

Hence,

—  1 / a  +  ( x  —  / jl) 2 / ( t 3

— 1 /cr2 — 2(x — f i ) / a 3
— 2(x -  f x ) / a 3 I /o '2 — 3(x — fi)2/cr4

p,, o-) =
1/ a -2 0

0 2/ a -2

Theorem 18 (Cramer). Lef X x, X 2,. . .  be i.i.d. with density f(x  |0) ( with 
respect to dv), and let 0O denote the true value of the parameter. If
(1 ) 0  is an open subset of Mk,
(2) second partial derivatives of f i x |0) with respect to 0 exist and are 

continuous for all x, and may be passed under the integral sign in 
ffix\Q) dvix),

(3) there exists a function K(x) such that EQqK{X)  < oo and each compo­
nent of ^ (x , 0) is bounded in absolute value by K(x) uniformly in some 
neighborhood of 0O,

(4) ~K0O) = —Eq ^ (  A", 0O) is positive definite,
(5) f i x |0) = f i x |0O) a.e. dv =* 0 = 0O,

Then there exists a strongly consistent sequence 0n of roots of the 
likelihood equation such that

v ^ ( e „ - e 0) ^ ^ ( o , j ^ ( e 0

Proof.
1. Existence of consistent roots. Let Sp = {0: |0 — 0O| < p] for some p > 0 

be a compact neighborhood of 0O on which components of *P(x, 0) are 
uniformly bounded by Kix)  as in (3). The existence of a strongly 
consistent sequence 0„ of roots of /n(0) = 0 follows from Theorem 17 
with 0  = Sp. Conditions (1), (2), and (5) of that theorem are automatic;



condition (4) follows from continuity of / ( jc|0) in 0. To check condition
(3) expand U(x, 0) as

u(x ,9)  = U(x,%) + v ( x , q0)t( b -  e0)

+ (6  -  e0)r f' f ' A V ( x , 0 0 + Afi(e -  %))d\dfjL(d -  0O).
Jo Jo

That U(x, 0) is bounded, uniformly on Sp, by an integrable function 
follows, because U(x, 0O) = 0, 0O) is integrable, and the compo­
nents of are bounded by K(x) uniformly on Sp.

2. Asymptotic normality. Note /rt(0) = E? ^ ( ^ ,0 ) .  Expand ln as

1 (0 ) = 1 (0  o) + / 1£ * ( * i,e 0 + A ( e - e 0) ) d A ( e - e 0).
J0 1

Now let 0 = 0M where 0W is any strongly consistent sequence satisfying 
/rt(0rt) = 0, and divide by yfn:
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where

b„ = - / o'^ - I > ( j r , . ,e o  + A(e„ -  e0))</A.

From the Central Limit Theorem, because E09 ( X ,  80) = 0 and 
var9() W(A\ 0O) = J*(0O), we find that

^U ,(60) = v ^ f > ( * , , e 0)) ^  Z e^(0,^(00)).

If we show Bw then eventually B“l will exist and by
Slutsky’s Theorem.

Vn (eB -  e0) = b; 1 % s ( e 0y lz  e ^ o ^ e ,, ) -1).
Let e > 0. To show Bw ~K0O)> first note that EQ9 ( X ,  0) is contin­
uous in 0 from condition (3), so there is a p > 0 such that |0 — 0O| < p 
implies

|Ea#* ( * , 0 ) +J^(00) | < e.
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Next note from the Uniform Strong Law of Large Numbers, Theorem 
16(a), that with probability 1 there is an integer N such that

n > N implies sup
o e5n

< 8 .

Then, assuming N is so large that n > n  =» |e„ -  e01 < P,

- J - ( 00) |<  / '  ^ E ^ ( ^ , 0o + A(0n - 0o)) + S(Q0) d \

< f '  sup
0 ees„

^ E * ( X y, 0 ) 0 )

d \

< 2s.

Remarks. One often says that this theorem states that the maximum 
likelihood estimate is asymptotically normal. However, that is a rather 
loose interpretation. All it really claims is that, under the conditions 
stated, there is a consistent sequence of roots of the likelihood equation 
that is asymptotically normal with Fisher information as its variance. 
Under these same conditions, the MLE may not be one of these roots; 
even if it is, it may not be consistent. An example similar to that found at 
the end of the previous section may be constructed that satisfies the 
conditions of Theorem 18, so that the MLE will be inconsistent even 
though it is one of the roots of the likelihood equation. Even so, in such an 
example, there will exist a consistent sequence of roots. This theorem gives 
no hint as to which root one should use as the estimate. Exercise 5 gives a 
simple example in which there may exist many roots of the likelihood 
equation, and many maxima of the likelihood.

However, under the conditions of Theorem 18, if there is a unique root 
of the likelihood equation for every n, as in many applications, this 
sequence of roots will be consistent and asymptotically normal.



Passing the derivative under the integral sign.

Lemma. If (d/dO) g(x, 0) exists and is continuous in 0 for allx and all 0 in 
an open interval S, and if |(d/dO) g(x, 0)\ < K(x) on S where JK(x) dv(x) 

and if Jg(x, O)dv(x) exists on S, then

^ J g ( x , 0 ) d v ( x )  = j  — g(x , 0 ) dv ( x ) .
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Proof. From the Mean-Value Theorem,
g(x,  e  + s )  - g ( x ,  o )

do
g(x,  0 + A8) dk < K(x),

so that the result follows from the Lebesgue Dominated Convergence 
Theorem by taking the limit as 8 -* 0 on both sides of

j g ( x ,  6 + 8 )  dv(x)  — j g ( x ,  0) dv(x)

8 ~  
f g(x,  0+ 8) - g ( x , 0 )

- J -----------*---------- ■

EXERCISES

1. Find the MLE and its asymptotic distribution for
(a) / ( x\0) = 0x9~xK{) < x < 1), © = (0,«>).
(b) f i x |0) = (1 -  0)0X, x = 0, 1, 2, . . . ,©  = (0, 1).

2. Find the likelihood equations and the asymptotic distribution of the 
MLE for the parameters of the gamma distribution, &ia, \8 ),

f ( x \ a ,  p )  = r ( ^ p a x “~ ‘ exP( ~ x / P ) I ( x  > 0),

© =  { ( a ,  p ) :  a  >  0 , >  0 } .

[Note: In the solution, you should encounter the digamma function, 
fXa) = d / da  log T(a), and the trigamma function, =F (a ) = 
(d / d a ) f ( a ).]

3. Find the likelihood equations and the asymptotic distribution of the 
MLE for the parameters of f (x\0{, 02) = exp{ — 02 cosh(jc — 0}) -  
£(02)) where the parameter space is 0  = {(01? 02): 02 > 0}, and where 
£ is the normalizing constant, £(02) — log exp{ — 02 cosh(jc)} dx.

4. Additivity of Information for Independent Random Variables. Let X  and 
Y be independent random variables with densities depending on 0 and



assume that Fisher information, J^ (0 ) and J*y(0), exists for both X  
and Y. Show that Fisher information for the pair, (X, Y \  is given by 
J ^ r (0) = J ^ ( 0) + JV (0).

5. Let X {, . . . , X n be a sample from the Cauchy distribution, £f(0, 1), and 
let X(l), . . . ,  X(n) denote the corresponding order statistics.
(a) Show that if X(n) > X(n_{) + 2n, then ln(0) has a root in the 

interval (X(n) -  1, X{n)).
(b) Show that P(X(n) > X(n_x) + 2n) converges to a positive limit as n 

tends to infinity. (See Example 3 of Section 15.)
6. What was thought to be a certain species of moth is attracted to a 

capture tank at rate A per day. One the first day, the number X  of 
moths caught was recorded. It is assumed that X has a Poisson 
distribution with mean A. Later, it was pointed out that this species is, 
in fact, two different similar species, so a second day of capture was 
undertaken. This time, the numbers Y{ and Y2 of moths caught of these 
species separately were noted. It is assumed that these are Poisson 
random variables with means A, and A2, where Aj + A2 = A, and it is 
assumed that X, Yu and Y2 are independent.
(a) Using X , Yl9 and Y2, find the maximum likelihood estimate of
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(b) Assuming Aj and A2 large, what is the approximate variance of your 
estimate of A,, as a function of A, and A2?

7. Let X x, . . . ,  Xn be a sample from the distribution with density

where 0; > 0 and 02 > 0 are unknown parameters.
(a) Find the likelihood function in terms of the sufficient statistics, 

^  = E XjKXj > 0) and S2 = - L X jI(Xj < 0). Note 5, > 0 and 
52 > 0 but Sj = 0 or S2 = 0 with positive probability.

(b) Find the maximum likelihood estimates 6{ and 02 as solutions of 
the likelihood equations.

(c) Find the Fisher information matrix.
(d) What is the joint asymptotic distribution of 0, and 02?

and A2.
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The Cram^r-Rao Lower Bound

In this section, we prove the information inequality. This inequality 
relates the variance of an arbitrary statistic to Fisher Information. When 
applied to an estimate of a parameter based on a sample from a distribu­
tion, this inequality is known as the Cramer- Rao lower bound. If an 
unbiased estimate attains the Cramer-Rao bound, it is automatically a 
best unbiased estimate. We will see that the bound for unbiased estimates 
may not be achievable, and even if it is achieved, the achieving estimate 
may not be admissible. In the investigation of the inequality for a vector 
parameter, we note the effect of not knowing the values of nuisance 
parameters.

We start with the simplest case, that of a one-dimensional parameter 
space, ©. Let X  (possibly a vector of observations) have density f(x\6)  
with respect to dv(x) for 0E0,  an open interval in Ul. When 
(d/dO) f(x\0)  exists as a random variable, Fisher Information may be 
defined as

finite expectation, g(9) = Ee0(X). Assume that (d/dO)f(x\0) exists and 
that 3 / 30 can be passed under the integral sign in //(x\ 6) dv(x) = 1 and in 
f0(x)f(x\0) dv(x) = g(0). Assume that 0 where J{0) is Fisher
Information. Then for all 0,

(2)
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Moreover, equality holds in (2) for some value 0 if and only if 
(d/80)log f(x\0) and 0(x) are linearly related.

Proof. Let ty(x, 0) = (d/d$)\og f(x, 0). Then, by the regularity condi­
tions,

EeV { X , 9 )  = f - ^ f ( x \ 0 ) d v ( x )  =0

for all 0, and

g' (0) = f e  ( x ) — f ( x \0 )d v (x )

= Ee0 ( X ) V ( X , 0 )  = cov„(0 ( X ) ,^ ( ^ ,0 ) ) .

Now using the inequality cov(t/, V)2 < var t/* var V (the correlation c- 
efficient is between -1  and + 1) with equality if and only if U and V are 
linearly related, we find

g' (0)2 <: var9 6 ( X )  • var„ 0),

which completes the proof because J*(0) = var0 WiX, 0). ■

Remark 1. The moreover part of this theorem, that equality holds in (2) if 
and only if (d/S0)\og f(x\0)  and 0(x) are linearly related, means that 
there is equality in (2) for some fixed 0 if and only if for that 0 there are 
constants, a! and b\  depending on 0, such that ^Kjc, 0) = br0(x) + a!. 
There is equality in (2) for all 0 if ad only if ^(jc, 0) has this form for all 
0; that is (after integrating on 0), logf(x\0) = 0(x)b(0) + a(0) + c(x). 
In other words, 0(x) achieves equality for all 0 in the information 
inequality if and only i f  0(jc) is a natural sufficient statistic of an exponen­
tial family

f (x \0)  = exp{0 (x)b(0)  + a(0)]h(x)  (3)

with respect to some measure dv(x).
As an example, the density of the beta distribution, <%e(a, 1), written in 

exponential form is f (x\a)  = a exp{(a -  l)log(jc) + log(a)}I (0 < x < 1) 
for a > 0. Thus, 0(x) = -log(jc) is an unbiased estimate of its expecta­
tion, 0(a) = Ea(-lo^iX))  = 1 / a , that achieves equality in (2) for all a. 
(See Exercise 1.) Moreover, -log(A") is the only function of X, up to 
addition and multiplication by scalars, that achieves equality in (2) for 
all a.
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Remark 2. It is interesting to view this inequality in terms of the bias of 
the estimate. The bias of 0(X) as an estimate of 0 is defined as 
b(0) = Ee0(X) — 0 = g(0) -  0. Then, because g'i.0) = 1 + b'(0\ we 
have as a lower bound on the variance of 6,

var* 0 ( * )  > (1 + b'(0))2/ J r(0).

If 0(X) is an unbiased estimate of 0, then 6(0) = 0, so that

var# 0 ( X)  > 0 ) 1

provides a lower bound for the variance of an unbiased estimate of 0.
If X i, . . . , X n is a sample of size n from f(x\0), then the Fisher 

Information computed from Tlfix^O)  is n times the Fisher Information 
based on a sample of size 1,

S n(9)  = v a r„ |-^ lo g n /(A 'J.|0)J = L  varo ( ^  lo g /(* y|0)J =nJ*;(0).

Combining these observations, we obtain a lower bound for the variance 
of an estimate 0(XU.. . ,  Xn) of 0 based on a sample size n from f (x \0 ),

0  + '> '('’))’ 
var» 9 <;'r........ *■> £ ’

where 6(0) is the bias of 0, and J*(0) is Fisher information in a sample of 
size 1. This inequality is known as the Cramer-Rao lower bound.

Example 1. Given a sample X u . . . , X n from the gamma distribution, 
&(a, /3), with a known, we obtain as a lower bound for the variance of an 
unbiased estimate p of P,

because ~K/3) = a / P 2 as computed in Exercise 2, Section 18. In this 
problem, Sn = £" Xj is a sufficient statistic forJ3 and Sn e  &(na, p)  so 
that ESn = nap,  and varSn = n a p 2. Hence, p = Sn/ n a  is an unbiased 
estimate of p and var  ̂p = (var Sn)/n2a 2 = naP2/ n 2a 2 = p 2/na.  Thus, 
P = Xn/ a  is ji best unbiased estimate of p. This result also follows from 
the fact that Xn is a complete sufficient statistic for p, and any function of 
a complete sufficient statistic is a best unbiased estimate of its expectation.
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Example 2. Suppose in Example 1 we want to find a bound on the 
variance of an unbiased estimate of 0 = 1 //3. We may use the information 
inequality directly with g(/3)=  1//3 or, equivalently, we may change 
parameters to 0 = l / /3  and apply Cramer-Rao. The former gives 
( -  \ / f$2)2p 2/ n a  = 1 / n a p 2 as a lower bound for the variance of an 
unbiased estimate of g(/3) = 1//3. Straightforward computations give 
E(\/S„) = 1 / ( na  -  X)fi and var(l/S„) = 1 / ( na  -  1 )2(na -  2)ft2. Since
0 = (na -  1 ) /Sn is an unbiased estimate of 0 = 1//3 and a function of a 
complete sufficient statistic, 0 is a best unbiased estimate of 0 = 1 //3, yet

2 /  M  1var0 = (na — 1) var — =
Sn J (na  — 2) p 2

This is strictly greater than the Cramer-Rao lower bound. This shows the 
Cramer-Rao bound may not be attainable.

Exam ple 3. Let X l9.. . ,  Xn be a sample from /jl, a 2) with /x known. 
To estimate g(a)  = a 2, Example 2 of Section 18 and the information 
inequality with g'(cr) = 2 cr give (2a)2/n(2/cr2) = 2 a A/ n  as a lower 
bound for the variance of an unbiased estimate of a 2. Since a 2 = 
(l/«)E7(Arl- -  /jl) 2 is a complete sufficient statistic and an unbiased esti­
mate of a 2, it is a best unbiased estimate of a 2. Moreover,

n
var o-2 = (1 / n 2) £  var(X{ -  /jl)2 = n • 2a 4/ n 2 = 2 a 4/ n , 

l

so the lower bound is attained. However, there a biased estimate that is 
better; that is, there is an estimate with uniformly smaller mean-squared 
error, namely a 2 = (l / (n  + 2))E"(A"/ — /z)2. Because the mean-squared 
error is the variance plus the square of the bias, we have

MSE0.(<r2) = 2 n a 4/ (n  + 2)2 + ( (na2/ (n  + 2) — cr2)2 = 2cr4/(w + 2).

This is less than MSE^Xcx2) = 2 a 4/n.  Just because an unbiased estimate 
has a variance that achieves the Cramer- Rao lower bound does not mean 
it is any good.

Generalization to a Vector Parameter. The generalization of the information 
inequality to fc-dimensional @ requires comparison of covariance matrices. 
Given two k X k covariance matrices Xi and X2, we say X { > X2 if
2 , — X2 is nonnegative definite, that is, if a'(X, -  X2)a > 0 for all 
^-vectors a.
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Theorem 19'. Let X  have density f(x\d) with respect to dv(x) for 0 ^  & an 
open set in R*, and assume that Fisher information, J*(0), exists and 
is nonsingular for all 0 G 0 . Let mx) be an r-dimensional vector such 
that g(0) = i^OCZ) exists on ©. Assume that (d/dQ)f(x\Q) exists and that 
d/d% can be passed under the integral sign in ff(x\Q) dv(x) and 
fQ(x)f(x\Q)dv(x). Then,

vare 0( A') > g (e)Jr(0 )‘ ,g(0)T,

where J*(0) is the Fisher information matrix and g(0) is the r X k matrix of 
partial derivatives of g(0).

Proof. Let 0) == ((< /̂<^0)log /(A:|0))r, a k vector. As before, 

£ ê ( * , 0 ) =O,  and g(0 ) « cove(6( JT), V(JT,0 )).

Hence

vare(0 -  g J^ O )'1̂ )

= vare 0 -  2 cove(0 ,g Jr( 0 ) " 1̂ )  + vare(g ^ (0 )_I*I')

= vare 0 — 2cove(0, *P')Jr(0 )_1gr + 1 vare 1SK/(0)- 'gr 

= vare 0 -  2g ^ (0 ) “1gr + g ^ (0 ) ~'^(O)S(0)  ~'gr 

= vare 0 -  gJ^O) “ 'gr > 0 . ■

Remark 3. The Cramer-Rao lower bound for the variance of an unbiased 
estimate of a vector 0 based on a sample of size n is, since g(0) = I,

var,

Note the effect of nuisance parameters. If it is desired to estimate 0l 
and the rest of the parameters are known, the lower bound is 1 
where ^ , ( 0) is the upper left component of J*(0). If the other parameters 
are unknown, the lower bound is ^ fu(0)/n where J^CO) is 
the upper left component of It may or may not happen that

1 / f u(B).
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Example 4. In the JK a 2) Example 2 of Section 18, we found

In this case, there is an unbiased estimate of /z, namely, Xn, whose 
variance achieves the lower bound of a 2/ n , this bound being the same 
whether or not a-2 is known.

Example 5. In^the &(a, (3) example of this section, we saw that for a 
known, ft = Xn/ a  is a best unbiased estimate of /3 achieving the 
Cramer-Rao bound. If a is unknown we cannot use this estimate. In fact, 
because the inverse of Fisher information (Exercise 2 of Section 18) is

no unbiased estimate of /3 can have a variance smaller than 
f32¥(a) /n(a¥(a)  — 1), which îs greater than f$2/na ,  the bound when a 
is known, obtained by using Xn/a .

EXERCISES

1. Let X y, . . . , X n be a sample from the beta distribution, & e(0,1), 
f(x\0) = 0xd~}I(O <x < 1). (a) Find the MLE of 1/0. Show j_t is 
unbiased and achieves the Cramer-Rao lower bound, (b) Show Xn is 
an unbiased estimate of 0/(0 + 1). Compare its variance to the 
Cramer-Rao or information inequality bound.

2. Consider the bivariate normal with density

Hence,

-  i
V 1 [ « /j6 2 —1//3

« # ( « ) -  1 - 1//3 # ( a )  ’

2(1 -  p 2)

2

- 2 p
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0 ) =

x

\ /a?
P/&\

0
0
0

1

^ ( 0 ) -I
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( P'V P'2> a2, p). Checking my computations:
I
P2

* P/ (ri(r2 0 0 0
<7*2 1/(722 0 0 0

0 (2 -  p2)/<ri2 - p 2/<T\(T2 -P/o' 1
0 ~P2/<r 1&2 (2 -  P2)/(r2 -P /* 2
0 ~P/<r l -p/<r2 (1 + p2)/(1 -

pcr]cr2 0 0 0
p(T\0-2 0 0 0

0 0 of/2 p2o-,0-2/ 2 pa,(1 -  p:
0 0 p2o-,<r2/ 2 <r22/2 po-2(l -  p
0 0 p<7,(1 -  p2)/2 P<r20  ~ P2) / 2 (1 - p 2

3. Assuming this is correct, find a lower bound for a sample of size n, for 
the variance of an unbiased estimate of:
(a) /u} -  fx2,
(b) /Xq/tTj,
(c) cr12 = paxa2.

4. Let X u . . . , X n be independent random variables having Poisson distri­
butions with means exp{0zy},. . . ,  exp{0z„}, respectively, where zv . . . ,  zn 
are known real numbers. Find the Cramer-Rao lower bound for the 
variance of an unbiased estimate of 0 based on X x, . . . ,  Xn.

5. Suppose that X  has a uniform distribution on the interval (0, 0), where
0 e  © = (0, oo).
(a) Note that 3/00 cannot be passed under the integral sign in 

ff(x\0) dv(x) = 1.
(b) Show that var0((<?/<?#) log f (X,  0)) = 0, so that the Cramer-Rao 

bound is infinite.
(c) Note that 2X  is an unbiased estimate of 0 and has finite variance.
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Asymptotic Efficiency

In this section, we define a sequence of estimates to be asymptotically 
efficient if the Cramer-Rao lower bound to the variance is achieved in the 
limit. In an aside, we note the phenomenon of superefficiency. But our 
main objective is to see how to improve a subefficient sequence of 
estimates by the method of scoring, and to show that one application of 
scoring is usually enough to achieve asymptotic efficiency.

Under the conditions of Theorem 18, the MLE 0W was seen to be 
asymptotically unbiased in a reasonably strong sense, because whatever be 
the true value of 0 , yfn(0W — 0) is asymptotically normal with mean zero. 
In addition, the asymptotic variance of the MLE is (1 /nX>K0) “1 which is 
the Cramer-Rao lower bound for the variance of any unbiased estimate of
0 based on a sample of size n.

D efinition. Let X l9X2,.-.  be i.i.d. random variables with distribution 
depending upon a parameter 0 e  ©. A sequence of estimates {§„} of 0, 
with 0„ a function of X [, . . . , X n, such that }fn(Qn — 0) 2(0))
whatever be the true value of 0, is said to be asymptotically efficient if 
S(0) = J t 0) J for all 0 e 0 .

By definition, the MLE is asymptotically efficient under the conditions 
of Theorem 18. Certainly, no sequence of unbiased estimates can have a 
smaller variance asymptotically for any 0. We would like to say that no 
sequence of estimates satisfying the asymptotic normality condition can 
have a smaller variance asymptotically for any 0. That this is not quite true 
is seen in the following example due to J. L. Hodges. (See Le Cam (1953).)
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Exam ple 1. [J. L. Hodges] Let 0n be MLEs (in one dimension), such that 
)fn(On — 0) ■5^(O,wK0)“1), whatever be the true value of 0, and let 0O 
be an arbitrary value of 0. Define

. _ ( 0O, if v'm \0n -  0O| < 1,
I * 4/— ,
{ 0n , i f  y f n \ 0 n -  0 O\ >  \ .

If 0 =£ 0O, then

pe(0n * 0n) < p e( fa\en - 0 o\ < i )

<pe( \ 0 - 0 o\ -  \0„ -  0\ < 1/ V )

= pe( \ \ - e \ >  \ 0 - 0 o\ -  l / ^ r )

= P9{jn\0n -  0\ S: ifn \ 0 -  0O\ -  {n ) -» 0.

Hence, 6n and 6n are asymptotically equal, and

v« ( i  -  o) ^ j r(o , j r(0)~1y

If 0 = 0O, then

P e ii  = en) = P 0j f t i \ e n -  e0i < i )

-  0ol < v^) 1.

Hence, when 0 = 0O, \/n(0„ -  0O) -* Ji. 0,0). We find 'fn(0n — 
0) 0, a 2(d)) where

\o , e -  e0.

Thus, 0n is a superefficient estimate.

Improving Subefficient Estimates. The method of moments ordinarily pro­
vides asymptotically normal estimates. Sometimes these estimates are 
asymptotically efficient [for example, in estimating 0 in <^(0) by Xn, and 
( / jl, o’2) in J /XfjL,o’2) by (Xn, s2), the method of moments and MLE 
coincide] but usually they are not. One would like to use MLE, but this 
has the disadvantage of being difficult to evaluate in general. The likeli­
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hood equations, /„(0) = 0, are generally highly nonlinear and one must
resort to numerical approximation methods to solve them. One good 
strategy is to use Newton’s method with one of the simply computed 
estimates based on the method of moments or sample quantiles as the 
initial guess. This method takes the initial guess, 0 (O), and inductively 
generates a sequence of hopefully better and better estimates by

One simplification of this strategy can be made if the Fisher information 
matrix is available. Ordinarily, (1 /n)in(Q(k)) will converge as n oo to 
—JKQ) and so can be replaced by -<S(Q(k)) in the iterations.

§(*+d = §<*> + s ( e (k})~l( i / n ) i n(e(k)), k = o , i , 2 , . . . .

This is the method of scoring. The scores, JtQ(k))~l(l /n)ln(Q(k)), are the 
increments added to an estimate to improve it.

E xample 2. ( Logistic) Let X {, X 2, - - ' , Xn be a sample from density

e (A *  ■') =  e (*) -  i'„( e(i))" 1 /„( e(*>), * - 0 , 1 , 2 , . . .

f (x \6)  = ----------------------------2 -
(1 + exp{ —(x -  0 )})

exp{ —(x — 0 )}

The log-likelihood function is
n n

U 0 )  = - £ ( * / -  <0 -  2 £  log(l + exp{-(Z;. -  0 )}),

and the likelihood equations are

n  , 1 + exp{A"y — 0 }  2

Newton’s method is easy to apply here because

Even easier is the method of scoring, since JtO) = j  [^(0) is a constant 
for location parameter families of distributions.] As an initial guess we 
may use the sample median, mn, or the sample mean, Xn. The asymptotic



distributions are

sr ( 1
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4n(mn -  0) - * j i  0, 2 =J%0,4),
m m

Jn( Xn -  0) 0, ^ - J  =^1(0,3.2899...).

Since for the MLE, dn,

yfc(0n -  0) ^ > j \ O , j r ( 0 y l) 0,3), 

it would seem worthwhile to improve mn or Xn by an iteration or two of

0 <*+i> =  § ( * )  +  3 2 " 1 
1 - - En i exp {Xj -  0(k)} + 1

E x a m p le3. (Gamma) Let X {, . . . , X n be a sample from density 

/(jc|ar,j8 ) = l / ( r ( a ) ^ “) exp{ —x/f3}xa~lI(x > 0), 

where a > 0 and /3 > 0 are unknown. The log-likelihood function is

/„(«,/?) = —n log T( a ) — na  log (i — (1//3) E -^  + (a  — 1) log FI Xj.
1

The likelihood equations are
n

- n F (a )  -  n log £ + E  l°g -*} =
i

na  1 "
------ + —7 T.X,  = 0,

P P 1
where -F(a) is the digamma function. This simplifies to

aP — Xn

a) + log /3 = -  E  log Xj.



To solve these equations, we may use Newton’s method with
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L ( a ’ P )  = - «

=F(a)

1

H

1

~P

2X„ -  aj3
P 3

where f ( a )  is the trigamma function, or the method of scoring with

1

S ( a , i 8) =
f(«)

1

~P

P

P
The scores are 

S ( a , p y '  - ln( a , p )

1

1

DL — j8

P  /32# ( a )

-  £  log Xj -  F( a ) -  log 0

1 _ a
J l X n ~~p

oe¥(a) -  1

a 1
-  L  log Xj -  aHF(a) -  a log 0 -  - ( * „  -  at/B)/I j p

“  E  log A} + 0 F (a ) + P log 0 + * (« )(* »  -  a

As initial values, the method of moments may be used. This entails solving 
Xn = and s\ = a/32 for a and /3: a = X 2/s j  and /§ = s2x/ X n.

In this example, one of the likelihood equations can be solved easily, 
a/3 = Xn, for /3 in terms of a say, /3 = (1 / a ) X n, which may be substi­
tuted into the other equation. This gives one equation to be solved for a : 
r - (a )  -  log a = (1 /ri)Ysi l°g ^  — log Xn. Newton’s method on this 
equation leads to the iteration:

( l /n )  E  log Xj -  log Xn -  F( «<*>) + log a<*>
< *+ »  =  « (*>  +  1a (*)



Starting with <*(0) = X 2/ s 2, this leads to the same sequence of estimates_as 
above with initial values as given, since we will always have a{k)p (k) = X n.

Once is Enough. In improving asymptotically normal estimates by scoring, 
one iteration is generally enough to achieve asymptotic efficiency!

Theorem 20. Let 0n be a strongly consistent sequence such that yfn( 0n -  
0) — 2 (0)) when 0 is the true value of the parameter, where 2 (0) < 00 
for all 0. Then under the assumptions of Theorem 18, both estimates

= e„ -  /;(e„)_1/„(e„) and e„* = §„ + j [ b n) ~ \ \ / n ) i n{bn)

are asymptotically equivalent to the MLE, and hence are asymptotically 
efficient.

Proof. Let 0n be a strongly consistent sequence satisfying /n(0„) = 0. 
Expanding /n(0n) about 0n,

4 (e„) = /„(§„) + f X ( e „  + «(e„ -  e„)) dv(bn -  e„),

and using

(ei0 -  e„) = (®„ -  e„) -  lin(*n),

we find
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-  e„) = [i - / ; (§ „ )  jf ^ (e , + «(§„ -  e„))^Jv^(e„  -  e„).

Because as in the proof of Theorem 18, (1 / n)ln(Qn) -~K0) and

- / ô (®« + -  ®«))dv ^  - - w

from the Uniform Strong Law of Large Numbers, the term in square 
brackets converges to zero almost surely. The last term, }fn(Qn ~0„) = 
M K  -  e) -  iMe„ -  e), is bounded in probability because both terms 
are asymptotically normal. Hence, {n (0(1) -  0n) ^  0 as n -> oo. The 
argument for 0* is identical. ■
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EXERCISES

1. Show that Fisher Information is
(a) |  for the logistic distribution Jz?(0, 1).
(b) <y(0) = j  for the Cauchy distribution W(0,1).

2. Let X l9. . . , X n be a sample from the Cauchy distribution, ^(0,1). 
Find the likelihood equations. Find the scores. What is the asymptotic 
distribution of the median? What is the asymptotic distribution of the 
median improved by scoring?

3. Let X {, . . . , X n be a sample from a mixture of gamma distributions:

f (x \0)  = [(1 -  0)e’x + 0xe~x]l  (x > 0),

where 0 < 0 < 1. What is the estimate of 0 given by the method of 
moments? What is its asymptotic distribution? Show how to improve 
this estimate by one iteration of Newton’s method applied to the 
likelihood equation.

4. Let X {9. . . 9X n be a sample from an exponential distribution with 
density / ( x\0) = Oe~0xI(x > 0), where 0 > 0 is an unknown parameter 
to be estimated.
(a) Find the asymptotic efficiency of 0n9 the estimate of 0 given by the 

method of moments.
(b) Show that, out of all distributions with mean 1/0 and variance 

1 /02 that satisfy the conditions of the Cramer-Rao inequality, 
Fisher Information is minimized by the above exponential distribu­
tion.
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Asymptotic Normality 
of Posterior Distributions

Bayes estimates provide another class of asymptotically efficient esti­
mates. We assume that 0 is chosen from © an open subset of Uk 
according to a prior density g(0) with respect to Lebesgue measure, d0, 
and that g(0) is continuous and positive on ©. The posterior density of 0, 
given a sample X {, . . . ,  Xn from f i x 10), is

, .  ,  ( n / ( * , i e ) ) s ( » )  L„(e)g(e) 
g ( e u , , . = — —--------- r---------  = ------------------. 

/0 ( n / ( ^ l e ) ) g ( 0 ) dQ JBLn(9)g(9) do

The conclusion of the Bernstein-von Mises Theorem below is that this 
posterior density is close to a normal density centered at 0n, the MLE of 
Theorem 18, with variance (1 /w)J*(00)_1 when 0O is the true value. More 
precisely, the conditional density of ft = y[n(d — Qn) given the data,

L „ ( ( i / ^ ) d  + e„)g - ^ d  + e„
f n(Q\xt, . . . , x n) = "

/ l „ ( (  i/VJT)« + 0„ ) * ( ( i / ^ >  + e„) d*

approaches the density of ̂ tO ,^ (0o)_1) as n -> oo,

|de t ^ ( e 0) | l/2 

(2 v)k
» e x p { - lO ^ (60)O}.

Note that this limiting posterior distribution is independent of the prior 
distribution, g(0). This version of the theorem is due to Le Cam (1953).
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Theorem 21 (Bernstein-von Mises). Assume that g (0 )  is continuous and 
that g (0 )  > 0 for all 0 e 0 .  Under the assumptions of Theorem 18,

L " ^ n +( & { ^ + 9/ }/n )  exp {-|dD r(e0)d }g(e0),
L n \ y n )

where 0n is the strongly consistent sequence of roots of the likelihood equation 
of Theorem 18. If, in addition,

/ L " ( 9f +  d / ^ ) d *  ^  /  e x p { - } » ^ ( e 0 ) d }  d %g ( %) ,
Ln(Qn)

then

f \ f n( Z \ x l , . . . , x n) - c p ( * ) \ d V ^ O .

Proof. L„(0) = exp{/„(0)}. Expand /„(0) about 0„:

/„(») = i n ( k )  +  /„(e)(e -  §„) -  n(e -  0„)ri„(0)(0 -  ©„),
where

l n(0 ) = ---- f l f lvl(On + u v ( Q  -  0„)) dudv.
n JoJo

With probability 1, /„ (0W) = 0 for n sufficiently large, so

= ex p (-n (0 -  0„)r in( 0)(0  -  0„)\.
Ln['ln) V '

Since (1 / « ) / n(0 )  converges uniformly to Ee iji(^, 0 ) in a neighborhood of
0 O (as in the proof of Theorem 18), and Ee ijKA", 0 ) is continuous in 0 and 
equal to - JK00) at 0 = 0O,

I
/„(§„ + 9/i fn ) = ---- f 1 f ' v l ^0„ + ) dudv ^Jr( 0o).

Hence,
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= e x p { - i« r I„(0„ + d /i/n )d}g (e„  + 9 / t/H) 

exp{ -  id  l f (  0O ) « }g( 0O ).
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The final sentence of the theorem follows directly from Scheffe’s Theo­
rem. ■

Exam ple. Let X l9. . . , X n be i.i.d. ^(1,1/0), / U | 0 ) =  Oe~exI (x >  0) 
and let the prior distribution be ^(1,1), g(6) = e~eI (0 > 0). The poste­
rior distribution is

g(6\xi , . . . , x „ )  a 6" expj-el^Z,.  + l j j / ( 0 >  0),

namely &(n + 1,1/(E" Xt + 1)). Because ln(6)_= n log 0 -  0 £ ” Xi9 and 
ln(6) = (n / 6 ) — £" Xi9 the MLE is 6n = 1/Xn. Fisher Information is 
J*(0) = 1 /0 2, so the Bernstein-von Mises Theorem says that the posterior 
distribution of yfn(6 -  l / X n) should be asymptotically J^O, 0q). This can 
be seen directly. In j8 ), p is a scale parameter, so the distribution of 
(L" Xt + 1)0 given X l9. . . ,  Xn is &(n 4- 1,1), which being the sum of 
n + 1 independent &(\9 l)s is asymptotically normal with mean n + 1 and 
variance n + 1, from the Central Limit Theorem. That is,

( «  + !)» - ( «  + ) »  ■ 
i t m  '  ’

Since 1/0O, we may conclude almost surely,

and hence

i - J  ^ ( 0, 0O2).

The Bernstein-von Mises Theorem condudes something slightly stronger, 
namely, that the density of ]fn(d -  (1 / Xn)) converges almost surely to the 
density of */K0, 0q )•

Asymptotic Efficiency of Bayes Estimates. Suppose the loss is squared error, 
L(0, a) = (0 — a)r(0 -  a), so that the Bayes estimate given a sam­
ple X l9. . . 9Xn is 0 „ = £ ( 0 \Xv . . . 9Xn). Assume we can interchange 
expectation and the limit in the Bernstein-von Mises Theorem; that is, 
assume that the conditional expectation of d  = \/n(0 -  0n) given 
X }9. . . 9Xn converges almost surely to zero. Then \/flT(0n — 0„) 0 so
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that the Bayes estimate and the MLE are asymptotically equivalent (0n is 
much closer to 0n than to 60). Hence,

- e 0) Z j \ o , s { 9 0y xy,

that is, the Bayes estimate is asymptotically efficient.
Using this, we can give a stronger version of the asymptotic optimality of 

asymptotically efficient estimates. Although an asymptotically efficient 
sequence of estimates can be improved asymptotically at a single parame­
ter point by the method of Hodges, and similarly for any finite set of 
points or even a countable set of points, such estimates cannot be 
improved on a set ofpositive measure. Suppose that 0* is a sequence of 
estimates such that ]/n(0* -  0O) — 2 (0O)) when 0O is the true value 
of 0 and that 2 (0) <~K0)~1 for all 0 and 2 (0) <~K0 ) -1 for 0 in a set 
of positive measure. Then again assuming interchange of expectation and 
limit,

/ Et (Q*n -  0 )2g(0 ) d e<  I E e(0„ -  0 )2g(0 ) do

for n sufficiently large, contradicting the assumption that 0n is Bayes with 
respect to g(0) dO. In other words, no sequence of estimates can improve 
asymptotically on the MLE (or any asymptotically efficient estimate) on a 
set of positive measure.

EXERCISES

1. Let X l9. . . ,  Xn be a sample from the Poisson distribution with proba­
bility mass function, f ( x \9) = e~ e6x/x\ for x = 0,1,2,... , where 9 > 
0. Suppose that the prior distribution of 9 is the inverse power 
distribution with density, g(9) = 1/(0 + l)2 for 9 > 0. What approxi­
mately is the posterior density of 9, g(9\X{, . . . ,  Xn)9 for large nl  In 
what sense is this approximation valid?

2. (A Bernstein-von Mises type of result for a nonregular distribution.) 
Let X {, . . . , X n be a sample from the uniform distribution on the 
interval (0, 9), where 9 e  © = (0, °o). Assume that the prior distribution 
of 9 has a density, g(9), that is bounded, continuous, and positive on 
©. Let 90 denote the true value of 9, and let Mn = max{A"l5. . . ,  Xn} = 
MLE of 9. Show that the posterior density of ft = n(9 — Mn) given 
X l9. . . , X n converges to the density of the exponential distribution with 
mean 0O.
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Asymptotic Distribution 
of the Likelihood Ratio Test Statistic

Let X l9. . . ,  Xn be a sample from density f i x |0) where 0 c  © c  Uk. 
The likelihood ratio test provides a general method for testing H0: 0 e  ©0 
versus H{: 0 e  © — @0 for a given subset @0 of ©. This tests rejects H0 
when the likelihood ratio test statistic,

sup n / ( * , i e )
x _ 6e®0 1 ^n\“n) /1X
n n ~ t (a \ * '

sup n /(^ ;l® )
Oe© l

is too small, where 0* is the MLE over ©0, and 0n is the MLE over @. 
When the sample size is large, evaluation of a cutoff point can be 
facilitated in many important situations by the following theorem. These 
situations occur when ©0 is a ik — r)-dimensional subspace of ©. Writing 
the components of the vector 0 e  as 0r = (01, 02, . . . ,  0*), we assume 
the null hypothesis is of the form

H0: 0 1 = 02 = -  = 0r = 0 (2)

where 1 < r < k. More general situations, in which H0 is of the form H0: 
gj(0) =•••== gr(0) = 0 for some smooth real-valued functions gl9. . . ,  gr, 
can be put into this form by a reparametrization. The integer r represents 
the number of restrictions under the null hypothesis.
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Theorem 22 [Wilks (1938)]. Suppose the assumptions o f Theorem 18 are 
satisfied and that H0: 0 l = 0 2 = ••• = 0 r = 0 where 1 < r < k. Suppose 
that the true value 00 satisfies H0. Then

- 2  log An ^*Xr-  (3)

Proof. - 2  log A„ = 2[/„(©„) — /„(0* )] where 0„ = MLE over ©, and 0* = 
MLE over ©0. Expand /„(0*) about 0„:

= *■(•«) + 4 (e „ ) (e * -  ®») -  » ( • :  -  e n) Ti„ (e n* )(e n* -  •„ ),

where

1 1 
I«(0* ) = -  - + My(0* -  • - ) )  ^  ^W •'0 *'0 ^

as in the proof of Theorem 18. For sufficiently large n, /„(6„) = 0, so

-21og A„ = 2n(0* -  0„)TI„(O*)(O* -  ©„)

~ n ( 0 * - 0 „ ) V ( 0 o)(0„*-0„). (4)

If H0 were simple, say H0: 0 = 00, then 6* = 00 and we would be 
finished, because we know ]fn(Qn — 00) J*(60) _1). To find the
asymptotic distribution of }fn(6* -  0rt) in general, expand /„(0*) about 0„:
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Thus

^ («„* -  o„) ~ e0) -'  ) (5)

and

-21og A„ ~ ^ i n(Q*)Tj r ( 0 oy l ^ i n( K ) -  (6)



To find the asymptotic distribution of /„(8*), expand about 0O:
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1 . 1 . 1
-rUK) = - r 'n (O o ) + - /  + w(®: -  %))dv̂ (Q* -  e0).yn yn n Jq

( 7 )

Partition «X00) into four matrices,

r X r r X ( k - r )
G,

(k  — r) X r ( k  — r)  X (k  — r)

and let

G l

H
0 0
0 G J1

Note that the last k — r components of /„(©*) are zero, so that H/„(0*) = 0 
and

H ^ U ,( e ° )  ~ HJ^(0o) ^ ( 0„* -  0O) = \fn(Q* -  0O)

since the first r components of 0* and 0O are zero. Substituting into 
Eq. (7), we find

~ [i - ^ ( o o)H]-^/„(0o).
yn yn

From the Central Limit Theorem,

- ^ / „ ( 0O) = v / ^ / „ ( © 0)) ^ O , J ^ ( 0o)).

Hence,
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so that from Eq. (6),

- 2 log A„ ^  Yr [l - ^ ( 0 O)H ]r^ e 0) _ ,[l - ^ ( 0 o)H]Y

= Yr [^ r(0 o) “ l -  H]Y [because H Jr(0 o)H = H]

= Z ^ ( 0 o) 1/2[ ^ ( e o) - '  -  h ] ^ ( 0 o) 1/2z ,

where Z =J*(00) ' l/2 Y ^Ji O,  I)). It is easily checked that the matrix 
P 00)1/2[ J t0 0)_1 -  H [J t0 0)1/2 is a projection and that rank(P) = 
trace(P) = trace(j^00) [ j t0 0)-1 -  H]) = traced - J* (0 o)H) = r. There­
fore — 2 log A„ Z TPZ e  ^r2, as was to be shown. ■

Note: The maximum-likelihood estimates that appear in the definition 
of Xn may be replaced by any of the efficient estimates, such as those of 
Sections 18 and 19, without disturbing the asymptotic distribution of 
- 2  log A„.

E xam p le  1. Let X {, . . . , X n be a sample from J / {  / jl, c r2). Find the likeli­
hood ratio test of the hypothesis H0: /jl =  0, a  = 1. Here r = 2 and

since the maximum-likelihood estimates of i / i , a )  under © are jti = X,  
and a 2 = s2 =  ( 1 /« ) E " (^  -  X ) 2. Hence,

Ln( A1? cr) nz— exP

so that

2 log A„ = - n  log s2 + Y , X f  ~ n % >  x l

when H0 is true. At the 5% level, we reject H0 if

- 2  log A„ > xlo.os = 2 log 20 = 5 .99 ... .
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Example 2. Let X {, . . . , X C have a multinomial distribution based on n 
trials, each resulting in one of c outcomes (cells) with respective probabili­
ties p c, where p t > 0 for all i, and EJ p{ = 1. Thus,

provided X t are integers > 0, and EJ X t = n. Consider testing the hy­
pothesis H0: p { = ••• = p c = 1/c. Even though it appears that there 
are c restrictions, we have r = c — 1 because of the original constraint 
EJ Pi — 1. The maximum-likelihood estimates of the p t under © are 
Pi = Xj / n  for i = 1 , . . . ,  c. Hence,

under / / 0. The usual test of / / 0 in this situation is of course Pearson’s \ 2.

Power. We may also find an approximation to the power of the likelihood 
ratio test at an alternative close to the null hypothesis. Suppose that 0 is 
the true value and that 0O is the parameter point in HQ that is closest to 0. 
Define 8  = {n (0  — 0 O). As in the discussion of the power of Pearson’s x 2 
test, we take 0 to be converging to 0 O in such a way that 8  is fixed. In the 
proof of Theorem 22, this changes the limiting distribution of 
(1 / ]fn)ln(00). It may be found by the expansion,

As before, if we let Z = J X 0 0)~1/2 Y, then - 2  log An ^  Z r PZ, where 
P =~K0o)1/2[~K0o) 1 “  H[J*t0o)I/2 is a projection of rank r, but this 
time Z G j { j ? ( 0 0y /2 8,1)) so that (see Exercise 4),

and

0) =  - r t i * )  + ^ - ( e ) V » ( e 0 -  «)vn yn n

*  Y  0, J^(0O)) + ^ ( 60)8  = ^ ( ^ ( 0 0) 8 , J ^ 0 O)).

- 2 log A„ Zr PZ e  x?(<p)>
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where the noncentrality parameter <p is

<p = 8 ^ ( e o) ,/2PJ^(0o) I/28 = 8Or(0o) [ j r(e o) ' 1 -  h ]^ (0 o)8.

If we use the form of J*(0) in terms of the matrices Gl9 G2, and G3, the 
noncentrality parameter <p reduces to the simpler form,

9  =  8 ^ 6 ,  - G 2G j ' G j ) 8 r,

where 8r is the vector of the first r components of 8. Note the effect of 
nuisance parameters. If 0r+l, . . . , 0 k were known, the noncentrality pa­
rameter would be 8^Gj8r.

E xam ple 1 (continued). Let us find the approximate power at the alterna­
tive fL = 0.2, a  = 1.2, when n = 50 and the test is conducted at the 5% 
level. First we compute 8r  = yfn(0.2,0.2). To compute <p, recall that 
Fisher Information for the normal distribution is

/x, a )
\ / c j 2 0

0 2 / a 2

In this problem the matrix H is empty, so that <p = SO*(0,1)8 = 6. From 
the Fix Tables (Table 3) of the power of x h  we find a power of 
approximately /3 = 0.58. To get a power of 0.9 at this alternative, we need 
<p to be about 12.655, so we must increase n to about 106.

Note that in the calculation of the information matrix in <p we used the 
null hypothesis value, a  = 1, but from the point of view of the asymptotic 
theory, the true value, a  =  1.2, should serve as well. However, this would 
give a smaller value of <p, (p = 4.167, and a power of about f3 = 0.43. The 
sample size is not yet large enough to smooth out this difference. Perhaps 
a better approximation to the power would be given using the compromise 
value, a  = 1.1 (/3 = 0.50).

EXERCISES

1. Let X i9. . . , X n be a sample from .sKfJix, a x2) and F j,...,Y „ be an 
independent sample from ay2). Find the likelihood ratio test for 
testing H0: /jlx =  yuy and a 2 = a 2 and state its asymptotic distribution.

2. Let X {, . . . ,  X n be a sample from the exponential distribution with 
density f ( x \ 6 )  = 6 exp{ -  Ox}I (x > 0) and . . . ,  Yn be an indepen­
dent sample from f ( y  \/jl) =  p,exp{ — ny}!  (y  > 0). Find the likelihood 
ratio test and its asymptotic distribution for testing H0: jjl — 20.
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3. For i = 1 ,...,& , let X n, X i2, . . . ,  X in be independent samples from 
Poisson distributions, ^ (0 ,), respectively. Find the likelihood ratio test 
and its asymptotic distribution, for testing H 0: 6X = 02 = ••• = 0k.

4. Show that if Z 8,1)) and if P is a symmetric projection of rank r, 
then Z r PZ £  ^r2(8r P8).

5. (a) Consider the likelihood ratio test of / / 0: /jl = 0 against all alterna­
tives based on a sample of size n = 1000 from a normal distribution 
with mean /jl and unknown standard deviation a.  What is the 
approximate distribution of — 2 log \ n if the true values of the 
parameters are /jl = 0.1 and <r= a 0 for some fixed <r0?

(b) Suppose instead the distribution is &(a,  ft) and H0: a  = 1 with ft 
unknown. What is the approximate distribution of -  2 log \ n if the 
true values of the parameters are a  = 1.1 and ft =  /30? (Note that 
this distribution is independent of /30.)

6. One-Sided Likelihood Ratio Tests. The likelihood ratio test against 
one-sided alternatives is more complex and is no longer asymptotically 
distribution-free under the null hypothesis. This may be illustrated in 
testing H0: 0 = 0O when 0 is two-dimensional. Make the same assump­
tions as in Theorem 22, with k =  r = 2 and take 0O = 0.
(a) Let \ n denote the likelihood ratio test statistic for testing H0:

0 = 0 against //,: 0, > 0, 02 unrestricted. Show that under the null 
hypothesis, —2 log \ n —► 0.5x f  + 0.5^22 (the mixture of a X\ and 
a Xi with probability 0.5 each).

(b) In testing / / 0: 0 = 0 against H x: 6X >  0, 02 > 0, 0 =£ 0, show that 
- 2  log Xn ^ + pd0 + 0.5*2 + (0.5 -  p ) x l  under H0, where 80 is 
the distribution degenerate at 0, and p  = arccos( p) /2i r ,  where p 
is the correlation coefficient of the variables whose covariance 
matrix is ~K0O)- Thus the limiting distribution of -21ogA n de­
pends on the correlation of the underlying distribution.
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Minimum Chi-Square Estimates

In this section we treat estimation problems by minimum distance 
methods, using a general theory of quadratic forms in asymptotically 
normal variables. This theory contains minimum x 2 methods as a particu­
lar case.

We observe a sequence of d-dimensional random vectors Z n whose 
distribution depends upon a fc-dimensional parameter 0 lying in a param­
eter space © assumed to be a nonempty open subset of R* where k < d. 
It is given that the Z n are asymptotically normal;

V^(z„ -  A (0)) ^ / r ( o , c ( 0 ) ) ,  ( i)

where A(0) is a d  vector and C(0) is a d X d covariance matrix for all
0 e  ©. We make two assumptions on A(0):

A(0) is bicontinuous (that is, 0„ -> 0 <=> A(0„) -» A (0)), (2) 

A(0) has a continuous first partial derivative, A (0), offullrankk. (3)

We measure the distance of Z„ to A(0) through a quadratic form of the 
type

0 ,( 8 )  = n(Z„ -  A (0 ))r M (0)(Z„ -  A (0)), (4)

where M(0) is a d X d covariance matrix. We assume

M (0) is continuous in 0 and uniformaly bounded below in the sense 

that for some constant a > 0 we have M (0) > a l  for all 0 e  ©.

( 5 )

151
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A minimum x 2 estimate is a value of 0, depending on Zrt, that 
minimizes Qn(0). With only the above assumptions, a minimum x 2 esti- 
mate may not exist. We avoid the existence question by defining 0*(Zn) to 
be a minimum x 2 sequence if

Qn(K) -  jn f 0 , ( 0 )  i  0,

whatever be the true value of 0 e  0 .
The main theorem states that every such minimum x 2 sequence is 

asymptotically normal, and we find the choice of M satisfying (5) that gives 
the minimum asymptotic covariance matrix uniformly for 0 e  ©. We will 
also see that when Zn is the vector of sufficient statistics from an 
exponential family (thus including the multinomial distributions), the 
resulting sequence of estimates is asymptotically equivalent to the maxi­
mum-likelihood estimate and is therefore asymptotically efficient.

As an illustrative example, consider Pearson’s^*2. In the notation of 
Section 9, d  = c is the number of cells, Zn = X„ is the vector of cell 
relative frequencies, and A(0) = p(0) is the vector of cell probabilities, 
written as a function of some ^-dimensional parameter 0, k < c — 1. 
Pearson’s * 2 is then exactly Q„(0) of (4), where M(0) = P _,(0) is the 
diagonal matrix with the inverse cell probabilities down the diagonal. 
Moreover, (1) is satisfied with covariance matrix

C(8) = M (0) -  A (0)A (0)r . (6)

The question arises: Can we obtain a better estimate using a matrix, M(0), 
different from P~ 1 (0)?

To simplify the notation of the main theorem, let 0O denote the true 
value of the parameter, and let A, M, and C denote A(0O), M(0O), and 
C(0O), respectively. The proof is deferred to the end of this section.

Theorem 23. For any minimum x 2 sequence, VaT(0* — 0O ) XX
where

X  =  (Ar M A)_1Ar MCMA(Ar M A)"1. (7)

The problem now is to choose M to get the smallest asymptotic 
covariance matrix for }fn(d* -  0O)- Let 2(M) denote this matrix as a 
function of M.

Corollary. If there is a nonsingular d  X d matrix M 0 such that C M 0 A = A, 
then 2 (M 0) = (Ar M 0A)_1. Moreover,

X(M 0) < 2 (M ), for all M.
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Proof.

£ (M 0) =  (Ar M0A) *Ar M 0CM0A(Ar M0A) = (Ar M0A)

Moreover,

o < (m a (a7'm a )" 1 -  M0A(Ar m 0a ) 'j 

x c ( m A(Atm A)~' -  M0A(Ar M0A )_ l) 

= (A7'm A )" iA7'm c m A(A7'm A )~ i -  (Ar M0A )-1 = X(M ) -  S (M 0). ■

Note: If C is nonsingular, then one may choose M0 = C " 1 to obtain the 
best asymptotic covariance. More generally, the condition CM0A = A 
implies that the columns of A are in the range space of C. Conversely, if 
there exists a matrix X such that CX = A then M0 may be chosen as any 
generalized inverse of C. [A generalized inverse of a matrix C is a matrix 
C ~ such that CC" C = C. Such inverses exist and one may construct them 
to be nonsingular; see the Rao (1973) Section lb.5).] For if M0 is a 
generalized inverse of C and if CX = A then CM0 A = CM0CX = CX = A. 
Thus, the assumption of the existence of a matrix M 0 such that CM0 A = A 
is equivalent to the assumption that the columns of A are in the range of 
C, and then M0 may be taken as any generalized inverse of C.

Pearson’s \ 2 provides an example where C is not invertible. We have 
C = P — ppr and A = ( S/dQ)p . If we take M 0 = P I, then

CM0A = (I -  pprP J)A -  (I -  pIT)A, 

where 1 is the vector of all 1 ’s. But

so that CM0A = A. Thus, Pearson’s choice of M 0 = P"1 leads to the 
smallest asymptotic covariance matrix for 4n (0* -  0O).

Example 1. The Exponential Family. Let X {, . . . ,  X n be i.i.d. with density

/ ( x k )  =  h( x)  exp {ir7'T (.*) - ^ p ( n ) }
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with respect to dv(x)  where T(jc) and tr are d-dimensional vectors, and

<p( 7T) = log j h ( x ) exp{7rr T(A:)} d v ( x )

is assumed to exist in an open set in R d. Then, E^T(X)  = <p(it)t and 
var^TCJlO = Let Zn = (1 /« )E " T(Jf,) so that from the Central
Limit Theorem, yfn(Zn — cp(it)T) ^ ^ 0 ,  <p(tt)). Since the parameter 
space contains an open set in R d, <p is nonsingular and we choose

O n i * )  = « (Z» -  -  H ^ V )

If tt is allowed to range over the entire natural parameter space, then 
Qn( u )  has minimum value zero at Z n =  so that the minimum \ 2
estimates are identical to the maximum-likelihood estimates. This is essen­
tially the class of distributions for which the minimum \ 2 estimates are 
the same as the maximum-likelihood estimates. It contains the Pearson’s 
X 2 since the multinomial distribution is an exponential family.

If tt is restricted, say to be a function of 0, then the MLE and minimum 
X 2 estimates may not be equal. However, they have the same asymptotic 
covariance matrix. (See Exercise 1.)

Generalized x 2’s
A. Modified x 2- If the matrix M is allowed to depend on Z„, the 

resulting quadratic form,

Qn(0)  = n(Z„ -  A (0 ))7'M (Z „,e)(Z „ -  A (0)),

is known as modified * 2, and the value that minimizes Qn(0)  is a 
minimum modified x 2 estimate. Neyman’s x 2 =  XKobs -  exp)2/obs] is 
an example. If condition (5) is replaced by the condition that M(z, 0) be 
jointly continuous in (z, 0) and uniformly bounded below, then the mini­
mum modified x 2 estimates are asymptotically equivalent to the minimum 
X 2 estimates obtained from the above quadratic form with M(Zw,0), 
replaced by its limit M(A(0), 0). When M(Z„, 0) is chosen independent of
0, it is usually easier to compute the estimates.

Exam ple 2, Consider Pearson’s x  2 with three cells and probabilities depend­
ing on a real parameter 0 linearly, say, p x(0)  =  j  -  0, p 2(0)  = f  -  0, 
and p 3(0)  = 20, where 0 < 6 <

2 = («i ~  w ( |  -  0 ) f  (.n2 -  n ( |  -  e ) f  ( « 3 ~  2«A)2
*  n ( j  — 6) +  n(§ -  0)  + 2nd
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Taking a derivative with respect to 6 and setting it to 0 leads to a 
sixth-degree polynomial equation in 6. With a Neyman x  2,

2 ( P i - n( l - e ) )2 L ~ e ) f  ( « 3 “ 2nO)2

the same operation results in a linear equation for 0.

B. Transformed x 2- Let g: Ud -» IRrf have continuous first derivative g of 
full rank. Then, by Cramer’s Theorem,

V (̂g(z„) -g(A(0))) ^^(o,g(A(e))c(e)g(A(e))r)

and

G„(e) = »(g(z„) -  g(A(e)))r[g(A(e))r iM(e)g(A(e))-, ](g(z„) -  g(A(e»)

leads to minimum x 2 estimates with the same asymptotic distribution as 
that for the untransformed x 2 found in Theorem 23, and is optimized by 
the same choice of M. One may combine modification and transformation 
by replacing the matrix in brackets by an estimate. Sometimes the function 
g may be chosen so that g(A(0)) is linear in 0.

E x a m p l e  3. Consider a bioassay problem with response curve FCjcI©), with 
n samples at each of the levels x {, . . . , x d. Let n ]9. . . , n d denote the 
number of responses at these levels, respectively. We form the x 2’-

d
x 2 = L  

1

(n, -  «F(x,|e))2 ((n -  rij) -  n( 1 -  F(jcy|0)))
/iF(jcy|e) n( 1 -  F(*y|0))

2
d ( n i - n F ( x , IQ))2 * ( ( n t / n)  -  F ( x t \9))

1 — ^(jCylO)) n , F (x ,|0 )( l - F ( x y|0 ))

Note the way a Pearson’s x 2 of two cells reduces to a single term.
If F(jt|0) is logistic, /^(jcI0) = (1 + exp{ — ( a  + /3x)})_1 where 0 = 

(a ,  /3), it becomes a tedious task to compute the minimum x 2 estimates 
of a  and /3. However, the transformation logit(/?) = log (p /(l — p))  makes 
g(F(x |0)) linear: logit(F(jc|0)) =  a  + /3jc. Because

d  1 
■logit( p )  -

dp p ( l - p ) ’
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the transformed x 2 becomes

X 2 =  m E F ( * , |0 ) ( 1  -  F ( x , |0 ) ) | l o g i t ( ^ - j  -  l o g i t ^ * , ! # ) ) )  . 

Using the process of modification, we obtain Berkson’s logit \ 2: 

l o g i t - » £ ^ ( l  -  7 ) ( l ° g i l ( ^ )  -  ( «  + e x , ) ) .

C. Expansion o f x 2 about subefficient estimates. As in the computation of 
the MLE, one may improve easily computable but subefficient estimates 
by an application of Newton’s method. To find minimum x 2 estimates, 
one ordinarily seeks a solution of d/d% (Qn(0)) = 0. In applying Newton’s 
method, several simplifications may be made. First in taking the derivative 
of Q„(0), one may pretend that M(0) does not depend on 0. This is 
equivalent to using modified x 2 by replacing M(0) by an estimate, taking 
a derivative, and then replacing the estimate by M(0). Thus we may work 
with the equation

A (0)r M (0)(Z„ -  A (0)) = 0.

Second, the equation may be modified by replacing A(0)r M(0) by an 
estimate.

Example 4. In estimating the bacterial density of a liquid, the usual 
experiment shows whether a given cubic centimeter of the liquid contains 
no bacteria or at least one bacterium. If 0 denotes the bacterial density, 
the number of bacteria in a cubic centimeter is assumed to have a Poisson 
distribution with parameter 0. The probability of success (no bacteria) in a 
single trial is then e~e. In estimating bacterial density by the dilution 
method, the liquid is successively diluted to several dilution levels, 
x v . . . , x d, and n trials are carried out at each level. At dilution xi9 the 
probability of success is exp{ — Ox^. This leads to a x 2 °f the form of 
Example 3 with F( x10)  = exp{ -  0x},

2 =  f  ( ( ” / « )  ~  eXP{ ~  QXj})2
*  ( e x p { - 0 ; t ; } ( l  — e x p { - 0 ; t ,} )  ’

where nt = the number out of n samples that show no bacteria at level x{. 
Pretending the denominator does not depend on 0 and taking derivatives,
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we obtain the equations

* ( ( n j / n ) - a c p { - O x j } ) x j  

Zn2T ( 1 - e x p  { - e x j } )

Provided nj =£ n , we may replace the denominator by (1 — (rij/n)).

D. Linearization o f the side conditions. [Neyman (1949)]. In minimizing 
Qn, A7 = (au . . . ,  ad) may be considered as a vector of parameters subject 
to restrictions, called side conditions, due to the dependence of A on 0. If 
there are k independent parameters, there are d -  k side conditions on 
the a’s: f j (al9. . . ,  ad) = 0 for j  = 1 , . . . ,  d -  k. One may then minimize 
Qn subject to these side conditions by the method of Lagrange multipliers. 
A simpler procedure is to minimize Qn subject to the linearized con­
straints, that is, the first two terms of the Taylor-series expansion of the f  - 
about Z n. The problem then only requires solution of linear equations.

Example 5. In the log-linear model with multinomial sampling of sample 
size n and c cells, the cell probabilities p \ , . - - , p c are assumed to be of 
the form

p t = exp j^o + Y,  *,70/ j  > for i — 1 , . . . ,  c ,

where the xtj are known numbers. It is simpler to work with transformed 
X 2 with each cell transformed by g(z)  = log z, g'(z)  = 1 /z ,  and modified 
so that

C C

Q„ = « E ( lo g (« ,/n )  -  log( P i ) ) \ n , / n) = £ ( z ,  -  a, )2n„
1 1

where a{ =  log p t = 0O 4- Hx^dj  and z, = log^n^n). Although Qn is 
quadratic in the 0’s, the constraint 1 = EJ Pi = EJ exp{^} makes the 
problem nonlinear. The expansion of this constraint about z gives

c
1 = £exp{a,} ~ £  exp{z,} + £  exp{z,}(a - z , ) .

1

Because Eexp{z,} = E (nt/ n )  = 1, the constraint is E = E^-z,-, which
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can be solved for

y - i i - i

Therefore,

and the minimum transformed estimates may be found by solving the 
linear equations,

Unfortunately, the resulting af do not quite satisfy the original con­
straint, Efexp{a*} = 1. If it is desired to have this equation satisfied 
exactly, we may modify the estimates as follows. Find 8 so that E^ exp{ay} 
= exp(S}, and replace 00 by 00 — 8. The resulting estimate satisfies 
Ei Pi = 1, and is still asymptotically efficient.

Proof of the Main Result. We precede the proof of Theorem 23 by some 
lemmas. With 0O denoting the true value of 0, we have ]fn(Zn — 
A(0O)) 0, C), where C = C(0O). We use the metric ||x|| in given by

We say a sequence of random vectors, Vw, is tight if for every e >  0 there 
exists re such that P{||V/2 II < r j  > 1 — e for all n sufficiently large.

Lemma 1. )fn(Z„ -  A(0*» is tight.

Proof. Let e > 0. Find r > 0 such that P{]fn\\Zn — A(0O)|| < r} > 1 -  e /2  
for n sufficiently large. Since

||x||2 = xr M (0o)x = xr Mx.

p { Q n( K ) ~  inf Qn(0) < e)  > 1 -  s / 2
V 0 e 0  )

for n sufficiently large, we also have for n sufficiently large,



Because M(0) is uniformly bounded below, we can find 8 >  0 such that 
M(0) > SM(0o) for all 0 E 0 .  The lemma then follows from the implica­
tion

n||Z„ -  A(©0) ||2 < r 2 and Qn(0*) -  inf 0 „ (8 ) < e
0 e ©

=> rt\\Zn -  A(0*) ||2 sc ( \ / 8 ) Q „ m  [since SM (0o) > M (0)] 

< ( l / « ) ( f a f  (?„(•) + e ) <  (1 / a ) ( Q ( % )  + e)

= ( l / S ) ( « | |Z „ - A ( 0 0) f  + e)

< (1  / 8 ) ( r 2 + e ) = r 2 ■

C o r o l la r y  1. Jn(A(Q*) -  A(0O»  is tight.

Proof. v^(A(0*) -  A(0O»  = M Z „  -  A(00)) -  Vn(Z„ -  A(0*)). ■ 

Corollary 2. 0* 0O.

p
Proof. This follows since A(0*) —» A(0O) and A is bicontinuous. ■

Let IT denote the projection onto the range space of A using the metric, 
||x||2 = xr Mx. In other words, Fix = Ay where y minimizes ||x — Ay||2 for 
y e  Uk. We find II as follows.

d d
— ||x -  Ay||2 = ~ ( x _  Ay)r M(x -  Ay) = -2A r M(x -  Ay) = 0

=> Ar MAy = A7Mx.

Since A has full rank and M is nonsingular, Ar MA is nonsingular so that 
y = (Ar  MA)_ iAt Mx. Hence

n = a ( a 7'm a ) ’ ia 7'm .
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Lemma 2. \Zn (nz„ -  A(0*» 0.
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Let s  > 0. Using continuous differentiability and bicontinuity of A(0), we 
may find 8 > 0 such that

II A(0) -  A(0O) -  AT(0  -  ©0) || < e||A (0) -  A(0O)||

provided ||A(0) — A(0O)|| < 8. Since 0* 0O, £>„(©*) comes arbitrarily 
close to \\Zn — A(0*)||2 with high probability for n large. From this we 
may conclude that

IIA(0*) -  A(0O) -  Ar (0* -  00)|| < e||A (0*) -  A(0O)||

whenever \\Zn — A(0O)|| < 8 /3 , say, with high probability for n large. Let 
d n = \\Zn -  I I Z J  and = e||A(0*) -  A(00)||. Then \\Zn ~ A(0*)|| ^  d n 
+ e n because there is at least one point A(0) this close to Z n. Moreover,

l |n z „  -  n A (0 * ) ||2 < ( d n + «„)2 = ( dn + e„)2 = 4dns n,

and hence

l|nZ„ -  A(0*)|| < e n + (4dne n) l/2.

Now since both V«"||A(0*) -  A(0O)|| and ifn\\Zn -  I i Z j l  are tight, we have 
that )fn l|IIZ„ -  A(0*)|| is bounded by yfe times something tight.

■

Proof o f Theorem 23. Expand A(0*) about 0O:

A(0„*) -  A(0O) = /  A(0O + A(0* -  0o))rfA(0„* -  00)
•'o

= A* (©*)(©* — 0O).

Since 0* ©0 and A(©) is continuous, A*(0*) —> A. Therefore, for n
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sufficiently large, A*(6*) has full rank k, so that

^ ( K  -  e 0) = (A * (e j)7’M A *(e*))^1A *(e*)r M v^(A (0*) -  A (e0)). 

From Lemma 2,

^"(A (e* ) -  A (e0)) ~ v ^ n (z „  -  a ( o0)),

and since

v (̂z„ -A(e0)) o,c),
we have

V ^(A (e:) -  A (e0)) o , n c i T )

Hence

VJT(e* -  0„) ^ ^ 0 , ( A r MA)’ lA7'M n c n 7'MA(A7'M A)’ 1).

Writing II = A(Ar MA) ~1 Ar  M and simplifying gives the X of the theorem.

EXERCISES

1. Prove the last statement of Example 1 when 0 is a one-dimensional 
parameter such that u (0)  has continuous derivatives.

2. In Example 2 assume n = 100, n x = 20, n2 = 50, = 30, and find
(a) the minimum \ 2 estimate,
(b) the minimum modified \ 2 estimate, and
(c) the MLE.

3. (a) For the response curve F(jc|0) = 4>(a: 4- (3x), where <t>(jtr) is the
distribution function of the standard normal distribution, find the 
linearizing transformation, call it probit ( p \  and find the resulting 
modified transformed \ 2-

(b) For the Cauchy response curve F(x\6)  = (1 /7r)(arctan(a: 4* /3jc) 4- 
7r/2), find the linearizing transformation, give it a nice catchy 
name, and find the resulting modified transformed x 2-

4. As a given instance of estimating bacterial density by the dilution 
method, suppose there are three dilution levels, x x = 1, x2 — j ,  and 
x3 = j ,  and suppose we have a sample of size n = 10 at each level. 
Given the data n { = 0, n2 = 4, and n3 = 8, find the minimum \ 2 
estimate of 0 as indicated in Example 4.
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5. In Example 5, suppose c = 3 and k = 1, with ax = 0O, a2 = 0O + 0,, 
a3 = 0O — 0t. If nj = 30, n2 = 20, and n3 = 50, find the resulting 
estimate adjusted so that E p t = 1.

6. Let Y ,,...,Y „ be i.i.d. d-dimensional random vectors with mean A(0) 
and covariance matrix C(0). The parameter space is the open square 
@ = {(e„ e 2 ): 0 < 0, <  it/ 2 ,  0 < e 2 < tt/2}. Write A(0) = 
( ^ ( 0 ) , . . . ,  Mrf(0))7 and

0 -  o ’

° 22(®) *” 0
5

0 0 o-/(0 )

where for some numbers 0 < jc£- < 1, //,,-(©) = s in ^ x ,  -  d2) and
0 -^ (0 )  =  c o s2( 0 1jc/ -  0 2).
(a) Find some asymptotically optimal minimum x 2 estimates 0,, 02 as 

explicit functions of the xt and Yt .
(b) What is the asymptotic joint distribution of (0 L, 02)?
(c) If x x, . . . ,  xd may be chosen by the experimenter, how should they 

be chosen subject to 0 < xt < 1?

C(0) =

crfte)
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General Chi-Square Tests

We treat the general theory of x 2 tests, give applications to the 
treatment of contingency tables, and consider the more general problem 
of testing against restricted alternatives. We make the general assump­
tions of Section 23, and we choose M(0) to be a nonsingular generalized 
inverse of C(0). Therefore, our assumptions are

(1) v/n(Z„ -  A(0q)) Z e  00 e  0  open c  Uk.
(2) A(0) is bicontinuous; A(0) is continuous and has full rank k < d.
(3) M(0) is continuous nonsingular and there exists a  > 0 such that 

M(0) > a l  for all 0 £  0 .
(4) C(0)M(0)C(0) = C(0) and C(0)M(0)A(0) = A(0).

Our main objective is to find the asymptotic distribution of (?w(0*), 
where Qn is the quadratic form

Q„(0) = n(Z„ -  A ( 6 ) ) TM(6) (Z„ -  A (0)),

and 0* is a minimum \ 2 sequence. Under the above assumptions, the 
results of the previous section show that any minimum \ 2 sequence 
satisfies yfn (0* -  0O) (Ar MA)"1), where A = A(0O) and M =
M(0O). The statistic (?„(0*) may be used as a goodness-of-fit test of the 
model by rejecting the model when Qn(Q*) is too large.

Cg>
Theorem 24. Under assumptions (1)—(4), <2W(0*) —» x 2- k > where v is the 
rank o f the matrix C(0O).

163
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Proof. From Lemma 2 of Section 23, 4n (A(0*) — A(0O)) ~ yfn II(Z„ — 
A(0O)), where II = A(Ar MA)“ 'Ar M. Hence,

V«(Zn -  A(0*)) «  f i ( Z n -  A(0O)) -  i/w (A(0*) -  A(0O))

~ i/n ( I -  n ) (Z „ -  A (0O)).
Since \/n(Z„ -  A(60)) ^  Y e  > t0 , C) where C = C(0O), and since 
M(0*> ^  M, we may conclude

£?„(©*) Yr(i -  n ) rM(i -  n)Y = w rw

where W = M,/2(I-I1)Y <=M 0,2 )  and 2  = M1/2(l -  n)C(I -  n ) r M,/2. 
From Lemma 3 of Section 8, it is sufficient to show that 2  is a projection 
of rank v — k. To show 2 2 = 2 , first note that CMA = A implies CIIr M 
= n , so that C(I -  n ) r M = CM -  II, and (I -  II)C(I -  II)r M = (I -  
n)CM. Similarly, M(I -  II)C(I -  n ) r  = MC(I -  II)r. Hence using CMC 
= C,

22 = m i/2 ( i  -  n)c(i - n)rM(i - n>c(i - n)rM1/2
= m i/2( i  -  n)C M C (i -  n ) r M '/2 = m 1/2( i  -  n ) c ( i  -  n ) r M ,/2 
= 2 .

Finally, noting that CM is a projection so that rank(CM) = trace(CM), 

rank X = trace X = trace(M 1/2(I -  II)C (I — n ) r M I/2)

= trace((l -  n )C ( l  -  n ) r M) = trace((l -  n)C M )

= trace(CM) -  trace(IICM ) = rank(CM) -  trace(IT)

= rank(C) -  rank(II) = v -  k. ■

Power. We may use this result to test the model given by assumption (1) 
by rejecting if <2„(0*) is too large. We may find an approximation to the 
power of this test by finding the asymptotic distribution of Grt(0*) when 
assumption (1) is changed to

(10 v^(Z„ -  A(0O)> ^  Y e^t8,C (0o».
Then Lemmas 1 and 2 of Section 23 are still valid, and in Theorem 24 one 
can conclude

Q n ( K )  y t ( i  -  n )r M(i -  n)Y = wrw,
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where W = M 1/2(I — II)Y e«yf(Ml/2(I — 11)8, 2). Thus from the lemma 
of Section 10, ^ (© o ) has asymptotically a noncentral x 2 distribution, 
Qn(0*) ^  ^ 2_/k(A), with noncentrality parameter A = 8r (I -  II)r M(I -
n)8.

Note: These results are valid for an arbitrary minimum x 2 sequence, 
0*. This may be any of the minimum modified, transformed, et cetera /\ '2,s 
—they are all asymptotically equivalent. When sampling from an exponen­
tial family of distributions (like the multinomial), these estimates are also 
asymptotically equivalent to maximum-likelihood estimates.

To be able to apply Theorem 24 to Pearson’s * 2, we should check that 
M = P _1 is a generalized inverse of C = P — ppr. (We have not needed 
this before.) This follows from

CMC = (I -  pprP *)C = (I — p lr )(P -  ppr )

= P -  p \ TP -  PP" + P(1"P)P"

= P -  PPT -  ppT + ppT = C.

Example 1. A contingency table. Samples of size n are chosen from each of 
r populations, each observation resulting in one of c possible outcomes or 
cells. Let p tJ represent the probability that an observation from the ith 
population results in the y'th outcome, and let ntj be the total number of 
such observations. We have

c c
£  Pij = 1 and £  nij = n > for all / = 1 , . . . ,  r.

7 =1  y = l

To test the hypothesis of homogeneity of the populations 

H0: p tj = iTj, for all i and y, 

where the it- are unknown numbers such that E^ 7r; = 1, we form the x 2>

f c (n H — n7T:)2
Q n ( * ) =  E  E  „  '  

i - l ; - l  n7rl

When Hq is true, Qn( i t*) will have, for large n, an approximate x 2 
distribution. The degrees of freedom may be calculated as follows. For 
each i , Ey=I(n;y — m r^ /m r^  is an ordinary x 2 with (c -  1) d.f. The sum 
of r independent ^ ’so f this type gives a x 2 with r(c — 1) d.f. There are 
c — 1 independent 7r-. When we estimate them, we lose c -  1 d.f. ending 
with r(c — 1) -  (c — 1) = (r — l)(c — 1) d.f.
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To find a minimum x 2 sequence, we may use Lagrange multipliers. 
Taking derivatives of Qn(%t) + A(EJ ttj -  1) pretending the denominators 
in Qn(i t )  do not depend on it, we obtain

+ *(f>, - i)J

'  — 2n( n i{ — mri)
= E -----------------------  +  A =  0, for; =

This leads to

i - i  n7Ti

1 JL A 2
£  n ‘J =  +  r  o r  = W.f.

httj i=={ lJ 2n J A + 2nr

The constraint EJ 7r* = 1 then gives 7r* = (1 /nr)n. j  = average relative 
frequency of cell j. These are, in fact, the maximum-likelihood estimates 
for this problem. We reject H0 if

^  ( na / n ~~ ( \ / nr ) n . : )
Qni 1” *)  = « E  E  ( \ / nr ) n . j  >

To find the power at an arbitrary point (/fy), we must compute the 
noncentrality parameter. This is done by replacing ntj/ n  whenever it 
occurs in Qn(ir*)  by pfJ:

a = « E E  ( Pii ~ (1 / r ) P j )
i  J V / r ) P.j

If ( p ^  are the true values of the parameters, then the distribution of 
j2rt(ir*) is approximately the distribution.

Testing Against Restricted Alternatives. The tests discussed above are de­
signed to be good against all alternatives. One can obtain a more sensitive 
test when it is known that the alternatives lie in some restricted class. 
Suppose that 0 is known to lie in ©, an open set in Uk, and that it is
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desired to test / / 0: 0 6  0 O, an open smooth submanifold of © of dimen­
sion k — r (r represents the number of restrictions under H0). It is 
reasonable to reject H0 if © is much better at explaining the data than is 
©0, where the minimum x 2 value may be used as a measure of how good 
the explanation is. This test rejects H0 if

inf Qn( 6) -  inf Q„(d)
6G0O 0G0

is too large, or, equivalently, if £?w(0*) -  Q j S n) is too large, where 0* 
and 0n are minimum x 2 sequences under ©0 and ©, respectively.

Let 0O denote the true value of 0, and suppose 0O g  ©0. Let 7^ and T 
denote the tangent planes to A(0) for 0 e 0 o and 0 6  0 , respectively, 
and let II0 and II denote the projections along the metric ||x||2 = x r Mx to 
the planes T0 and T , respectively. Then

Qn(K)  ~ 0(e„) ~ "IIz„ -  A(o*)||2 -  n\\z„ -  A(e„)||2

~ n ||( I  -  n0) ( Z „  -  A(0O)) f  -  n||(I -  n)(Z„ -  A(60)) || 

= n||(n -  n0)(z„ -  A(e0)) ||2.

Z n - A ( 0 o)
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Since II and II0 are projections and III I0 = I I0II = II0, it follows that 
(n -  n0) is a projection and that

rank(fl -  FI0) = trace(Il -  I l0) = trace II -  trace II0

= k — (k  — r) = r.

Hence Q„(0*) -  <2„(0„) xr2- Note that £>„(©*) -  <2„(0„) and 0„(0„) 
are asymptotically independent. Thus, <2W(0„) provides an independent 
check on the validity of the model.

Example 2. Humans may be classified into one of four blood phenotypes:
O, A, B, and AB. Inheritance into these groups is controlled through three 
alleles; O, A, and B, at one locus, with O recessive to both A and B. The 
general theory predicts that the four blood phenotypes, O: A: B: AB, 
occur in the proportions p 2: q 2 + 2pq: r 2 + 2pr: 2qr, where p , q , and r 
are the relative frequencies of the alleles O, A, and B, respectively, in the 
whole population, and p + ^ + r =  l. I t is  desired to test the hypothesis 
that p  = j ,  q = 5 , and r = £, based on a sample of size 770 with the 
observed frequencies: 180, 360, 132, 98, of the four blood types; O, A, B, 
AB, respectively.

The null hypothesis is simple, so if we were testing against all alterna­
tives, we would reject if x 2 > where

2 (180 -  770(0.25))2 (360 -  770(0.444))2 
X =  770(0.25) + 770(0.444)

(132 -  770(0.194))2 (98 -  770(0.111))2
770(0.194) 770(0.111)

(180 -  193) (360 -  342)
193 342

(132 — 149) (98 -  85)2
+ -------------- — + ----------- — = 5.73.

149 85

Since A'ljo.os ~  7.815, we accept H0 at the 5% level.
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However, we should be testing against the restricted alternative that the 
four cell probabilities are p 2: q 2 4- 2pq: r 2 4- 2pr: 2 qr for some p , q, and 
r that sum to 1. Hence we should first subtract Qn(Qn) where 0n repre­
sents minimum \ 2 estimates of p , q , r. These estimates may be computed 
by numerical methods. They turn out to be about p  = 0.47, q = 0.36, 
f  = 0.17, and

(180 — 170)2 (360 -  361)2
Q n { Qn )  ~  ^  ^

(132 -  146)2 (98 -  94)2 
+ -------------- — + ----------- — = 2 .10.

146 94

We reject at the 5% level if the difference, x 2 ~  Gn(®nX greater than 
X2; 0.05 • 1° ^ is  case, 5.73 — 2.10 = 3.63 < x2;o.05 = 5.99, so we do not 
reject. Note that Qn(0n) is exactly the x 2 we would use to test the 
hypothesis that the blood types have the given relative frequencies for 
some p , <7, r. It provides an independent check on the validity of the 
general theory for this population. It has 1 degree of freedom.

EXERCISES

1. Consider three hypotheses about a given die with probabilities p} that 
side j  comes up for j  = 1, . . . ,  6.

H0: The die is fair; that is, pj = £ for all j.
H {\ The die has been shaved slightly so that opposite faces come up 

with equal probability; that is, H {: p y = A>, P 2 ^ Ps> P3 = Pa- 
H: The probabilities pj are completely arbitrary.

The die was tossed 120 times with the following results: n x = 10, 
« 2 = 24, n3 = 20, n4 = 26, n5 = 24, n6 = 16, where rtj is the 
number of times side j  came up.

(a) Test H0 vs H at the 5% level.
(b) Test //j vs H at the 5%  level.
(c) Test Hq vs H { at the 5% level.
(d) Find the power for each of the above tests at the alternative

Pi = P2 = P3 = P* =  £> Ps — Pb =  i
2. A sample of 200 married couples was taken from a certain population. 

Husbands and wives were interviewed separately to determine whether
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Papers Radio TV
15 6 10
11 10 20
23 15 90

their main source of news was from the newspapers, radio, or televi­
sion. The results may be found in the following table.

Husband
Papers

Papers 
Wife Radio 

TV

Let Pij denote the probability that a randomly selected couple will fall 
in cell O’, j). Perform the following tests at the 5% level.
(a) Test H x: p,j = pn for all i and j  (symmetry).
(b) Test H0: p tj = p tpj for some p x + p 2 + p 3 = 1 (symmetry and 

independence).
(c) Test H0 against H x.

3. N  balls are distributed at random in to /  X /  cells, where cell (/, j )  has 
probability pu > 0, i = 1, . . . ,  /, j  = 1, . . . ,  / ,  E,- Ey p u = 1. Let ntj 
represent the number of balls that fall in cell ( /,;) , E, Ej ntj = N.
(a) Find the x 2 test of the hypothesis H: Eyjp/y = 1 //,  for / = 1, . . . , / .  

How many degrees of freedom?
(b) Find the x 2 test of the hypothesis H Q: p i} is independent of i (that 

is, p Xj = p 2j =  •• = Pjj for j  =  1 , . . . ,  J). How many degrees of 
freedom?

(c) Find the x 2 test of HQ against H — H0. How many degrees of 
freedom?

4. Consider a three-factor contingency table with probabilities p ijk, for 
cell (/, j , k )  for i =  1 j  =  1 , . . . ,  J, and k =  1 , . . . ,  K,  such that 
E/ Ey E^ Pijk = 1* Suppose a sample of size N  is taken and let nijk 
denote the number of observations that fall in cell (/, j, k). Find the x 2 
tests of the following hypotheses. Find the maximum-likelihood esti­
mates and the degrees of freedom.

(a) H0: p ijk = Piqjrk (three-way independence)
(b) Hq: p ijk = prfjb (independence of the first factor from the

other two)
(c) H0: p ijk = Triqjk, where the 7r,- are known

(the first factor has a given probability 
vector and is independent of the other two)

(d) Hq: p ijk = Pi\kqj\krk (conditional independence of the first two
factors given the third)

(e) H0: Pijk = PiRj^k\ij (marginal independence of the first two
factors)
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5. To test the effectiveness of five different insecticide treatments, 71, T 2, 
T 3, 7"4, 7"5, for the control of two species of ticks, 51, 52, cattle were 
chosen at random and randomly assigned treatments. After treatment, 
the hides were inspected for the presence of living and dead ticks. The 
data are as follows.

51 S 2

killed not killed killed not killed
T \ 30 20 42 35
T2 42 11 41 20
T3 63 51 22 18
T4 20 41 12 31
T5 11 17 21 31

(a) Test the hypothesis at the 5% level that there is no difference 
between the species with regard to these treatments; that is, test 
H0: p t = TTi for i = 1 , . . . ,  5, where p {9. . . ,  p 5 are the probabilities 
of death for species 51, and it1, . . . , 7 t5 are the probabilities of 
death for species 52. (Use modified ^ 2.)

(b) Find the approximate power of this test at the alternative /?, = 7r, 
+ 0.1, i = 1, 2,3 ,4 ,5 .
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SOLUTIONS TO THE EXERCISES OF SECTION 1

1. Since IX1 + 1 / n )  = ( \ / n ) T ( \ / n \  we have Y( \ / n )  ~ n . If f n(x)  repre­
sents the density of & e ( l / n , \ / n \  then f n(x) ~ x ~ l( 1 -  x)~l / (2n).  
Hence, for any small e > 0, P(s < X n < 1 -  e)  -> 0. Since by symme­
try, P ( X n < e)  = P ( X n > 1 — e), we have that P ( X n £  e) -* j  for all
0 < e < 1. Thus, Fn(x ) converges to the distribution function of Z  for 
all x #  0, jc #  1 showing that converges in law to X.

For a  #  /3, the symmetry argument does not work, so instead we 
compute

Similarly, > 1 -  e) > ( a / ( a  + f i ) )e(*/n -» a / ( a  + /3), and be­
cause the sum of these two pieces is no greater than 1, we must have 
P(A"n < e) -» /3 /(a  + j8 ). This implies that X n converges in law to 
M h  P / ( a  + j8 )).

2. P ( X n <: x)  = /c/n where fc/n < x  < ( k  +  1 )//i. Then, since |&//i -  *|
< 1 /« ,  we have P ( X n < x)  -> x, showing that converges in law to 

A" where X  is W (0,1).
From the information given, one cannot tell whether X n converges in 

probability to X  because the joint distribution of X n and X  has not 
been defined.

P ( X n < s )  = f f n{ x ) d x  
Jo

172
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3. (a) Suppose that 0 < r < s and E\ X\ S < oo. By Holder’s inequality,
E Z P < (E Z ) P for any random variable Z > 0 and any 0 < p  < 1. 
Replace Z by \Xn — X\ s and p  by r / s , and find

E \X n -  AT < ( E \ X n -  X \ s) r/S.

Thus, E \ X n -  X \ s < oo implies E \ X n -  X \ r < oo.
(b) The same inequality shows that E \X„ -  AT -> 0 implies E\X„ — 

X \ r -> 0.
4. If X n = n with probability 1 / n 2 and X n = 0 otherwise, then E\ Xn | = 

l / n  -» 0 and E\ Xn\2 = 1 for all n.
5. In one dimension, E ( X n -  /a)2 = var (X n) + ( E X n -  /a)2. So if E X n -» 

fji and v a r ( ^ )  -* 0, then E ( X n -  /x)2 -» 0. Conversely, if -  fi)2 
-» 0, then vaKA^) < £ (Jrn -  /i)2 -» 0 and ( E X n -  /a)2 < E ( X n -  p ) 2 
-» 0.

In d  dimensions, the same proof works treating each summand of 
( X n -  ju,)r (A„ -  fi) =  -  fi,)2 separately.

6. Let e > 0, and find an integer k such that 1 / k  < s / 2 .  Since F is 
continuous, we can find numbers Xj such that F(xj) =  j / k ,  for j
I....... k 1. Since Fn(xj) —> F(jc-) as n -* oo, we can find N] such that
for n > Nj we have \F„(xj) -  F(jCy)| < 1 / k .  Let N  = 
max{N,,. . . ,  Nk_l}. If n > N  and Xj < x < jCy4 x, then

F„(x) < F„(xj i ,) < F ( x j ^ )  + l / k  < F( x )  + 2 / k .

Similarly,
Fn( x )  > Fn( x j ) > F(xj )  -  \ / k  > F ( x )  -  2 / k .

Hence, if n > A/, \Fn(x) — F(jt)| < 2 / k  < e for all x.
7. (a) Note that 0 < X { < X 2 <  ••• < lim^^^ X n =  X.  This shows that

EXn < EX , so that lim sup EXn < EX.  From the Fatou-Lebesgue 
Lemma with Y  = 0, we have lim inf EXn > EX.  Combining these 
two inequalities gives lim EXn = EX.

(b) If lA^I < Y, then we have - Y  < ~ X n. So, assuming X n X,  
the Fatou-Lebesgue Lemma gives lim inf E ( — X n) > E ( ~ X )  or, 
equivalently, limsup EXn < EX.  We also have —Y < X n, so again 
from the Fatou-Lebesgue Lemma, lim inf EXn > EX.  Combining 
these two inequalities gives lim EXn = EX.

SOLUTIONS TO THE EXERCISES OF SECTION 2

1. (a) E\Xn\r < oo if and only if r < a.  Therefore E\Xn/ n \ r =  E \ Xn\r/  
nr -> 0 if and only if r < a.
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(b) We are to show that P(\Xn/ n \  > e i.o.) = 0 for every s  > 0. By 
the Borel-Cantelli Lemma, this holds provided Ew P(\Xn/ n \  > e )
< oo for every e > 0. Now P ( X n > ne)  = 1 for ne < 1, while for 

n > 1 / e ,

P ( X n > ne)  = (  a x _(a+1) dx = ( ne )  a .
n̂e

Thus, the series Ew P ( X n > ne)  converges for all e > 0 if and only 
if a > 1. Hence X n/ n  converges almost surely to 0 if [and only if, 
using Exercise 4(b) and the independence of the X n] a  > 1.

2. If E E \ X n — X |r < °°, then E\ Xn — XT -> 0, so that X n converges to X 
in the rth  mean. Moreover, from Chebyshev’s inequality, EPClX^ — 
X| > e) < Ei^lX^ — X\r/ e r < oo for arbitrary e > 0, which implies 
P( \ Xn — X| > e i.o.) = 0 using the Borel-Cantelli Lemma. Thus, X n 
converges to X almost surely.

3. If X n does not converge in the rth mean to X, then there exists an 
e > 0 such that

E \ X n. -  X |r > e for some subsequence ri. ( *)

P a , one can apply i neorem
a.s.

Since X n —> X, one can apply Theorem 2(d) and find a subsubsequence 
ri* of the subsequence ri such that X n» X. But from Theorem 2(b), 
X n» X, which contradicts (* ). Similarly, from Theorem 2(c), X n» ~^>X 
for r = 1, contradicting (*) for r = 1.

4. (a) Let Z e  ^<(0,1), and let A n = {Z < 1/n}. Then P ( A n i.o.) = 0, 
but E P ( A n) =  E(1 /ri)  = oo.

(b) We will show P ( A n finitely often) = 0.

P(A„  f.o.) = p ( (J pM y)
' n j > n  '

= lim PI pj A c: I, because p j A)  are nondecreasing
" -*00 \ j > n  ! j > n

= lim II P ( A y), because the A cn are independent
n - *°o  j > n

= lim n (1 -  P M /) )
oo j > n  v 7

< lim II exp{-P(y4 )}, because 1 - x < exp{ —x)00 j >n

= lim e x p /— £  P ( A  ) \  = 0,
n —> oo I . /v } > n  1

since E; > n P(Aj )  = °o for all n.
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5. (a) For e > 0, P(\Xn\ > e) <  P ( X n *  0) = 1 /n  -» 0. Hence, X n con­
verges in probability to zero for all a.

(b) X n converges to 0 almost surely if and only if P( \Xn\ > e i.o.) = 0 
for all e > 0. Since the X n are independent, the Borel-Cantelli 
Lemma and its converse, 4(b), implies that this is equivalent to 
E P ( \Xn\ > e) < oo for all e > 0. Since E l / n  = °°, we have that X n 
converges to zero almost surely if and only if a  < 0.

(c) E\Xn\r = nar( l / n )  -> 0 if and only if a  < 1 / r .
6. (a) |f n(x)  - g (* ) l  — f n(x)  -  g(x)  + 2(g(x)  - f n(x) )+. Hence,

f \ f n ( x )  ~ g ( x ) \ d r ( x )

= / ( / « ( * )  ~ g ( x ) ) d v ( x )  + 2 f ( g ( x )  - / „ ( x ) ) 4 d v ( x ) .

The first integral is zero since ffn(x) dv ( x)  =  jg(x)  dv (x)  — 1. The 
second term converges to zero by the Lebesgue Dominated Conver­
gence Theorem, since (g(;t) -  f„(x))+ < g(x).

(b)

sup |P (X „ t=A)  -  P ( X  e  A)  | = sup j  ( f n( x ) - g ( x ) ) d v ( x )
A A A

&  SUP /  \ f n ( x )  ~ g ( x ) \ d v ( x )
A JA

= j \fn(x) ~g(x)\dl>(x)

-> 0 .

7. Write \XJ  = Z n+ + Xn , where Z„4= max{X„,0} and X n = ( ~ X n) +. 
From X n X  we may conclude that X * — > X + and X~ -^»  X  . 
By Fatou’s Lemma, we have lim inf EX* > E X + and lim inf EX~ > EX~.  
Therefore,

E\X\  = lim E\Xn\ > lim inf E X + + lim inf EX~ > EX+ + EX'  =  E\X\ .

Since we have equality throughout, we must have lim EX*  = E X + 
and lim EX~ = EX~. We may now apply Scheffe’s Theorem to the 
positive and negative parts and conclude E\X„ -  X*  \ >̂ 0 and 
E\X~ - X ~ \  ^ 0 .  The result then follows from E \X n -  X\  = E \ ( X j
-  x +) -  ( x ; - x ~ ) \  < E \ X + - X * \  + E \ x : - x - \  -> o.

8. From the Schwartz inequality, E\ XnX\ < ^ E X 2E X 2 . From E X 2 -> 
E X 2, it follows that \im supn_ 00 E\ XnX\ < E X 2. Hence, the Fatou- 
Lebesgue Lemma implies E\XnX\  -> E X 2. From Exercise 7, E\XnX  —
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X 2\ -> 0, and in particular, EXnX  -> E X 2. The result now follows 
from E( Xn -  X ) 2 = E X 2 -  2 EXnX  4- E X 2 -> 0.

SOLUTIONS TO THE EXERCISES OF SECTION 3

1. (a) Let X n = X  + (1 / n). Then X n -> X  in law, yet Eg(Xn) =  P (0 < X
< 9) does not converge to Eg( X)  = P(  1 < X  < 9).

(b) g(x)  = exp{-jt2} is continuous and bounded so that Eg(Xn) ->

(c) g(x) = sgn(cos(jc)) is continuous at all points except + 7t/ 2 ,  ± 3 7 t/ 2 ,  
± 57t / 2, . . .  . None of these points is an integer; hence P ( X  e  
C (g» = 1, and Eg(Xn) Eg(X).

(d) Let X n = X  with probability (n — 1 ) / n  and X n =  n with probabil­
ity \ / n .  Then X n -> X  in probability and hence in law; yet EXn = 
((n -  1 ) / n ) E X  + n / n  EX  + 1.

2. Use characteristic functions. Since a!Xn a'X for every a,

for all a.
3. By Scheffe’s Useful Convergence Theorem, we have f \ fn(x) — 

f ( x )| dv(x)  0 as n -> oo. Hence,

Eg(X).

^ a ' x / O  ^ a 'x C O *  f o r  a11 a  a n d

The result then follows from

^ x / a )  = Eexp{ta'X„} = <J>a<X(i( l)  -» ‘IVxO) = ^ x (a )

^  f \ g ( x ) \ \ f n ( x )  ~  f { x ) \ d v ( X ) 

^ B f \ f n ( x )  ~ f ( x ) \ d v ( x )  0,
where B is a bound for |g(x)|.

4. (a) The characteristic function of pn) is

E  exp{itSn) = £  eilip jn(\  -
y—0

= L - A . ) " -' = + 1 -  Pn)"
;=0
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00 00 
EeltZ = X) eltJe~x\ j/ j \  = e~x £  (elt\ ) J/ j l  = e~XiXe“ =  exp{A(e*' -  1)}.

j = 0 j - 0

Let kn = npn. Then \ n -> A and

Eexp{//Sw} = [ — elt + 1 ----- - )
\ n n )

~ ( 1 +  A"(g w~ 1 ) ) -  exp{A(e" -  1)},

so Sn —> Z from the Continuity Theorem.
(b) The same method may be used. The log of the characteristic 

function of Sn is

log E exp[itSJ = log n  (1 + p jn(ei' -  1)) = E  log(1 + pjn(e“ -  1)). 
j -1  j  — l

The Taylor expansion of log(l + z ) for z  in a neighborhood of 0 gives 
log(l + z)  = z + 2g(z), where g(z) is a continuous function such that 
g(0) = 0. Since max; <n pjn -> 0, we have g(p jn(elt -  1)) -> 0 uniformly 
in j. Hence, for all t as n -> <*>,

log E  exp{iYS„} = £  (pjn( e 11 -  1) + p j e "  -  1 ) g ( p jn( e it -  1))
j -1

= ( eu -  1) (  £ /> ,„] + ( e u -  1) Y, p jng ( p jn( e i' -  1)) 
\/= i / ;=i

-  K e “ -  1),

the log of the characteristic function of ^(A ).
5. Let Ui be iid ^(0 ,1) random variables, and let X t = /(LA > 1 — /?•). 

Then, X {, . . . , X n are independent Bernoulli trials with P ( X tf = 1) = p t 
for i = 1 , . . . ,  «. Now define V) to have a ^ ( p )  distribution: let Y) = 0 
if Ut < F(0) and for k = 1 ,2 ,... let ^  = k if F(k -  1) < Ut < F ( k \  
where F represents the distribution function of ^ (p ,) . Since P(X;  = 
0) = 1 -  Pj < exp( - p j )  =  P(Yj =  0), we have that Yt = 0 whenever 

= o. Let z  -  E^%

from the binomial theorem. The characteristic function of ^(X)  is



(1) To show l-PCŜ  e  A)  — P ( Z  e  A)  | < P(5„ ^  Z), suppose without 
loss of generality that P(S„ g A ) >  P( Z  e  A).  Then,

P ( S n e A )  - P ( Z e A )  < P ( S „  e A )  -  P(S„ e= A and Z<e A)

= P(S„ e  A  and Z  & A)  < P(S„ * Z ) .

(2) If Sn +  Z, then for at least one i, we have X t #  Yj. Hence,

p ( s „ * z ) < p \̂

(3) P ( X t #  Y|) = 1 -  P ( X t = 0) -  P(Y* = 1) = 1 -  (1 -  p\) -  
Pi exp( —/?,•) = Pi(\ — exp(-/?,)) < pf. Combining these, we have

|/>(Sn e E / 0 - / > ( Z e ,4 ) |< ; P ( S n * Z ) <  *  1^) < £>,?.
1 1
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^ z n X i  + Yi). 
i / i

SOLUTIONS TO THE EXERCISES OF SECTION 4

1. (a) Efin = [E (a + jSzyXzy -  z„)]/[E(z; -  z„)2] = 0 . (In fact, the 
Gauss-Markov Theorem states that least-squares estimates are best 
linear unbiased estimates.)

* . Y.(T2{Zj -  z n) 2 or2

Var A  ■ , ,  ^

/V
Thus, converges in quadratic mean to /3, if and only if E? j 
(zy -Z „ )2_-> CO. A

(b) -  E p nz n = ( a  + fizn) — fizn = a . We may write

^  E ( z , . - z „ ) 2 /

and compute var(an) = <r2( l / n  + z 2/T,(zj  -  z n)2). Hence, an is 
consistent in quadratic mean if and only if,



2. X t = e,, X 2 = j8e 1 + e2, X 3 = f i2s t + fie2 + e3, et cetera. In gen­
eral, X n = L l s j P n~K and

x n =  (1/n) t  t  SjfiM ~  0 / * )  E  « y ( l  -  )8n“y u ) / ( l  -  fi).
i = l  7=1 7=1

Hence

1

= (1 / n ) (  p / ( l  -  f i ) ) ( n  -  0(1 -  /3n) / ( l  -  f i ))

= M l  -  /3) -  ( / W « ) ( 0  -  /3 " ) /( l  -  )8 )2) -» ( 1 / 0  -  P ) ,

var(^„) = ( l / « 2) E o - 2( l -  fin~> + l )2/ ( l  -  f i )2 < a 2/ n  -» 0 ,
1

and E(Z„ -  /*/(! -  /3))2 = var(X„) + (£*„  -  M/ ( l  -  fi))2 -» 0.
3. It is sufficient to show that \a r(X n) -» 0 as n

var(Z„) = -4  L  E  cov(Ai, ATy) < A  E  E  Ipyl-
W 1=1 7=1  n i = [  7 =  1

Let e > 0 be arbitrary and find N so that \ptj\ < e for all i and j  such 
that \i -  j\  > N. Then in the double summation with n veiy large, 
(n — N ) 2 of the |p,-; | are less than s and the rest may be bounded by 1. 
We obtain

var(jlfn) < — [(ft -  N ) 2s + (ft2 -  (ft -  N )2)] ^  e H---- [N 2 + 2 N] .

Thus for ft sufficiently large, we have var(A"rt) < 2e, say, and since e is 
arbitrary, the proof is complete.

4. The integral I is defined as

I =  lim f  ( \ / x )  s\n(2irx) dx = 0.153 •••.
2 ->oo J [

For In to converge almost surely to /, we need |(l/Y )sin(27r/Y )| to 
have finite expectation when Y  has a uniform distribution on [0,1]. But

r \ 1 / 277 \ r«> 1 ,
E |( l /Y ) s in ( 2 w /y ) | = / — sin —  dy = f  — \ sm(2irx) \dx  = oo, 

•/o y \ y / *
so does not converge almost surely to /. One cannot tell from the 
theorem of this section whether or not In converges to /  in probability.
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5. (a) For 0 < p  < 1,

H ( p x , + (1 - p ) x 2)

= sup0(0(jK , + (1 -  p ) x 2) -  log M { 0 ) )

= supe(/? [0x, -  log M ( 0 ) \  + (1 - p ) [ 0 x 2 -  log A/(0 )])

< sup9( p [ 0*, -  log M ( 0 ) ] )

+ sup„((l - p ) [ 0 x 2 -  log A /(0)]) = p H ( x t) +  (1 -  p ) H ( x 2

(b) First note that at 0 = 0, Ox — log M(0)  = 0, so H(x)  > 0 for all x. 
Now, from Jensen’s inequality, since exp {Ox} is convex in x for all
0, we have M(0)  > exp{0/4, or 0/jl — log M (0) < 0 for all 0. Thus, 
//(/*) = 0.

(c) For the normal distribution, J' t / i ,  cr2) with cr2 > 0, M(0)  =
EeeX = e 0fi+ <r2d2 / 2  ̂ so that log = djX + ^ 0 2 / 2 .  If (pie) =
Oz — Ofi -  cr202/ 2, then <p'(0) = z  -  fi -  a 20 = 0 shows that <p 
has a maximum at 0 = (z — p ) / < j 2. Therefore,

,»/  ̂ _  ~ ^  ( z _  2 
(z )  <r2 2 cr2 2 <r2 •

For the Poisson distribution, ^(A ), A > 0, we have M(0)  = 
exp{ —A 4- Ae0}. If <p(0) = 0z 4- A — Ae0, then <p(0) has its maxi­
mum at 0 = log(z/A) if z > 0, and at 0 = - 00 if z < 0. Hence,

H ( z \ = [ z  l°g(^/A ) 4- A -  z, if z > 0,
\ +oo, if z < 0 .

with the convention that 0 log 0 = 0.
For the Bernoulli distribution, P(x  = 1) = p  and P ( X  = 0) =

<7 = 1 — p,  0 < p  < 1, we have M(0)  = p e d 4- q. If <p(0 ) =
Oz -  log( p e d 4- (7), then <p(0) has its maximum at 0 = log(zg/((l
-  z )p)  if 0 < z < 1, at 0 = -00  if z < 0, and at 0 = +00 if z > 1. 
Hence

( z  1 -  z
= l z l ° g -  + 0  — z ) log ~ , forO < z  < 1,

\ + 00, otherwise.

6. As in the proof of Chebyshev’s inequality,

E exp{0Xn) > E exp{0Xn} l ( X n > /x 4- e

> exp{0( jx 4- e ) } P ( X n >/A + e),
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for all n and 0. Hence

P( Xn > /jl 4- e )  < ex p { -0 ( /jl +  e ) E  expjflA^}

= exp{ — 0( / jl + s ) } M ( 6 / n ) n

I  I  0
=  exp< — n I — (  /jl 4- e) -  log M

< exp{ - n H (  /jl 4- e ) } .

n

0

7. (a) Since y > /jl, we have O' > 0. Hence,

Ml*, ->'1 < s ) = f  " f ^ n - y  I <

(b) The left side of this inequality tends to 1 by the weak Law of Large 
Numbers. Hence

lim inf — log P ( X n > / jl 4- e)  > - H ( y  + 8)
n ->oo n '

Since 8 is an arbitrary positive number, this inequality holds in the 
limit as 8 -> 0. Since we are assuming H (\) to be continuous at 
x = /jl - f  e ,  the result follows. _

8. P ( X n > 1) = 0 for all n , so P ( Xn > 1) = ex p { -« //(l + )}, because 
H(  1+) = oo. P ( Xn > 1) = P(n successes) = p n = exp{n log p) = 
exp{ -az//(1)}.

SOLUTIONS TO THE EXERCISES OF SECTION 5

1. (a)

X ••• f ( x n) d x l ••• dxn/ M ( 0 ) n 

< e e'"(y + s % ( \ X n - y \  < 8 ) / M ( 0 ) n 

= exp{fl(0 (>> + 5) -  log M (0 )}Po( |^ w - y |  < 5 

< exp{rt//(y  + S)}/>0( |* w- ) ; |  < 8 ).

P ( X n > /jL + s ) > P ( \ X „ - y \  < 8 )

> exp { ~ n H ( y  4- S)}P^(|^f„ -  y\ < 8) .
Hence
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so

- e t e 2 \
\ — 0^2  ^2(1 — 6 2 ) /

The central limit theorem gives VjT(X„ -  (a.) 0 ,2 ).
(b) EX  = 0, EI ( X  = 0) = e~e, varX  = 0, var(/(X  = 0)) = e ' H l  -  

e~9\  and E X I(X  = 0) = 0 so cov(X, f ( X  = 0» = -  6e e. Hence, 
]fn((Xn, Z„) -  ( 0, e~9)) ^ M .0 ,  2 ), where

2 = 1  0 ~ 0e' 6 \1 -0e~9 e - 9(\  -  e - 9) ) '

2. EXj  = 0 and var(Jf; ) = j,  so B 2 =  E" j  =  n(n +  l) /2 . Since \Xj\
— yfj with probability 1,

E {x? l ( \X j \ > = y/{v7 > eBn) = jl{ j  > e2n(n  + l) /2 } .

This is equal to zero for all 1 < j  < n when n +  1 > 2 / e 2. Hence, for 
all e > 0,

^ Z E { x f l { \ X j \  > s B n) } = 0 ,
°n 1

for n > 2 / e 2. Thus, the Lindeberg condition is satisfied and 
(1 /B ^ L ” Xj 0, 1), which in turn implies that

3. Since var(Jf„) = o-2, we have B 2 = ncr2. The Central Limit Theorem 
now follows, because the Lindeberg Condition is satisfied: For every 
e > 0,

I

1
E{x?l( IXjI > eayfn )} -> Oas n -> » .

4. If for all j,  Xj  = ±Vj with probability p j / 2  each, and X} = 0 other­
wise, then EXj =  0, and var(Xj) = 1 if PjV2 = 1. We want to choose 
Vj and Pj = \ / v 2 so that the Lindeberg Condition is not satisfied.



Here B 2 = n, so that we compute
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If we choose vf = j  (so pj = 1 //), then this becomes approximately 
(l/w )(« -  e2w) -» (1 — s 2) ¥= 0. Thus the Lindeberg Condition is not 
satisfied. But since maxy <n o-n2/ B 2 =  1/n -* 0 as n °°, the 
Lindeberg Condition is_necessary and_sufficient for asymptotic nor­
mality of Z n/ B n = { n X n, so that \/n X n does not converge in law to 

M$S, 1).
. The mean and variance of Tn are

n  n

= E T n =  £  EznjXj  = m L  znJ,
j=i / - 1

a 2 = var(T„) = £  var( z nJXj)  -  <r2 £  z 2y.
;'=i

Since Tn -  iin =  E"=1 z nj(Xj  -  /A  we use the Lindeberg-Feller The­
orem with X nj = z nj(Xj  — /jl ) .  Thus, we have EXnj = 0, var(Xny) = 

= t r2zl j ,  Z„ =  T„ -  n n, and B 2 = a 2 = o-2E "=1 z 2,. using the no­
tation of the theorem. Therefore Z n/ B n = (Tn -  fin)/<rn 1) 
provided the Lindeberg Condition is satisfied. Let e > 0. Then,

4  i  E { X 2 l ( \ XnJ\ > s Bn)}
° n  j =  1

n  j =  1
\Xj -  H  >

max |z.
J < n

Since the X- are identically distributed, the expectation does not 
depend on j  and so may be factored outside the summation sign. 
Then the summation of z 2j may be canceled by the same term in B2,
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giving

^ 2 Z E { X 2njI{ \Xnj\ > B B n))
D n j  — l

< - ^ e U x , -  f i f l U x ,  -  ill >
max \znj\

We are given that maxy < n z^j/B^ -> 0, and since the variance of X { 
is finite, this last expectation converges to zero. Thus the Lindeberg 
Condition is satisfied.

6. The mean and variance of Sn are ESn = E£=1 E R k = E" and 
var(5n) = E? var (Rk) = E"(1A)(1 -  (1 /&)). If we let X nj in the 
Lindeberg-Feller Theorem denote Rj  -  (1 / j ) ,  then E X nj = 0 and 
B„ = var(Sn). We must check the Lindeberg Conditions. We use the 
fact that \Xnj\ = |/?y. -  ( l / / ) l  < 1 to deduce that

For fixed s  > 0, this is equal to zero for n sufficiently large, since B„ 
converges to infinity. Thus the Lindeberg Condition is satisfied.

7. Since

EXk = ( 1 / k )  £  i = ( \ / k ) ( k ( k  -  l ) / 2 )  = (k  -  l ) / 2 ,

and

var Xk = ( 1 / k )  £  i 2 -  ( ( k  -  l ) / 2)2 = ( k 2 -  1) / 12,

we have

and

— n

n(n — 1)(2 n +  5)
72
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To show asymptotic normality of (Tn — ETn) /  y^var Tn , we check the 
Lindeberg Condition. We use X nj = Xj -  ((j  -  l ) /2 )  so that EXnj =
0, and B 2 =  var Tn. Because Xj  is bounded between 0 and j  — 1, we 
have that \Xnj\ < ( j  -  l ) /2  < ( n -  l ) /2  for j  < n. Hence,

4  i  E { x 2njl { \ x nj| > s B n)} < - 1  t  E { Xn2j I ( (n  -  l ) / 2  > «£„)}
n j =  1 D n /=!

= l ( ( n - \ ) / 2 > e B n).

For fixed e > 0, this is equal to zero for n sufficiently large, since Bn 
is of the order n3/2. Thus the Lindeberg Condition is satisfied and the 
normalized versions of Tn and rn are asymptotically normal.

8. For this distribution, /jl =  0, cr2 = 1, and p = 1. Hence,

c„ = \/n sup |F„(x) -  <I>(jc)|. (* )
X

If n = 1, then F{(x)  = 0 for x < — 1, Fx(x)  = j  for - 1  < x <  1, and 
Fj(jc) = 1 for jc > 1; so the supremum in (*) occurs at x close to ± 1, 
and c, = max{l -  <P(1), ^(1) -  1/ 2} = 4>(1) -  1 /2  = 0.3413 - .  For 
n = 2, F2( x ) = 0 for x < — y/l,  F2(x)  = \  for -  ]/2 < x <  0, F2(x) =  
f  for 0 < x < y/2, and F2(x)  = 1 for Jt > ]f2; so the supremum in (*) 
occurs for x close to 0, and c2 = ]/2 \  =  0.3536 • • •. For arbitrary 
n > 2, we expect the supremum in (*) to occur for x close to zero 
where the largest jump in Fn(x ) occurs. So take n even, n = 2k,  and 
evaluate

c„ = V^|F„(0) -<t>(0) | = v W 2,

where q represents the size of the jump in Fn(x)  at x =  0. Thus, q is 
the probability that a binomial random variable of sample size 2k  and 
probability of success \  is equal to k . Using Stirling’s approximation to 
k\, we find

= ^ ( ^ ) ( i ) ”/ 2  = i / n ( 2 k \ ) / ( k \ 22 2k + ' )

~ )fn [ ( 2 k / e ) 2k(7r2k)1 /  [ ( k / e ) 2k(7rk)22k*1 ]

= 1 / i/2tt = 0.3989 ••*.

This shows that the constant c in the Berry-Esseen Theorem is at 
least 0.3989 • • •.
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9. Since the coefficients of skewness and kurtosis are independent of 
location and scale, we may assume that the underlying distribution has 
mean 0 and variance 1. Then,

ES2 = nEX2 =  n,

ES3n = £ £ E  L X , X j X k = nEX3 =  n/B„

ES4n = E L  E  E  L X , X j X kX,  =  nEX4 + 3n(« -  l ) ( E t f 2)2

= n( p 2 4- 3) 4- 3n(n -  1).

From this, we may compute

/3l n = £ s „ 7 ( £ S n2) 3/2 =  / V ^ ,

P2n = ES*/ { ES l ) 2 -  3 = (»( P2 + 3) + 3n(n -  1 ) ) / n 2 -  3 = f t / n .

The Edgeworth Expansion (12) is independent of scale change, and 
since the exponential distribution with mean 1 is just a scale change 
from the xl distribution, Table 1 represents the normal and Edge- 
worth approximations for a sample of size 5 from xl- But fr°m the 
above, it is also valid for a sample of size 10 from the X\ distribution 
or a sample of size 1 from the X\o distribution.

10. The mean of the uniform distribution on (0,1) is /x, = \  and the 
variance is a 2 = The coefficient of skewness is f$x = 0, since the 
distribution is symmetric about \ . The fourth moment about the mean 
is

E ( X  -  i )4 = f \ x  -  1 /2 )4 dx = 2/ oV2y4 dy = 2 ( i)5/5  =

so the coefficient of kurtosis is j82 = (w V (ll)2 “  3 = 1.8 — 3 =
— 1.2. With n =  3, we have P(Sn < 6) = P(yfn(Xn — \ ) / &  < 1). The 
normal approximation to this probability is <I>(1) = 0.8413 from Table 
1. The Edgeworth Expansion is <I>(1) -  /32(1 -  3)/(24n)<p(l) =
0.8413 — 0.0081 = 0.8332. The exact probability is

P ( X l 4- X 2 4- X3 < 2) = 1 -  P(Xj  4- X 2 4- X 3 > 2)

= 1 -  P ( X t 4- X 2 4- Z 3 < 1) = 1 -  i  = 0.8333,

since P ( X { 4- X 2 4- X 3 < 1) = \  is the volume of the unit tetrahe­
dron.
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SOLUTIONS TO THE EXERCISES OF SECTION 6

1. (a) Let ri be a subsequence; we are to show there exists a subsubse­
quence ri' such that -* tf(X) almost surely. Since X„, -> X in 
probability, there exists a subsubsequence n" such that X„» -> X 
almost surely. Hence for X e  C(f), we have fiX„») -> f(X) and since 
P{X g  C(f)} = 1, this implies f(X„») -» f(X) almost surely.

(b) Since |Y„ -  X| < |Y„ -  X„| + |X„ -  X |, we have for all e > 0,

{|Y„ -  X| > e} c  {|Y„ -  X„| > s / 2 j  U {|X„ -  X| > e / 2 ) .  

Hence,

P{ |Y „ -X | > 8} < P{ |Y„ — X j  > e/2} + P { |X „ - X | > e/2} -> 0.

(c)

2.

‘Py y ( u , u) =  ^ x n(u)^>Y„(v ) ’ because of independence

= <t>x Y(u,  v),  if X  and Y  are independent.

3. Let - 1  < /3 < 1. Since X 0 = 0 and X} = p X j _ , + we have T."Xj =  
jB L r ' X j  + Elej. This implies that (1 -  f3)E1Xj = -  (3Xn, or

V«"((l -  f i ) X n -  fj.) =  4 n ( e n -  fi) -  $ X j { n .
t ... _

By the Central Limit Theorem, yn (en — / jl)  — cr2). We now show
that \/^((l — — m) and \/n (en —  /jl)  are asymptotically equivalent
by showing that the difference, fiXn/  yfn converges to 0 in probability. 
Since X n = E? ei@n~j (see the solution to Exercise 2 of Section 4), we 
have E ( X n/  y n )  = /jl E? /3n~j/  Jn 0, and var ( X n/ y f n )  = 
a 2 E” f$2{n~j)/ n  -> 0. This implies that X n/  yfn converges to 0 in 
quadratic mean (Exercise 5 of Section 1), and hence in probability. An 
application of Theorem 6(b) now gives that VaT(( 1 -  P ) X n -  
/jl)  a  2), or
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For j3 = — 1, X n =  (1 /n) ( e2 +  e4 +  ■■■ + e n) for even n±  and X n = 
(l/rtX ^i + e3 + ••• + e n) for n odd. In either case, J n ( X n — /x/2) is 
approximately^f(0, <t 2/ 2 )  for large n. For /3 = +1, we have X n =  E"e;. 
and X n = (1 / n )  E"(n + 1 -  j)ej.  If /x > 0 for example, this converges 
to infinity in probability. In spite of this, we can show that X n, properly 
normalized, converges in law to a normal distribution. X n is equivalent 
in distribution to Zn = so consider Zn -  EZn = E" j(ej -  fx).
We check the Lindeberg Conditions with X nj =  j(ej -  /z). We have 
EXnj =  0 and var(Xnj) =  j 2a 2, so B2 = E? ; V 2 = a 2n(n + 1X2n + 
0 /6 . Then,

because B2/ n 2 oo. Hence (Z n -  EZn) / B n 0,1), which is equiv­
alent to

4. (a) Let Un and Vn be sequences of mean 0, variance 1 random variables 
such that corr(Un, Vn) -* 1. Then, E(Un -  Vn)2 — 2(1 -  
corr(Un, Vn)) 0, so that Un — Vn converges to zero in quadratic 
mean. This implies convergence in probability, so Un and Vn are 
asymptotically equivalent and from Theorem 6(b), they have the 
same limit laws. This observation may be applied directly to the 
sequences Un =  ( X n -  E X n) /  y jvax(Xn) and Vn = (Yn -  
EYn) /  -|/var(yrt) of normalized variables with CQYY(Xn,Yn) I, 
since co rK ^, Vn) = corr(Xn, Yn).

(b) The variables X n and Yn themselves may not be asymptotically 
equivalent. Here is a counterexample. Let U and V  be distinct 
independent mean 0 random variables on [ — 1, 1] such that 
var(l/) = var(K), and let W be independent with P(W  =  - 1 )  =

4  £  E { x l l { \ x nj\ > eBn)}
j=\
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P(W =  +1) = j .  Let ( X n,Yn) = (nW, nW)  with probability 1 /n , 
and = (U, V)  with probability (n — 1 ) /n.  Then X n > U in law 
and Yn -» V  in law, yet var(X„) = « + ((« — l)/«)var(f7), VarO^) 
= « + ((« — l)/n )var(JO , and cov(JT„, V„) = «, so that 
corr(Xn, YJ  -* 1.

5.

£ ( * „  -  V J2 > var(X„ -  y„)

= v a r(X J  -  2 cov(X„,Yn) + var(F„) > 0.

Since cov(Xn, Yn) <  ^ v a i ^ ^ ^ / v a r O ^ , we have £(-¥„ -  Yn)2 > 
{■\Jva.r(Xn) — -\jvar( Yn) )2. Dividing both sides by var(A1,,) and noting 
that the left side tends to zero shows that (1 — yVar(Yn) /  -\Jvar( X n) )2 
-* 0, or equivalently, varCK„)/var( A"n) -» 1. Now, dividing both sides of 
the original inequality by ^/var( X n) ^/var( Yn) gives

\/var(^ „ )  /}Jvax(Y„) -  2 co rr(Xn, Yn) + Jvar(Yn) / ^ v a r ( X n) 

< E ( X „ -  Yn)2/ ( y / var ( Xn) y/v&r{Yn) ) -» 0.

Hence, corr(Xn, Yn) -> 1. The last line follows direct^ from Exercise 4.
6. (a) By Slutsky’s Theorem part (a), we have log X n —> log X , since log

is continuous on (0, oo). Also by part (a), log Yn — log Xn ^  0. Then 
by part (b) of Slutsky’s Theorem, log Yn -S  log X , and again by part
(a) y  x.

(b) If ’ ( X in, X kn) Z  ( X „  X k) >  (0, . . . , 0), and if 
( X ln/ Y {n, . . . , X kn/ Y kn) - ^ (  1 , . . . ,1 )  as « -»  oo, then 
y kn) —> ( X y, . . . ,  X k). The proof is essentially the same as in 
part (a).

SOLUTIONS TO THE EXERCISES OF SECTION 7

1. ]fn(s2 -  a 2) ^ J iO ,  /jl4 -  a 4), g(x)  = logU), g'(x)  = \ / x ,  and 
g'(o-2) = 1 / a 2. Hence from Theorem 7,

V^(log(s2) -  log(c72)) ^ ^ * ( 0 , /x,4/ c r 4 -  1) =^*(0 , p 2 -  1)

where fi2 = /x4/o -4.
2. Taking m', = ( l / n ) H( Xj  — /jl)  and rri2 = (l/n)E(>V; — /x)2 allows us 

to use central moments in the computation of the covariance matrix.
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Then, m'2) -  (0, cr2)) ^*yK (0,0),2), where

var( X  — /x) 

cov(( A' -  (jl)2, X -  n )

<r2 Pi |
M3 -  o-4 I

cov ( ( X  -  f i ) 2, X  -  f i )  

v a r ( ( X - » ) 2)

Take

8 ( x >y)  = [ y l x 2 ) ’ ( - 2,  l ) ’ 8 ( 0 , * * )  = I.

Then, by Theorem 7,

v^r
' x .

s i  — ( J 2
j r Ms

/i.3 /a4 -  O-

3. (a) g( u , v ) = \/y/M, g(^,, <7 2) = ( - a / f x 2, l/(2ju.a0).

Vn I -=f -  — I ^ ^ ( 0 , g 2 g r ) - v H 0 , 4/jtV2
_̂ 3

3 4M' M

If the parent distribution is normal, then /x3 = 0 and fxA = 3<r4, so 
that the limiting distribution is ^K0, cr2(1 / 2  + a 2/ f i 2)//jL2).

(b) Without loss of generality, take n  = 0; then }/n((m\, m 2, m'3) -  
(0 , cr 2, /a3)) 0 ,0 ) ,  X ) ,  where

cr

M3

M3
4H4 -  V

Since ra3 = m'3 — 3rri2m\ + 2(m \)2, we let g(w, w) = w — 
3wi> + 2w3 and find that g(0, cr2, /a3) = ( — 3 a 2, 0,1), so that

] fn(m3 -  fi3) ^ y r ( 0 , g X g T) = ^ ( 0 ,  -  n] -  6 a 2fx4 +  9 a 6).

4. E ( X )  = a / ( a  + 0 )  = 0/ ( 0  + 1) and var(* ) = a\3/ ( (a  + p ) 2( a  + 
/3 + 1)) = 0/ ( (0  + 1)2(0 + 2)). Hence,
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Let g(je) = x / ( l  — x)  so that g'(x) =  1 / ( I  -  x)2 and g' (d/ (d  + 1)) = 
(0 + I)2. Then we find

5. (a) Using g(x,  y)  = y / x  in Cramer’s Theorem applied to the result of 
Exercise 2, we find g( /x, a 2) = ( -  a 2/ / a2, 1 / fi) and

(b)The first four moments of the Poisson distribution, <^(A), are 
/x = A, fx2 = cr2 = A, /x3 = A, and /x4 = 3A2 + A. Substituting these 
values into the result of part (a), we find

' J n { g ( x n )  - g ( p ) )  ^ ^ ( 0 ,(1  -  2 p f  p ( \  - p ) ) .

If p  = 1/2, this gives -  Xn) -  0.25) ^ ^ ( 0 ,0 ) .  This just
says }fnX„(l -  X n) 0.25.

(b) Since g"(p)  = - 2 ,  (11) gives

n ( X n( 1 - X n) - p { \  - p ) ) ----- p (  1 - p ) [  ATi2(%2) -  %2],

where y 2 = n(l — 2p)2/ ( 4 p ( \  — p)). When p  = { , this gives 
n(X n(1 -  X n) -  0.25) -  0.25^2 or, equivalently, 4«(0.25 -  
X n(l — X n)) —> xi -  Since g is quadratic, the expansion (9) is exact, 
so if X n were exactly normal, the above noncentral x 2 approxima­
tion would be exact.

(c) When p  = 0.6 and n =  100, (a) becomes ( X ni\  — X n) — 0.24) ~ 
^T(0, 0.96), and (b) becom es ( ^ ( 1  -  X n) -  0.24) -  
-0.0024[X \ ( y 2) -  J 2\  Where y 2 =  4.1667. At y =  0.25, (a) gives 
P (X n( 1 -  X n) < y ) ~  <E>(1.021) = 0.8463, whereas (b) gives P ( X n( 1
— X n) < y )  =  1.0, obviously the correct answer. At y  — 0.24, (a)

6. (a) Since g'(p)  = 1 - 2 p  and 4 n ( X n — p)  p(  1 — p ) \  we have,
by Theorem 7,

independent of A.



gives P ( X n(1 -  X J  < y)  ~  0.5000 and (b) gives

P ( X n( l - X n) < y ) ~ P ( x ? ( y 2) ~ y 2 >  0)

= P ((^ (0 ,1 ) + 7 )2 > T2)

= 4>(0) + 4 > (-2 |y |)  = 0.5000.

At y  = 0.23, (a) gives P ( Xn( 1 -  X j  < y ) ~  4 > (-1.021) = 0.1537, 
and (b) gives

P { X n( \ - X n) < y ) ~ P ( X 2{ y 2) > 2 y 2)

«  1 -  4>(\/8.3333 -  \/4.1667) = 0.1990.

We see that the normal approximation, (a), is rather poor.

SOLUTIONS TO THE EXERCISES OF SECTION 8

1. We use the notation /x-k to represent E{(X  — EX) j( Y — E Y ) k}. From 
Theorem 8, }/n((s2, sxy) -  ( a 2, axy) 0,0), 2 ), where

2  ( M40 ~~ M20 M31 “  M20 Mil \

\  ^31 “  ^20 M il M22 ~  M?i )

Take g(u,  v) = v/u.  Then g(w, v) = ( -  v / u 2, 1 /w), and so 

yfn ( p  -  /3) -> ^ (0 ,g( n 20, i i u )%g(  /x,20, /x,n )')

~ ^ (0 , [ M40 M11 ~  /x20 M11 + M22 M20]/M 20) •

For the bivariate normal distribution, t̂40 = 3<x/, /x31 = 3pax3ay, /x22 = 
(1 + 2 p 2)(T2(T2, and / iu = pcrx(ry. Hence the asymptotic variance is

[3pV/aj,2 -  6 p 2ax6a 2 + (1 + 2 p 2 ) a x6a 2] / a xs =  (1 -  P 2)<t 2/ < t 2 .

2. Because from Theorem 8, 4n(sxy -  axy) —>^K0, fi22 -  MnX we have

J n ( s x y -  o- )
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( M22 M?i)
2 \ ' / 2 >^•(0 , 1).
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Hence,

f̂n(sxv -  cr )
— ^ -----17T - ^ ( 0 , 1),
(m22 -  ^y)

where m 22 is the sample estimate of /jl2 2 , namely

m 22 =  0 / n ) £ ( X j  -  X n f ( Y j  -  Y n f .
1

3. (a) Because the mean and variance of ^ (A ) are both A, we have
yfn ( X n — A) A). We seek a transformation g such that
g'(A)2A = 1. Solving the differential equation g f( A) = ± 1 /  yfX gives, 
say, g( A) = 2 / \ . Hence,

-  vT) 0 , 1).

(b) If is binomial, & (n , p \  then the mean of A"/w is /7 and the 
variance of A"/n is /?(1 — p ). We seek a transformation g such that 
g '(/?)2 -pH ~ p)  =  1. Solving g' (p)  = (/?(1 - / ? ) ) ' 1/2 gives, say, 
g(/?) = arcsin(2 p -  1), or, alternatively, g( p )  = |  arcsin(\/p). 
Hence,

Vft(arcsin(2 ^ / «  -  1) -  arcsin(2 /? -  1)) - > ^ ( 0 , 1).

4. Let s2 and s 2 be the sample variances from independent samples of 
size n from distributions with finite variances and fourth moments 
about the mean (ax2, /i4x) and ( a 2, fi4y), respectively. Then, {n (s2 -  
a 2) and )/n(Sy -  cr2) converge in law jointly to independent normal 
distributions with means 0 and variances fx4x — vx and /iAy -  cr4, 
respectively. Then applying the transformation g(x,  y)  = x / y  with gra­
dient g'(x, y)  = ( l / y ,  —x / y 2) to (sj ,  s 2), we find that

( sx / sy -  y 2),

where

y2 = ( M4x~ (rx4)/(ry4 + ( f l4y -  (T*)(T*/<Ty%

=  ( 0 2 X  +  0 2 y -  2H4/°>4>

where f$2x and f$2y are the coefficients of kurtosis for the distributions. 
For sampling from normal distributions, we have y 2 = 4crx4/ a 4.



SOLUTIONS TO THE EXERCISES OF SECTION 9

1. Neyman’s modified \ 2 maybe written in the form

^  = «(X„ - p ) TP„-'(Xn - p ) ,

where P„ is the matrix P with each pj replaced by its estimate, rij/n. By 
the Law of Large Numbers, Prt -> P in probability, and by the central 
Limit Theorem^ }fn(Xn — p)_-> Y 0, X).  Hence as in the proof of 
Theorem 9, n(Xn -  p)r Pn" ,(Xn -  p) ^  Y7P 1Y e  x?-i-

2. Find Q orthogonal such that QPQ7 = D, diagonal. Let Y = QX so that 
Y <EJt0,Q Q r ) =^K0,I) and Xr PX = Xr Qr DQX = Yr DY. Then,

Yr DY e  Xc- j j iff r °f ^ e  dj are 1 and the rest are zero

iff P is a projection of rank r

as in the proof of Lemma 3.
3. First note that — Q -  qqr, Q “ *q = 1 and l rq = 1 -  pc. From this it 

follows that

(Q 1 + n T/P c)(Q  -  qqr ) = 1 -  Q lqqr + n rQ / p c -  u rqqT/ p c

=  I -  lq T +  lq T/ p c -  (1 ~ p c) W / P c 

=  L

so that = (Q -  qqr) -1 = Q _I + 11T_ /p c.
From^the Central_Limit Theorem, yfn(Yn — q) ->./K0, <E>). Hence, 

Z = n(Yn -  q)r <J>_1(Yrt -  q) -> x 2- \  from Lemma 1. It must be shown 
that Z  is identical to Pearson’s x 2-

n(Yn -  q ) V '( Y „  -  q)

= n(Y„ -  q )r Q - 1(Y„ -  q)

+ n(Y„ -  q )r i l r (Yn -  q) / p c

= ~  q )r Q _1(Y„ -  q) + n ( nc/ n  - p cf  / p c

=  n ( \ n -  p )r p - ' ( X „ - p ) ,  

exactly Pearson’s x 2-
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4. With g(jt) = logCjr,), we have g'(x) =  1/x,  and

2 _  y -  ( lo § ( n / / n )  ~  lO g (P y ) )
Xg K ^  /"1 / \ 2 

O / P j )  Pi

= "  L  (log(»//») -  log(Pj ) )  Pj. 

The modified transformed * 2 is

L ( * o g (V " )  _  lo8(P i))  nr
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SOLUTIONS TO THE EXERCISES OF SECTION 10

1. The noncentrality parameter is

A = 100
(0.25 -  0.2) (0.5 -  0.6) (0.25 -  0.2) 2

0.25 0.5 0.25
= 4.

There are two degrees of freedom, so from the Fix Tables (Table 3) for 
a  = 0.05, we obtain fi =  0.42 • • •, and for a  = 0.01, we obtain fi =
0.20•••. To find n to achieve a power of 0.9 at a =  0.05, we solve 
(w/100)4 = 12.655 to find that n =  317. For a power of 0.9 at a =  0.01, 
we solve («/100)4 = 17.427, to find n =  436.

2. (a) If X  e  ^ (A ), then X  may be written in the form X  = (Y] + )2 
+ Y 2 + ••• +Y r2, where Y{, . . . , Y r are i.i.d. normal mean 0 variance
1 random variables. Hence,

EX = E ( Y l +  vT )2 + EY22 + ••• +EYr2 

=  (1 + A) + 1 + ••• +1 = r + A.

To find vaK X ), first compute for Y e J iO , 1),

v a rj(y  + vT )2} = £ ( r +  vT )4 -  ( £ ( y +  i /a )2)2

= [ E Y 4 + 6 AE Y 2 + A2] -  (1 + A)2 

= [3 + 6 A + A2] — (1 + 2 A + A2) = 2 + 4A.

Hence,

v a r(^ )  = (2 + 4A) + 2 + — + 2  = 2 r + 4A.
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(b) We show that the moment-generating function of ( X  — (r 4- A))/ 
(2 4- 4A)1/2 converges to exp{4-/2/2}, the moment-generating func­
tion of e/KO, 1), as maxO, A) -> oo. The moment-generating function 
of X  is (px (t) = (1 -  2 t )~r/2 exp{Ar/(l -  2t)}\ hence the 
moment-generating function of ( X  — a) / b  is

<P ( X - a ) / b ( 0  = < P x ( t / b ) G x p { - a t / b }

— (] — 2 t / b ) r/1 exp{A t / ( b  — 2 1) — a t / b) .  

From this, we find 

log <P( X-a )/ b( t)
= — ( r / 2 )  log( 1 -  2 t / b )  + ( t / b ) ( k / ( \  -  2 t / b )  -  a)

= ~ ( r / 2 ) [ - 2 t / b  -  4 ( t / b f / 2 ]

+ ( / / * ) [ A + 2 k t / b  -  a]  + 0 ( ( t / b f ) .

If a ~  A 4- r, the linear terms cancel, and if b — (2r 4- 4A)ly/2, we 
are left with t 2/ 2 4- 0 ( ( t / b )3) -> t 2/ 2 as b -> oo. When we notice 
that b -> oo if and only if max(r, A) -> oo? we are done.

(c) Since * 20; .05 = 31.410, we want to find A such that

P ( x l o( A) >31.410) = 0 .5 .

By part (b), this distribution is approximately ^K20 4- A, 40 4- 4A), 
so we solve 20 4- A = 31.410 to obtain A = 11.410 as the approxi­
mation. The true value of A given by the Fix Tables is A = 12.262, 
rather close. If A = 11.410 were used, the actual power found in 
the Fix Tables is about 0.47. _

3. From the Central Limit Theorem, ]fn(Xn -  p) Z 0, where 
X =  P -  ppr. From Cramer’s Theorem, ]fn (g(X„) -  g(p)) —> g(p)Z. 
Then yfn(g(p) -  g(p®» -> g(p)8 implies that

Vn (g(X„) -  g(p°)) = \ fn(g(X„) -  g(p))

+  J n { g(p) ~ g(p°)) ^  g(p)Y,

where Y = Z + 8 8 , X). From this, we have g(p°)~ '(g(X„) -  
g(p°)) ^  Y, so that

^ 2 -n (g ( X 1() - g ( p S ) ) r g (p S ) ', (P(,0)" 1

g(p“) “ '(g(X„) - g ( p “)) ^ Y ^ P - ’Y.
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From the proof of Theorem 10, this has a *c2_ j(A) distribution with 
A = 8r P8.

SOLUTIONS TO THE EXERCISES OF SECTION 11

1. The Yj form a stationary 1-dependent Bernoulli sequence. The mean is 
|m = EYX = E( 1 -  X 0) X l = E(  1 — X 0) EXx = qp. The variance is er00 
= qp( 1 — qp) and the covariance of lag 1 is er01 = cov(Yj, Y2) = EYXY2
-  EYXEY2 = 0 -  (qp)2. Hence,

J n ( y n ~ OP) ^ ^ ( 0 ,  cr2),

where a 2 = <r00 + 2cr01 = qp -  3(qp)2.
2. The Zy are (r + 1) dependent with EZy = g 2/?r (where q = \ — p),  and 

E Z 2 = q 2p r, EZjZj+r+ j = q 3p 2r, and EZjZj + k = 0 for 1 < k < r. Thus, 
var(Zy) = g 2/ /  -  <?V2r> cov(Zy, Zy+*) = - q 4p 2r for 1 < k < r, 
cov(Zy, Zy.+r+l = q 3p 2r — q 4p 2r and cov(Zy, Z;>it) = 0 otherwise. Be­
cause the Zy are stationary and (r + 1) dependent, yfn(Sn/ n  -  
q 2p r) ^>yK0,  cr2), where

<72 = q 2p r + 2q 3p 2r -  ( 2r + 3) q 4p 2r.

3. Here Yj = Xj _xXj is a stationary 1-dependent Bernoullli sequence with 
mean p  = EXj_ x X: = p 2, variance cr00 = p 2( 1 — /?2) and covariance of 
lag 1, a Ql = EXQX f X 2 ~ ( p 2)2 = p 3(l - p ) .  Hence,

V^(K, ~ P 2) + 2<r01) = ^ ( 0 ,p 2( l -/> )(1  + 3/?)).

4. (a) Because aX  + bZ  = (1 /h)E ? ^ ( tf  + W i+i), we let = ^ ( a  +
bXi+x). Then YX, Y2, - - is a stationary 1-dependent sequence with 
mean EYt = a p  + bp,2 and variance

<r00 = var Yx = E X xE(a  + &Y2)2 -  ^ 2(a  + fy*,)2

= (<r2 + p ? ) ( b 2a 2 + &2/*,2 + + a2) -  p 2(a2 + 2a£tyi + b 2p 2 

= <r2(tf2 + + b 2( a 2 + 2/a2)).

and covariance at lag 1,

ctq, = c o v (r ,,y 2) = E X xE ( a  + bX2) X 2E( a  + bX3) -  p 2(a  + b p ) 2 

=  +  b a 2 +  Z? t̂2 ) ( f l  4- £tyi) — p 2(a  +  &p<)2

= p ( a  + b p ) b a 2.
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Therefore,

4 n [ a Xn + bZn — fi(a + 6/u.))

%J %0 ,  (Too + 2(701)

= J r(0, cr2(a2 + 4ab/ji + b 2(<r2 + 4ju,2))).

This is the distribution of aX  + bZ  when (X,  Z)  e j 'X0 ,2 ) , where

x = ( 0-2 2<r2̂  \
^2o-2/u. a 4 + 4 a 2fi2 f

Since a { n ( X n — /x) + b / n ( Z n — /a2)J%> aX  + bZ,  we have, from 
Exercise 2 of Section 3, 4 n ( X n -  f i , Zn -  /jl2) ^^K O , X).

(b) Now we apply Cramer’s Theorem using the function g(x, z) = z  — 
x 2. We have g(x, z)  = (~ 2 x ,  1), g( fi, fi2) = 0, and g(f i , ix2) = 
( — 2fi, 1). Thus we find

V n(Z n - X 2) ^ ( 0 , o - 4).

5. The sequence Z 1,Z 2,--* forms a 2-dependent stationary sequence of 
Bernoulli variables ( Z x and Z4 are independent, for example). We have 
E Z X = P ( X 0 > X x < X 2) = j ,  because this is just the probability that 
of three independent numbers chosen from a distribution, the second 
one is the smallest. The distribution is continuous, so there are no ties. 
Because Z x is Bernoulli, var(Zj) = j § =  f .  And not both Z x and Z 2 
can be positive, so E Z XZ 2 = 0 and cov(Z1,Z 2) = -  To compute 
covCZj, Z 3), we must evaluate E Z XZ 3 = P ( X 0 > X x < X 2 > X 3 < X 4X 
All 5! = 120 orderings of X 0, X }, X 2, X 3, X 4 are equally likely, and we 
must count the number of orderings such that X 0 > X x < X 2 > X 3 <  
X 4. Either X x or X 3 must be the smallest, and there are exactly 8 
orderings with X x the smallest and 8 with X 3 the smallest for a total of 
16 orderings. Thus, cov(Z„ Z 3) = ^  -  \  = We find a 2 = § + 2( -
0  + 2 ^  = Hence,
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6. (a) Let U, = X }  and V, = X, XU i . Then Wt = aX, + bUt + cV, is a 
1-dependent sequence with mean EWt = b a 2. Then E W 2 = var Wl 
= a2a 2 + 2abix3 + b 2fx,4 + c 2a 4 and EWjWi+1 = b V 4, so that <x, 
= var H7' = a2a 2 + 2ab/x3 + b2/u,4 + c2<r4 — 62o-4, and <701 

| - b 2<r* =  0. From the theorem of this section,

oo

y[H(aXn + bUn + cVn -  b a 2)

- S ^ O ,  a2a 2 + 2 ab(jb3 + b 2(/jL4 — <r4) + c2<r4).

This is the distribution of aX  + bU + cV  when (X , U, V)  ^J^O,  2), 
where

X *
a  n 3

V-4 ~ <*“ 
0 0

0
0

Then bv Exercise 2 of Section 3 we have \ fn(Xn, Un — 
a 2,Vn) % J <  0 ,2) .

(b) Note rn = g ( X n, U„, Vn) where g(x,  u, v) = (v -  x 2) / ( u  -  x 2). We 
have g(0, cr2, 0) =  0, and because g(x,  u, v) = (2x(v  -  u), — (v — 
x 2),u - x 2) / (u  —x 2)2, we have g(0, a 2, 0) = (0 ,0 ,1 / a 2). Hence 
from Cramer’s Theorem, 4n(r„ -  0) 0, a 4/ a 4) = M . 0 , 1).

7. We may assume without loss of generality that r  = 1 and £ = 0 and 
hence /i = 0. Let y/*> = E mslk z , a n d  = E ? . , ^ .  Then Yt(k) 
is a stationary 2 ̂ -dependent sequence with mean 0 and covariances,

VqV = cov(Y<k\ Y l{k>) = £  £  ZjZiE X . jX, . ,  =
|y|<* |/|

for t >  0. Hence by Theorem 11, S{nk)/  ]fn 0, a*2), where a*2 = 
<r$  + 2 E 2i 1cr0(f ). Also a*2 -> a 2, because the latter is absolutely 
convergent. Thus, by the lemma, we will be finished when we show 
(Sn — S(nk)) /  ]/n 0 uniformly in n as k -> <». Since

^  -  Y'ik) = £  ^ - ; +  £ * , * , - / ,
j < - k  j > k



we may break (S„ — S{nk)) into two pieces,

Sn -  S?'  = £  L  Z j X t_j + £  £  ZjX ^ j = + V<k\
t=\ j < - k t = \ j>k

say, and show that U£k)/  ]fn and V£k)/  4n are both uniformly small in 
n as k -> °o. For this we compute

E ( K ( k ) ) 2 < E E W \*j\ E E E x s _ j X t _ j

i>k j>k 5=1 / = I

< £  I  U,l |Zyl« = «( E  lZ;l) •
/>£ j>k  ̂j>k '

Thus, by Chebyshev’s inequality,
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uniformly in n as k -> oo. Similarly, U^k)/  ]/n -> 0 uniformly in n as 
& -> oo. Similarly, £/„(A:)/  Vn" -> 0 uniformly in n as k -> °o. Finally, the 
sum converges to zero uniformly in n, since

P(\u^k) + V„(k) |Vn > 2e) < | + \ K k) I > 2eV«)

< P (|t/„ (*>| > ev^T) + P (|F „ (*>| > e]fn).

This completes the proof.

SOLUTIONS TO THE EXERCISES OF SECTION 12

1. (a) This is a special case of Example 1 with z; = j  and m replacing n. 
Since z N = ( N  +  l) /2 ,

N
£ z ?  = N ( N +  l ) ( 2 N +  l ) / 6 ,
1

1

and maXyCẑ f — z N)2 = (AT -  l)2/4 , condition (9) is satisfied if 
min(m, N  -  m)  -> oo? because Af max7(zy -  z^ )2/E f(zy  -  z^)2 is
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ESn = N ( ( N  + \ ) / 2 ) ( m / N )  = m ( N  + l ) / 2

and

var(SN) = ( N / ( N  -  \ ) ) ( N(N  -  l ) ( N  + l)/12)(m(W  -  m ) / N 2)

= m(N -  m) ( N + 1)/12.

Hence we have (SN — ESN) /  ^/var( SN) -^^KO, 1).
(b) Not necessarily. If m / N  r as W -» oo, then

/ S „  m ( N  +  1 ) \  x  I r ( l  - r )
i r ~

However, for this to imply that J N( S n/ N 2 -  r / 2 ) has the same 
asymptotic distribution, we must have the sequences be asymptoti­
cally equivalent; that is, the difference must converge to zero, 
y[N(m(N + 1)/(27V2) -  r / 2 ) —> 0. This requires a faster rate of 
convergence; namely, we need ]/N ( m / N  -» r) -» 0.

2. (a) This is also a special case of the sampling problem, where it was 
shown that

max(a(y) -  aw)2/ E ( c ( ; ' )  -  aNf  < N / ( n ( N  -  n)) .  
i i

From this we may deduce maXj(zj -  z n )2/ L i ( z j  ~ z N)2 < N /  
(m( N -  m))  also. Thus, condition (9) is satisfied if N 3/ ( n ( N  — 
n)m(N -  m))  -» 0 or n(N -  n)m(N -  m ) / N 3 -> oo. in particular, 
if min(n, N  — n) -> oo and min(m, N  — m ) / N  is bounded away 
from 0, then is asymptotically normal. Since the mean of the 
hypergeometric is m n / N  and the variance is mn(N  — m)(N — 
n ) / ( N 2( N  — 1)), we have that if yfN(m / N  - /* )->  0 and y[N(n/ N
— s) -» 0, then

V̂ V(Sn/ N  — rs) ry(l — r ) (  1 -  s ) ) .

(b) The probability mass function of the hypergeometric distribution is

bounded. From Lemma 1,

(
m W N  — m \ 
x ! \  n ~ x / 

j w j

m \ n \ ( N  — m ) \ ( N  — n)\
x \ ( m — x ) \ ( n  — x ) \ N \ ( N  — m — n + *)!
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We are to show this converges to e~xkx/x\  for all fixed x = 0 ,1 , . . . ,  
as min(n, rn) -» <», and m n / N -> A. The 1/x! term is already 
present. Next note that

so that the product converges to A*. We will be finished when we 
show ( N  — m) l (N — n ) \ / ( N \ ( N  — m — n)\) -» e~x. But

( N  - m ) \ ( N  - n ) \  ( N  -  m)  ••• ( N  -  m -  n + 1)

completing the proof.
3. (a) Given U{ = u, the rank of Ux is one more than the number of U/s 

less than u. Thus the conditional distribution of R { — 1 given 
Ux = u is binomial with sample size N  — 1 and probability u. 
Hence,

ER,UX = = E[ U, ( ( N  -  1 )t/, + 1)]

= ( N -  1)EU^ +  EUX

= ( N  — l ) / 3  + ± = (2N  + l ) / 6 .

Then ER] = ( N  +  1X2/V +  l ) /6  and Et/,2 = |  gives

£ ( /? , -  A/'t/,)2 = -  2NERxUl +  N 2EU? = ( N  +  l ) /6 .

From var(i?,) = (N + 1XN -  1)/12, we conclude E ( R X -  
NUx)2/ v a r i R x) = 2 / ( N  - 1 ) ^ 0 .

m!n!
~ m xnx and — --------------------------n ~x

( N  -  m -  n +  x) \

( N  — n — m) \

( m — jc) !(n — x )!

N \ ( N  -  m - n ) \ N  ■■■ ( N  — n +  1)

Similarly,



(b) Since 0 < TM/,1 — NU[ < 1, we have E(\ NU] ] — NUX )2 < 1 so that 
E(\NUl 1 -  N U ^ / v a r i R , )  0.

(c)

+ y f  = x 2 + 2xy + y 2 

= 2 x 2 +  2y 2 -  ( x 2 - 2 x y +  y 2) < 2 x 2 + 2y 2.

Hence,

E(R,  -  \ NU, } )2/ v&t( R x)

< 2 \ E ( R X -  NUX) 2 + E ( N U i -  f ATt/,])2] /v a r( /?,) ^  0.

This implies corrC /^JNU{]) -> 1 so condition (10) is satisfied.
(d) For a(j )  = j, we have aN = ( N  + l) /2 , maXj(a(j) -  aN)2 = ( N  -  

l)2/4 , and T,?(a(j)  — aN)2 = iV(N + 1)(N -  1)/12, so that

Nm a x j ( a ( j )  -  aN)2/ £ ( a ( y )  -  aNf  = ( N  -  \ ) / { \ 2 { N  + 1))
I

stays bounded. Hence, provided max;(zy -  zyv)2/E jv(z; -  z N)2 -> 0, 
condition (9) is satisfied and by Theorem 11, (SN — 
ESn ) /  ^/\ar(SN) 0,1).

4. Using Zj = j  in Exercise 3, we easily find that (SN -  ESN) /  
^var( SN ) -^^KO, 1), since we have

max( zy - z w)2 = ( N -  l)/(1 2 N (iV  + 1)) 0.
•/ 1

The mean of SN is ATzyv0 N = iV(N + l)2/4 , and the variance is 
N 2( N — 1 )2( N  + 1)2/ ( 1 2 2( N  — 1)) = N 5/ 122. We may conclude that

Spearman’s rank correlation coefficient, pN, is the correlation coeffi­
cient between the true ranks j , and the observed ranks, Rj, namely,

v 2 "
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12
Pn N z -  1

I *  ( N + i r
AT y 4

This result shows that y[N pN 1), under the hypothesis of a
random ranking.



5. (a) 0 < E,w log j — I f  log(x)dx <  log N  and /,w log(x) dx = M log N)
-  N  -  1 shows that Ef' log j  = Mlog AO -  N  + 0(log N).  Simi­
larly,

N

E  (log j ) 2 = \og(x)2 dx + 0 ((log  N ) 2}N(\og n)2

-  2N(log N )  + 2 N  + 0 ((log  N ) 2). 

Combining these gives

E « ( ; ) 2 -  ^  ( E « ( y ) )  =  *  + o ( ( log a t ) 2)

It is easy to see that max(a(;) -  a N)2 ~  (log N ) 2. Hence, 

maxj (a( j )  -  aN f  ^  (log AQ2 

~ N
Condition (9) reduces to

max.(z.r -  z N)2 7
----- ^ • (log N ) 2 -» 0.

E ? ( z j - z N)2

(b) For a(j )  = 1 / ■//> we have EftfO') ~ 2\/7V and E jV y)2 = E ^ l/y  
~ log /V. So E f(a ( j  -  aN)2 ~  log N  and max(a(j )  -  aN)2 ~ 1. This 
gives

maXj (a( j )  -  aN)2 1
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E " ( « 0 )  ~ a N) l° S N  

Condition (9) reduces to

N  m a X j ( z j - z N)2 q

log N  e ? ( Z j - z Ny

(c) For a(j)  = 1 / j ,  we have E fa (;)  ~  log N.  So E ^M y) -  aN)2 
E fV j ) 2 =  v 2/ 6  and max(a(j)  — aN)2 ~ 1. Thus,

maxj (a( j )  -  a N f  ^  6 

E f (a ( ; ')  -  a * )2 17-2 

Condition (9) cannot be satisfied.



S' n  “  E  ( z N j  “  ”  <p)
1

has mean zero and the (p(Uj) are i.i.d., so the asymptotic normality 
of S'N/  yVar(S'N) follows immediately from Exercise 6 of Section 5 
with z nj replaced by z Nj -  z N.

(b) The variance of SN is given in Lemma 1, and var(SfN) = L x( z Nj -  
z n ) 2(t 2 . The covariance is found, as in Lemma 2, to be

c o v ^ s ; , )  = ( N / ( N -  l ) ) £ ( z „ , .  - z N)2 cov(a( RNl), cp(U,)).
1

From this, the correlation is found as

corx(SN,S'N) = ^ / ( N  -  1) cov (a(RNl),  (p(U\ ) ) /

( <ryVar( a( RN,) ) )

= y / N / ( N -  1) corr(a(/?Jvl), *>(£/,)).

(c) Given Ux = u, R N\ / N  -> w with probability 1. As in the 
Glivenko-Cantelli Theorem, the set of probability 1 on which 
convergence takes place may be chosen independent of u. Thus, 
R nx/ N  Ux. The function <p, being nondecreasing, has only a 
countable number of discontinuities. Hence, we have cp(RNX/ ( N  4- 
D) ^  cp(Ux).

(d) Ecp(RNX/ ( N  + l))2 = ( \ / N ) L i ( p ( j / ( N  + I))2. If (p were bounded 
this would be a Riemann approximation to j^cpiu)2 du = E<p(Ux)2 
and we would be done. However, because (<p(w) + )2 is nondecreas­
ing,

< f 1 (<p(w) + )2 du ,

which shows

(1/A,)f  H /vTt ) ) - / > ( “)* )’<*<•
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6. (a) Each term of the sum
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By symmetry, we have

<1/w)f  H f Ti ) ) )2<fr-
This gives E<p{RNl/ ( N  + l))2 -> Ecp(U{)2.

(e) By Exercise 8 of Section 2, (c) and (d) together imply that 
<p(a(R{)) <pW\X which is the result to be proved.

(f) By (b) and Exercise 5 of Section 6, it is sufficient to show that 
E(a(RNl) -  <p((71))2/var(^((71)) -> 0. For this it is sufficient to 
show that E(a(RNl) -  <p(Ux))2 -» 0. This follows from (e), and the 
proof is complete.

7. (a) By Exercise 2 of Section 3, it is sufficient to show thatHWWs~ **) ■ pp,w <*)
for all k vectors b. If b is the constant vector cl ,  where 1 is the 
vector of all l ’s, then b7S = c Efy = cN(N  + l ) /2  and brp* = 
c Lr i j /N = c, so the left side of (1) is zero. But the right side is the 
distribution degenerate at zero (b7(P — ppr)b = 0) so the result is 
true for b = cl. We now assume that b is not a constant vector.

Let Nj = T!h^xnh and write S( in the form £, = E j l {z (j l)a(Rj)  
with

/  -X j  I  N i - 1 ^a ( j )  = / and z 0 = I 1 1 J
} \0 ,  otherwise.

Thus we have brS = E f . , 6 ^  = E j l , ZjRj, where z} = E ^ z j 0. 
We use Theorem 12 to show that Efzy/^y is asymptotically normal. 
From the solution to Exercise 3(d), we see

N m a x ( a ( j )  -  a „ )2/ E  («(./) ~ a Nf  = ( N  -  1)/(12(JV +  1))
} 1

stays bounded. So condition (9) holds if and only if max-(zy -  
zw)2/E f(zy  -  zN)2 -* 0. Since k <  max;(z; -  zN) < 1, (9) holds if 
and only if E f(z ; -  z N)2 -> °°. We have Efz,- = E f^« , and Efz? 
= so



Since n -JN —» pi as N  —»
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(1 / N ) Y , { z j  -  z ) 2 -> YiPf i f  -  |  |  •

This is strictly positive from the assumption that b is not a constant 
vector. Thus, — zN)2 -> oo, which implies that (br S — £ b r S )/ 
Vvar br S 1). We compute the mean and variance of br S.

N N
E b TS = £  zy£H. = ((A /+  l ) / 2 )

1 1

k
= (^V(iV+l)/2)EWiV,

1

and from Lemma 1, varbr S = var'L?zj Rj  = (Af/CAf — l))E f( 2 ; -  
z „ )2 vaiO ^) = ( N / ( N  -  l ) )E f« A  -  6)2((Af2 -  1)/12. Using 
Slutsky’s Theorem, we conclude

^ " +i>U * 2+i)brs~i’v ) - 4
The result now follows from

E/>«(*/ -  b f  = TiPibf -  |  E f t* ,  I = br Pb -  br ppr b.

(b) From Slutsky’s Theorem and part (a),

2 V  .1 2
3 (n  +  1H « ( w T 1 ) s _ p *J

^ Y r p - 'Y , (2)

where Y 0, P — ppr ). As in the proof of Theorem 9, Y7P -1Y 
e  x l - 1  • Another application of Slutsky’s Theorem shows that P in 
the left side of (2) can be replaced by P*.
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SOLUTIONS TO THE EXERCISES OF SECTION 13

1. The density of a sample, y „ . . . ,  Yn ,, from %'(\,1) is

/v ( y i . • • • > yn+1 ) = exp{-  E y , ) i ( y j  >  o for an j ) .  

The density of Sk = Ef Yj9 k = 1 , . . . ,  n + 1 (Jacobian = 1) is

{Zk = Sk/ S n + U 1 < k < n) and W = 5n + 1 (Jacobian = wn) have den­
sity

g ( z l9. . . 9z n9w)  = wrte x p { -w } /(0 < z x < **• < z n < \ 9w >  0).

Hence, ( Z, , . . . , Zrt) and Srt4l are independent, with Srt + I +
1,1) and

exactly the density of the order statistics of a sample of size n from a 
uniform distribution on [0,1].

2. Since fi is the median and / ( /jl) = j ,

3. Since the first and third quartiles are /jl -  a  and /jl + a  and / (  /jl -  a )  
= f (  li + a )  =  \ / (2ttcr), we have

Now, using Cramer’s Theorem with g(x,  y)  = (x + y ) / 2 ,  g ( x , y )  =

If m n = sample median, then )fn(mn — /jl) 7t2ct2/4 )  so the
midquartile range has efficiency only 50% relative to the sample 
median.

4. (a) ]fn(mn -  /jl) /jl2).

/ s(* i , . . . ,* „ + i ) = exp{-s„ + 1}/(0 < s ,  < s 2 < ••• <•*„+,)•

f z ( z u . . . , z n )  = n ! / ( z , , . . . , z „ ) ,

yf c( (X(n/A) + X (3n/4)) / 2  -  n)  — 7 t V 2/ 2 ) .

(b)

so )fn ((X(n/ 4̂  + Â 3n/ 4j ) / 2  /a) —>^(0, /j,2/2).
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(c)

yfc(X(3n/4) -  3*1/2) -» ^ ( 0 ,3 M2/4 ) .

So,

^ (f^ (3 n /4 ) ~ A1) “̂ ^ (0?  /i2/3 ) .

(d) Asymptotically, the midquartile range is twice as efficient as the 
median. But 2 X (3n/4)/ 3  is still more efficient. This is not surpris­
ing, because the maximum is sufficient for fx, and the closer we get 
to the maximum/2 the better we shall be.

5. (a) The median of is fx = 6 log®, and f ( fx\0)  =  1/(20).
Hence, yfn(mn — 6 log(2)) 0 2) and {n  (m w/log(2) -  0)  -»

^KO, 02/(log(2))2).
(b) Similarly,

^ ( x (np) ~ 01°g(V(i -/>)))-* (̂o,pfl2/(i -/>)),
so that

^ ( z („p)/ io g ( i / ( i - p ) )  -  0 ) ->s(o,pf f2/ ( o - p )(logd - p ) ) 2)).

We are to find p  to minimize p / ( ( \  -/?)(log(l — p))2). Set the 
derivative equal to zero, and solve for a root of 2p  + log(l -  p)  =
0. Numerical methods give as a solution p  = 0.79681213 ••• .

6. (a) The median of the distribution, f ( x \ 0 \  is m(6)  = From
f ( m( 6 ) \ 6 )  = 6 2 l/0/ 2 ,  we find that

-  m ( 0 ) )  0, l / ( 4 / ( m ( 0 ) |0 ) 2)) = ^ 0 ,  l / ( 0 222/ 0)).

(b) Since Mn —> m(0),  we have log(Mn) log | / 0  and log \ /  
log(Mn) -̂ » 0.

(c) Let g(M ) = log | / l o g  M. Then g' (M)  =  — log |/(A /(log  M )2), so 
g'imiO)) = — 022 1/6yiog^). Hence
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SOLUTIONS TO THE EXERCISES OF SECTION 14

1. (a) Since 1 -  Fi x ) = 1 -  ex for x < 0, we have x0 = 0 and 1 -  F(x)  
= ( - x ) c ( l / ( - x ) )  where c ( \ / i - x ) )  = (1 -  ex) / i ~ x )  1 as x -»
0. Thus we are in case (b) with y  = 1 so that F(bnx)n -» G2j  as 
N -> oo, where satisfies 1 -  exp{ - b n} = \ / n .  Hence, bn =
— log(l -  1 / n )  ~ \ / n  and we may conclude that

Note: In fact, the exact distribution of nMn is - ^ (1 ,1 )  for all n, 
since F( x / n) n = (ex/n)n = e*.

(b) We have jc0 = oo and 1 — Fix)  = 1 / x 2 for x > 1. Thus we are in 
case (a) with y  = 2 and c(jc) = 1, so that Mn/ b n -» G l 2 where 
satisfies (£„)“2 = 1//V; that is, bn = yfn:

(c) Since 1 — F(jc) = exp{—jc/(1 -  Jt)} for 0 < x < 1, we have x0 = 1 
and

provided jR(0 = (1 -  t )2. Therefore we are in case (c) and F(an + 
bnx)n -» G 3(jc), where exp{-aw/ ( l  -  «„)} = 1 /n , so that

*>„ = ( ! -  a„)2 = 1 /(1  + log(n))2 ~ l / ( lo g ( n ) ) 2: 

(log (« ))2[M„ -  lo g (n ) /( l  + Iog(n))] G3.

(d) By l’Hospital’s rule, 1 -  Hjc) ~ fix):

nMn ^ G 2A = - F ( l , l ) .

Mn/ 4 n  G 1)2.

-> exp{ -jc} , as t 1 for every x,

a„ -  lo g (n ) /( l  + Iog(n))

and
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l - F ( t + x R ( l ) )  ( I + x R ( t ) ) a~l e - ,- xR(,'>

1 -  F( t )  t a~le - ‘ *’

if R(t)  = 1. Therefore by part (c) of Theorem 14, F(an + x)n -> 
G 3(x ), where <zn satisfies 1/n ~  1 -  ~/(<zn). To find an 
asymptotic expression for an, solve as a first approximation, 
exp{— 0 n}/r(a?) = 1/n  or an = Io g (n /r(a )) . Replacing #n by 
log(Az/r(a)) 4- dn in nf(an) -> 1, we find

exp{ —a'„}(log(n/r(a)) + efn) a~l 1.

This implies that dn must tend to “  at a slower rate than a„, so that 
log(« /r(a))  + dn ~ logCn/rCa)). Hence,

Therefore, x0 = and as t

~ ( a  -  l ) l o g ( lo g ( « /r ( a ) ) ) .
This gives

fl„ = lo g (n /T (a ) )  + ( a  -  l ) lo g lo g (n /r (a ) ) .  

Simplifying,

Mn -  Iog(n) -  ( a  -  l)log log (« ) + lo g T (a )  G 3.

2. Since P ( X  < j )  = 1 -  2 ', we have P(Mn < j )  = (1 -  2~j )n. Hence, if 
n ( m ) / 2 m -> 6 as m -> oo, we have

3. We have 1 -  F(t)  = 1 — exp{— e '}. As t -> this converges to zero 
at rate e~l. To see this, apply L’Hospital’srule

or

P ( Mn(m) < m + k)  = (1 -  2~(m+fc))"<m)

-» exp{ — lim n( m) 2 ~(m+k)} 

= exp{ — 02"*}.

1 — F( t )  1 -  exp{ —e '} — exp{ — e ‘}e 1 
-----  -------- >1

Therefore,

1 - F ( t + x R ( t ) )  

l - F ( t )

e ~ t ~ x  R ( t )
- x

e -t
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provided R(t)  = 1. Thus we are in case (c) with bn = 1 and with an 
defined by 1/ n  = 1 — exp{—e~°n} ~ e~a\  We find that an ~ log(ft) 
and conclude Mn -  log(n) —> G3.

This exercise is somewhat of a joke, since the distribution of Mn — 
log(n) is exactly G 3 for all n. In fact, the limiting distributions found in 
Theorem 14 are all closed up to change of location and scale under the 
operation of taking the distribution of the maximum. Moreover, these 
are the only distributions so closed. Take, for example, the distribution 
G3. If Mn denotes the maximum of a sample of size n from G3, the 
distribution function of Mn — a is G 3(x + a)n =  exp{ —ne~x' a} = 
exp{ —ne~ae~x} = G3(x), provided ne~a = 1, or equivalently, a = 
log(n).

SOLUTIONS TO THE EXERCISES OF SECTION 15

1. From the result of Example 6 of Section 14

( 2 log{ n ) ) x/2( X (n:n) -  fi) -  2 log(n)  + \  loglog(47r«) -> Y

where Y  e  G3. By symmetry,

(21og(«)),/2( * (n:1) + + 21og(n) -  |loglog(47rn) - Z ,

where Z e G 3. By Theorem 15, these two expressions converge 
jointly with Y  and Z independent. Therefore, for the midrange, M = 
(X(n:n) #i:#t)V2>

(21og(«))I/2( M - M) % ( Y - Z ) / 2 .

To find the density of W = (Y  -  Z )/2 , first write the joint density of Y  
and Z, /y  Z(y, z) = exp{— e~y — y — e~z — z), then make the change 
of variable W  = (7  -  Z ) /2  for YWy = 2 dw) and integrate z from — oo
to oo;

f w , z ( w, z ) = 2exp{ - e ' 2vv~2 -  2w -  z -  e~z -  z)
-00

/^ ( w )  = 2 e x p { -2 w } f exp{e“2(e 2lv41) - 2 z } d z
—00

-00
= 2exp{—2w} / exp{— u(e~2w + l)}wdw 

•'o

= 2exp{-2w }/(exp{-2w } + l ) 2, 

exactly the density of the logistic distribution J?(0,1 /2). Since the
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sample mean converges to /jl at a faster rate [1 / 4n rather than 
1 /  0 o g (n )  ], the asymptotic efficiency of the midrange relative to the 
mean is zero.

2. (a) From Theorem 15(a) applied to the upper two order statistics of a
sample of size n from a uniform distribution on (0,1), we have

n{\  - t / („ :„ _ I)) ^ ( S l , 5 2) ,  ( 1)

where 5, = Y, and S2 = Yx + Y2 and YX, Y2 are i.i.d. exponential 
&(!,  1). If F(z)  is the distribution function of ^(1,1), F( z ) = 1 — 
exp{ —z}, so Z, = /7"‘1(t/(„:„)) and Z2 = f ,” ,(f/(„ :„ -i)) are the up­
per two order statistics of a sample of size n from ^(1,1). Since 
F ~ \ u )  = — log(l — u), we apply Slutsky’s Theorem using the trans­
formation -lo g (0  on both components of (1) to find

(Z , -  log(n), Z 2 -  log(rt)) ^  ( W {, W2),

where = -logO 7,) and W2 = — lo g ^  4- Y2)- To ^ e  joint 
density of WX, W29 we take the joint density of YX, Y2, f ( y x, y 2) =  
exp{— y x — y 2}I (yx > 0, y 2 >  0), and transform to WX, W2. The in­
verse transformation is Yx = exp{ - W x} and Y2 = exp{ - W 2} -  
exp{ — Wx}. The Jacobian is exp{ — Wx — W2}. Hence

f ( w i’ w2) = exP{ ~ e ~ W2 -  w, -  w2} I ( w 2 < w ,).

(b) Let V = W{ — W2 be a change of variable for Wx so that Wx = 
V 4- W2 and the Jacobian is 1. The joint density of V and W2 is

f ( u ,  w2) =  exp{ —e~Wl — v — 2w2} I ( v  > 0).

Thus, V and W2 are independent, and V is <^(1,1), whereas 
- lo g (W2) is ^(2,1).

3. From Theorem 14, we have

yfn(6i -  0)  0 , | ) .

From Example 2, we have

n (0 2 - 0 ) * Z ,

where Z  has the double exponential distribution with density f ( z )  = 
exp{ — 2\z\).  When n = 100, the standard deviation of 6X is about ^  
and

P { \ 0 x - e \ <  If) = 0.95, 

so the 95% confidence interval for 6 is (0, -  0.1, 6X 4- 0.1). To find c



such that P(\Z\  < c) = 0.95, we solve
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0.95 = f  e ~2|z|dz  = 1 - e ~ 2c
J - C

for c and find that c = \  log(20) = 1.50 ••• . So

0.95 = p ( io o |6 2 -  e\ <  1.50) = p ( \e2 - e \  <  0 .0 1 5 ),

and the 95% confidence interval is (02 — 0.015, 02 + 0.015), a big 
improvement. In fact, the median converges to 0 at rate 1 /  \fn , and the 
midrange converges to 0 at rate 1 / n .

4. From Theorem 15,

n{ l  -  4>{Zin) , \  -  <S>{Z2n))  { S y, S 2).

But from the definition of an and the lemma of Section 14, n( 1 — 
<*>(Zin)) = (1 -  <t>(z,.„))/(l -  <&(<*„)) ~ (an/ Z in) exp{(fl2 -  Z 2 )/2}. 
Let Win = an( Zin -  an). Then from Exercise 6 of Section 6,

c x p { - W u - U w ^ / a l ) ) ,
a„ + (Wi n/a„)

a n +  ( W 2 n / a n )
e x p | - ^ 2„ -  ^ ( f F 22„ / « 2 ) j )  - ( S „ S 2) .

PThis implies that Win/ a n —> 0, because otherwise there would be a 
subsequence rij such that Win -> on a set of positive probability, 
and any limit of this sequence would have a positive mass at zero or o°. 
Thus,

shown. We may conclude that

cg>
and, consequently (Wln, W2n) —>•► ( — log S {, —log S2\  as was to be

Un = exp[W2n -  Wln} 3  Sx/ S 2 e  * (0 ,1 ) ,

and that Un and W2n are asymptotically independent, since Sx/ S 2 and 
S2 are independent.
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SOLUTIONS TO THE EXERCISES OF SECTION 17

1. There are five conditions to be checked.
(1) © is bounded and closed, hence compact.
(2) For fixed x < 1, f ( x \ 0 ) = 1/ 0 ,  continuous. For 1 < x < 2 ,  

f ( x 10 ) = 0 for 0 < x, and = 1 / 0  for 0 > x, upper semicontinous. 
For x > 2, f ( x \ 0 )  = 0, continuous.

(3) Let 0O e  0 . Then K(x)  = max6Ge[ f ( x \ 0 ) / f ( x \ 0 0)] =  0O ii x < 1, 
= 0o/jc if 1 < Jt < 0Q, and = °° if jc > 0O. The expectation of 
K(X) ,  when 0O is the true value, is clearly finite.

(4) If cp(x, 0, X )  = supl0' -e\<pf(x\O'),  then

clearly measurable.
(5) 0 G 0  is clearly identifiable; for example, different 0 have different 

supports.
2. (a) For *  °  < X(k + {), the likelihood function is

Since ( d /  30 ) log L(0)  =  - ( k / 6 ) + ((« -  k ) / (  1 -  0)), L(0) is de­
creasing if 0 < k / n  and increasing if 0 > k / n.

(b) Since L(0)  is continuous and cannot have maxima between the 
X(k), the maximum-likelihood estimate must be equal to one of the 
X(k).  Moreover, if (k — X)/n < X(k) < k / n ,  then L has a local 
maximum at *<*)•

3. The likelihood function is

<p(x, 0 , p)  = 1 / ( 6  -  p ) ,  for x < 0 -  p 

= 1/ x ,  for \x — 6 \ < p= 1/ x ,  

= 0, for x > 0 + p,

L(  /A| , . . . ,  fin, & ) P J ]~J r-— exp
1 2

i = \  j  ■= i y Z 7 T c r 2 ( j 2 ( X̂/)

The maximum-likelihood estimates of this are found by setting the



derivatives of this with respect to the parameters equal to zero and 
solving:

d 1 ‘L _
- J -  log £  = —2 L  (X, j  -  Hi )  = 0 =* £ « = * , ,  for i = 1 , . . . ,  n 

a  j = i

d nd 1 JL * 2
- l o g L = -  —  + - 3  L  £ ( * „ - # * , )  = 0  <?<r <T cr ( = 1 y_j

1 « «* -> 1 "
E  (* y  -  A ) = -  E/=I y= 1 n i= \

where sf = 0 / d ) L ^ x( X gj -  * ,)2.
(b) The 5 ? and iid with mean Esf = ((d — 1 ) / d ) a 2. Hence, from the 

law of large numbers &2 -> ((d — l) /d )c r2 almost surely, so that 
<t 2 is not consistent.

(c) Here the number of parameters grows to infinity as n -> 00, so the 
structure of the problem differs from that of Theorem 17.
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SOLUTIONS TO THE EXERCISES OF SECTION 18

1. (a) The log-likelihood function is ln(0)  =  log L(6)  = n log 0 + (0 — 
DElog Xj. The likelihood equation is in(6)  = n / 6  4- Elog Xj =  0, 
which gives as the MLE,

= [ ( ! / " ) £  log(l/ X s) y \

i//(X, 0) = 1 / 0  +  logCX), and ij/(X, 0 ) = - 1 / 0 2, so that $ (0 )  = 
1 / 0 2. This gives

yfn(0„ -  0)  - > S (0, 02).

(b) /„(0) = n log(l -  0)  + log(0)E A}, so

/„(0) = - n / (  1 -  0) + ( 1 / 0 ) E Xj  = 0 

is the likelihood equation; its unique root is 

0n = X n/ ( X n +  l ) .



tf/(X, 0) = —1/(1 — 0) + X / 0 ,  so that EX = 0/(1 — 0) (because 
E{*p(X, 0)} = 0), <j/(X,0) = -1 /( 1  -  0)2 -  X / 0 2, so that

3 ( 0 )  = 1/(1 -  0 )2 + 1/0(1 -  0) = 1/0(1 -  0 )2.

This gives

Jn(d„ -  0)  0,0(1 -  0 )2) .

2. Let D, = d / d a  and D 2 = d/dfi .  The log-likelihood function is

t f / ( a ,  f i )  =  - n  log T (  a )  -  n a  log f i  -  ( 1  / f i ) Y , X j  +  ( «  ~  1 )  E  log X j

The likelihood equations are

D xln( a ,  fi) =  -n -F (a )  -  nlog fi +  £  log Xj = 0,

D2ln( a , f i )  = - n a / f i +  (1/ /32) E * ;  = 0.

Z )? log / = -= F (a), D ,D 2 l o g /=  - 1 / /3 ,  and £>2 log /  = a //3  2 -  
2 X / f i 3 whose expectation is a / /3 2 — 2 a f i / f i 3 = —a / f i 2. Hence,
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» ( « , £ )
'* ( « )  1 / /8 ' 
, i / P  «/y32y

- i  1 / a  — fi
= < r f ( a )  -  1 ( - f i  f i2$ ( a ) } '

The asymptotic distribution of the MLEs is

'fn (a„ -  a ,  fin -  fi)  0 ,0 ), 3 ( a ,  f i ) ' 1).

3. /„(0,, 02) = -  02 Ecosh(Xj  -  0,) -  n<f>(02). The likelihood equations 
are

X)sinh(Ary -  0,) = 0,

£  cosh (A',. -  0 t )  = - n c p ' ( 0 2) .

Let D { = <?/<?0j and D 2 = d / S02. From E ( D X lo g /)  = E ( D2 lo g /)  
= 0, it follows that E  sinh(A’ — 0,) = 0 and E cosh( X  — 0,) = 
-(p' (02). Hence, since Z)2 lo g /  = -  02 cosMA'-  02), D ,D 2 lo g /  = 
sinh(Ar -  0,), and D\  log/  = —(p"(d2) =  -var(cosh(A' — 0,)), we find



Fisher information to be

/ — 02<p'(02) 0 
» < • ■ ■ • .> - (  0

The distributions in all of these exercises are exponential families.
4. Let f ( x \ 6 )  and g ( y \ 0 ) be the densities of X  and Y  given 0, respec­

tively. Then since X  and Y  are independent, the joint density is 
/(x |0 )g (y |0 )  and

*l>((x,y) ,0)  = f ( x \ 6 ) g ( y \ 0 )

d  d  
= -^ lo g /(-* :|0 )  + ~ l o g g ( y \ 0 )  = *l>(x,0) + il>(y,0) .

Hence,

V , n ( 0 ) = v a r s( ^ ( ( j r , F ) , 0 ) )

= var0(ip ( X ,  0) )  + var0(tff(Y, 0) )  =  S x ( 0 )  + S y(0 ) .

5. (a) The likelihood equation is

" (Xj  -  0)
ln(0)  = 2 E  — — ------ —  = 0.1 + ( X t -  0 ) 2

For 0 > X^n̂ 9 each term is negative, so /w(0) ^  0. A.t 0 — X^n̂  1, 
we have

/„(*(„, -  1) = 1 -  2 £  — ^  
(n) '  A  1 + ^ - 1  - A (l))2

> 2n, then -  *co > 2« for all i <  n, and 

(2n -  1)
ln( X (n) -  1) = 1 -  2 £  — ----------
"V (n) ' 1 + (2n -  l ) 2

2(n — 1)(2n -  1) 2n2 — 3n + 1= i -----:--------L±--------- !  = i ----------------------> o
1 + (2n -  l ) 2 2n2 - 2 n  + \

so there is a root of the likelihood equation in (X^n_ 1} — 1, A"(w)).
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(b) Suppose without loss of generality that 0 = 0. Then from Example
3 of Section 15,

X{n-1) X{n) \ ^  1 M  
n ’ n ) \ AT+ V 9 X J ’

where X  and Y  are independent exponential random variables. 
Hence,

P ( X in)> X ( n - \ ) + 2 n )

- P i  — > ^ 2 -  + 2 ) -» p ( \ -  > .. 1 ■ + 21  > 0.
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n n } \ X  X  + Y

6. (a) The log-likelihood function is

log L = — 2 Aj — 2A2 + x log( Aj + A2)

+ y, log( A,) + y 2 log(A2) -  log(x!y, !y2!).

Setting the partial derivatives to zero gives the equations

x y 1 x y2- 2  + --------r  + — = 0 and - 2  + ---------- + —  = 0,
Aj ~f" A2 Aj Aj 4" A2 A2

and solving for Aj and A2 gives the maximum-likelihood estimates 

Y{ ( X  \ Y2 I X
A, = — —---------- h 1 and A2 = — -------------h i .

1 2 \ y, + y 2 J 2 2 \ y, + y2 1

(b) Let g ( x , y u y 2) =  ( y x/ 2 ) ( ( x / ( y x + y 2)) +  1)- Then

/ y ( 1 ( x
g ( x ’ y u y 2 ) = — - — r> t  I — - —  + 1 \ 2 ( y \ + y 2) 2 \ y i + y 2

y i x y  i x

2 (y i  + y 2)2 ’ 2 (j'i + y i f

and we find

I *i A, A, \
g(A ,A ,,A 2) -  |  — ,1 -  2A » -  2A J*

The covariance matrix of X , Y,, Y2 is diagonal with A, A,, A2 along
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the diagonal, so the asymptotic variance of A, is 

(X 0 0 ^
g( A, A,, A2) 0 A, 0 

0 0 A,
g(  A, A,, A2) r = A, — ■

7. (a) This is a two-parameter exponential family with

A  1E(ex,e2) = n / W 0 . > 0 2) = ,a . , vn expl-^/f l!  -  S2/ 0 2}. 
i-l (0i + 02)

(b) Setting the partial derivatives to zero gives the equations

>2

0 ] + 02 0? 0, + 02 02
-I— r = 0 and -  l2

s2
+ TT

and solving for 0, and 02 gives

8, - - ^ ( l / S T  +  VsT) and 92 - - ^ ( v ^ r  + ^ 7 ) .

It should be checked that this holds if 5, = 0 or S2 =  0. They 
cannot both be zero.

(c) Taking n = 1 and writing log f ( x \ 0,, 02) = -log(0 , + 02) — S ,/0 ,
-  S2/ 0 2, we find

D , lo g /=  - 1 / ( 0 ,  + 02) + S ,/0 ,2

and

D 2 log / =  - l / ( 0 i  + 02) + S2/ 0 2.

This implies ES} = 0 f / ( 0 { 4- 02\

- E D 2 log/  = - 1 / ( 0 ,  + 02)2 + 2E 5./0? = (0, + 202) /[0 ,(0 , + 02)2] 

and -Z>,Z)2 lo g /  = - 1 / ( 0 ,  + 02)2. Thus,

3 ( 0 „ 0 2) =
1

(0i + 02)
S ’

( 0, + 202) /0 ,
(20, + 02) / 0 2 I

From this, i/n (0„ -  0) —» ^ (0 ,3 (0 ,, 02) ’), where

11 (01 + 02) 0! 02 (20, + 02) / 0 2 
' ”  2’ 4 + 20, + 202 I 1 (0 , + 202/ 0,) I '



los(f«t( x ) / f « ( x ))  = (#o -  ^ ) T ( x )  ~  ( c ( 0 o) -  c ( 0 ) ) ,  

we have

* ( / V /*) = ( 0o -  0 ) E t tT ( X )  -  ( c ( 6 0) -  c ( 0 ) ) .

Using

0 = £„(<?/<*?) log/ „ ( * )  = E e[ T ( X )  - c '( f l ) ] ,  

we find EeT ( X )  =  c'(0), so

K ( fe 0J o )  = (»o -  » W ( 0 o) -  (c(«?o) -c(fl)).

Fisher Information can be found as

3 ( 0 )  = - E e( d 2/ d 0 2) l o g f e( X )  = c " ( 0 ) .

The expansion of c(0) to two terms in a Taylor series is c(0) =  c(60) 
+ (0 -  0o)c'(00) + (0 -  0o)2c"(0o) /2  + 0 ( 0  -  0O)3. From this we may 
conclude

K(fe0J e )  = - ( 0 ~ O o) 2c"(Oo) / 2 - O ( 0 - 0 o) 3 

~ - ( 0 - 0o)2c"(Oo) / 2 

=  ( 0 -  0o) 2Z(Oo) / 2 .
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8. Since

SOLUTIONS TO THE EXERCISES OF SECTION 19

1. (a) Let Yj =  —log(X;). From Exercise 1(a) of JJection 18, the MLE of 0 
is 0n = \ / Y n. Hence the MLE of _l/0 is Yn. B e c a u se ^  e ^ ( 0 ,  1), 
we have Yj e  ^(1,1 /0 ) ,  so that = 1 / 0  and var(l^) = 1 / ( n 0 2). 
From Exercise 1(a) of Section 18, 3 (0 )  = 1 /0 2. The information 
inequality with g ( 0 ) = 1 /0  [and g' (0) = —1 /0 2] and sample size 
n then gives g' (0)2/ (n%(0) )  =  1 / n 0 2 as the lower bound, attained 
by the MLE. __

(b) Since^ Xj  e ^ ( 0 , 1), we have EXn = 0 / ( 0 +  1) (unbiased) and 
var(A^) = 0/n(0  + 1)2(0 + 2). The information inequality with 
g(0)  = 0 /(0  4- 1) [and g' (0) = 1 / ( 0  + I)2] and 3 (0 )  = 1 / 0 2 gives

g ’( 0 ) 2/ ( n S ( 0 ) )  = 0 2/ n ( 0  +  l ) 4.

So X n does not achieve the lower bound. In fact, we can do better 
asymptotically using the MLE, 0n/(0„ + 1).



2. Selected components of the 5 x 5  matrix, (1 —

( l  -  p 2)<a„  =  -  i / o f ;

(1 -  P2)<Pi2 = P / o ’\ ° i \  

(1 -  p2)«A13 = -  2 ( X  -  Mi)/o"i3 ~  P ( Y ~  P -2 ) / ° ’iO-2, 

the expectation of which is 0;

(1 -  P 2) 1̂ 33 = (1 -  P 2 )/(TI -  3 ( X  ~ fl ])2/(T?

-  2 p ( X  -  f r ) ( Y -  Ii2) / (T?<TX,

the expectation of which is - ( 2  — p 2) / a 2;

(1 -  p2)44 = p(X  -  fi,)(Y -  n2)/(rfri ,  

the expectation of which is p 2/ a x(r2\

(1 -  P2)^35 = [2 P ( X  -  Mi)2/o-i3

“ C1 + P2) ( x  -  h ) ( Y -  p-2)/(T2(T2\ / ( \  -  p2),

the expectation of which is p/cr,.
3. (a) If E0 = -  p>2 = g ( 0 \  then g(0)  =  (1, -1 ,0 ,0 ,0 )  and

var(0 ) > g ( 0 ) % { 0 y Xg ( 0 ) / n  = (a-,2 + <722 -  2p<r{<r2) / n .

(b) If E0 = = g ( 0 \  then g(0)  = (l/er^O , -p ^ /a - ,2, 0,0) and 
var(0) > (1 + p \ / 2 ( T 2)/n.

(c) If E0 = p(Tx(T2 = g ( 0 \  then g(0)  = (0, 0, pcr1? po^, o',a 2) and 
var(0) > <x2cf22(1 + p2)/n .

4. We think of the X  in (1) as a vector of observations, X = ( X v . . . ,  X n\  
and find the Fisher Information for 0 based on X. Since the X t are 
independent, the Fisher Information based on X is the sum of the 
individual informations. The information in X t is

var( - ^ log/ ( * ; 0 ) )  = v a r(-z , exp{0z,} +  z tX,)

— z f  var( X t) = z 2 exp{ 0z,}.

Hence, the Fisher Information in the whole sample is 3 (0 ) = 
E" z 2 exp{0zi}. When dealing with unbiased estimates, we have g'{0)  =
1 in (1), so we have as a lower bound to the variance of an unbiased

222 A Course in Large Sample Theory
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varfl0 (X) > — -----=----- -----
£"= i z f  exp{ Oz)

5. (a) The density of X  is f ( x \ 0 )  = ( l / 6 ) I (0e)(x)  and its derivative is 
(d/dO)  f ( x \ d )  = —( \ / 0 2)I{0 e)(x). If the derivative with respect to
0 may be passed under the integral sign in 1 = f f (x\6)dx,  we 
would have 0 = f (d/dO)  f ( x \ d )  dx = — f f j ( l / d 2)dx  = —1/0 . Thus 
one of the regularity conditions of the information inequality is not 
satisfied.

(b) We have (<?/<?0)log/(jt|0) = - 1 / 0  for 0 < x  < 0. This gives 
var((<?/<?0)log/(jt|0» = 0 for all 0 > 0. So the information in­
equality would give infinity as a lower bound to a variance.

(c) We have E0( 2 X)  = 0 and var0( 2X)  = 02/3 . Thus, the information 
inequality is not valid here.

estimate, 0(X),

1

SOLUTIONS TO THE EXERCISES OF SECTION 20

1. (a) We have

log f ( X \ 0 )  = - ( X - e )  — 21og(l + e"<*-®>), 

t f t (X,0)  = d \ o g f ( X \ O ) / d 0  =  1 -  2e~(X~e)/ ( l  + e - (X~9)),  

and

d t f / ( X , e ) / d d =  - 2 [ e _(;r"#)/ ( l  + e - {X- 0)f \ .

To find 3 (0 )  = - E e di/j(X, 0 ) / d d , make the change of variable 
t/ = 1 + e ~ iX- eH d U =  - e ^ x~0)dX)  and find

3 ( 0 )  = 2Zs[e~(* “0)/ ( l  + e _(^ ' 0))2] = 2J  [(u — \ ) / u 2\ / u 2 du

= 2 f  {w-3 -  w~4} dw = 2{^ -  = j .
*'1

(b) We have

lO g /(X |0 )  = -log(TT) -  log(l + ( X -  Of ) ,

iffix, e) = 2(x — e)/(i + ( x -  0)2),



and

t y ( X , $ ) / d O  =  -2 (1  -  ( X -  0 )2) / ( l  + ( X -  0 ) 2f .

We change variables, Y  = ( X  — 0) (d Y  = d X ) to find

3 (0 )  = 2E( l  -  Y 2) / (  1 + 7 2)2 = (2 /t7 ) / “ (1 - ^ 2) / ( l  + J '2)3tfy
•J __nn
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= ( 2 / tt) 2 f  ( t + y 2) dy - [  ( ^ + y 2Y 2)dyJ -00  ̂— 00 '

To find / “ ooQ + y 2) '" 1 dy, we integrate by parts:

/  (1 + y 2) m dy =y(1 + y 2) mr„ + m f  y ( \  + y 2)~im+i)2ydy
J — 00 * — 00

= 0 + 2m f  (1 + y 2) m dy
J — 00

— 2m f°° (1 + _y2) _(m+ °  dy,
* — oo

giving the recursion for m > 1,

/  (1 + y 2) _(m+°rfy = [(2m -  l ) /2 m ]  f  (1 + y 2) m <ty.
J — 00 J — 00

Now using the fact that ( l/7 r) /" „ ( l  +_y2) -1 dy = 1, we find 
/ “ M(l + y 2)~2 dy = 7r/2, and /"„ ( 1 + y 2) -3 dy = 3tt/ 8 .  Hence, 
3 (0 )  = (2/7r)[6'7r/8 — 7t/2] =

2. Since log L(6)  = —n log tt -  E" log(l + (Xj — 0)2), the likelihood 
equations are

a log L ( 0 ) / d 0  = 2 t ( X j  -  0 ) / ( \  + (Xj  -  0 ) 2) = 0.

(There may be many roots.) Since 3 (0 )  = \ ,  the scores are

3 ( 0 ) _1(<? log L ( 0 ) / d 0 ) / n  = ( 4/ n)Z(Xj  -  0) / ( \  + (Xj -  0)2).

From Example 2 of Section 10 the asymptotic distribution of the 
median m n is given by }fn(mn -  0) ->«/K0, 7r 2/4). This may be im­
proved by adding the scores

K = m n + ( 4 / n )  Y, (Xj  -  mn) / ( \  + (Xj  -  mnf ) 

to obtain an asymptotically efficient estimate: }fn(m* — 0) ->^f(0,2).
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3. Since EXj  = (1 — 0) + 2 0 = l  + 0, the method of moments equates 
X n and 1 + 0 to give the estimate 0* = X n — 1. This estimate cannot 
be admissible, since it may estimate 0 to be negative or to be greater 
than one. Since E X 2 = 2(1 ~ 0) + 60 = 2 + 40, we have that

var( Af; ) = (2 + 40) -  (1 + 0 )2 = 1 + 20 -  0 2.

Therefore by the Central Limit Theorem, ifn(0*  — 0) 0,1 + 2 0
— 02). The asymptotically efficient estimate given by one iteration of 
Newton’s method is

jj _  + -  ' ) / ( ‘ + V ( x t -  0 )
" " £ ; ( * ,  -  i )V ( i  + v ( x ,  - 1))2

4. (a) The mean and variance of this exponential distribution are 1 /0  and
1 /0 2. The method-of-moments estimator of 0 is 0n = 1/AT,,. Its 
asymptotic distribution is yfn (6n -  0) ^ J i O ,  0 2). Fisher informa­
tion is JKO) =  I / O 2, so the estimator 0n is fully efficient.

(b) In the information inequality, let Q(X) = X.  Then g(0)  =  1 /0 , 
and the  inform ation  inequality  becom es var0(A") >
( —1 /0 2)2/3 (0 ) .  Using vare( X )  = 1 /0 2, this inequality becomes 
3 (0 )  > 1 /0 2. This lower bound to Fisher information is achieved 
by the given exponential distribution.

SOLUTIONS TO THE EXERCISES OF SECTION 21

1. Fisher Information for the Poisson distribution is 3 (0 )  = 1 /0 , and the 
maximum-likelihood estimate of 0 is X n. The posterior density is 
approximately the normal density centered at X n with variance equal 
to 0q, where 0O is the true value of 0. Since 0O is unknown, it may be 
useful to approximate this density by the normal density with mean X n 
and variance X n. Mathematically, we may say that if 0O is the true 
value, the posterior density ]/n (0 — X n) converges to the density of

0O) in Lj almost surely.
2. Let gn(0)  (resp. hn(£) )  represent the conditional density of 0 

(resp. I )  given X x, . . . , X n. We are to show that for all f , hn( £ )  -» 
(1 / 0 o)exp{ — £ /0 o}/(£ > 0) almost surely as n -» oo. We have

gn( o ) = g ( o ) o - nr(Mn < o ) / c n,
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where Cn is the normalizing constant,

c„ =  f g ( o ) e - n dd.
JMn

Changing variables to £ = n(6 -  Mn) with dO = d£/n,  wc have 

h „ U )  — g ( M n + £ / n ) (  1 + C/ (nMn) Y nI(0 < C ) / D n,

where

Dn = f g ( M n + C/n){  1 + C/{nMn))~n d£.
Jo

Since Mn converges to 60 almost surely, the numerator of hn( £ )  
converges to g(0o)e x p { -£ /0 o}/(O < £)  almost surely. To complete the 
proof, we must show that Dn converges to g(00)00 almost surely. Using 
the assumption that g(6)  is bounded, and using the fact that the 
convergence of (1 + £/ (nM))~n to exp{-£/M }, for fixed positive £ 
and M , is monotone decreasing in n, we can bound the integrand in Dn 
above by a function of the form const, times (1 + £ /M ')"2, which is 
integrable. Then the Lebesgue Bounded Convergence Theorem gives 
the result.

SOLUTIONS TO THE EXERCISES OF SECTION 22

1.

L ( 0 ) = (2TT<rx(ryy n e x p { - [ Y , ( X j  -  *O V °i2 + £ (> }  -  fiy)2/ t r f ] / 2 } .

The general MLEs are jxx = X,  (iy = Y, &x2 =  (1 / n) T.(Xj — X ) 2, and 
fry = (\ /n)T,(Yj  -  Y ) 2. Under H0, the Xj  and Yj together form a 
sample of size 2 n from a single normal distribution, so the MLEs are

*«* = /** = ( * + ? ) /  2,

= < 2 = [ L ( X j  - i4 ) 2 +  E (>5 -  )2] /2rt .

From this, we find

L (0*) = (27rcr*2) exp{—«}, L ( 9  ) = (2'ir&x&y>) exp{— ri). 

There are two restrictions under H0, so that

— 2log A = n[21og a * 2 -  log &2 -  log &y2] -» xl-
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2. L(0, / a )  = 0 V" exp{ — 6 Y. Xj -  (jlY. Yj}. The general MLEs are 0 = 
\ / X  and pu =  \ / Y .  Under H0, the likelihood function is L(d_) = 
2nd2n exp{- 0(L Xj + 2LYj)}, whichJeads to the MLEs 0* = 2 / ( X  +  
2Y), fi* = 20*. Hence, L(0, £) = X ^ nY~n exp{-2«} and L(0*, n*)  
= 2"(0* )2" exp{ -2n).  Since there is a single restriction under H0, we 
have

— 2 log A = 2 n [ 2 \ o g ( ( X +  2 Y ) / 2 ) -  log X -  lo g 2 f]  -+X?

3. As is well known, the MLEs for the 0’s are 0( =  X t.. If all the 0’s are 
the same, then the X fj _form a sample of size nk from the Poisson, so 
that the MLE is 0* = X„. Since the log likelihood is

log L( 0)  = £  £  [ -  0 ,. + X,j log 0,. -  log x u \] ,
i J

= - n  £  0i + n £ ^ ,.lo g  0t -  £  £  log X u '.
i j

and since there are k — 1 restrictions under H0,

— 2 log A = 2[log L( 0 ) — log L (0*)]

= 2#.[ £ X,\og Xj -  kXJog X.] -* Xk2 1 •

4. Find an orthogonal matrix Q such that QPQr = ^  call it D. Let

W = QZ. Then W ( = J i Q 8 , 1*) and ZTPZ = W r QPQTW = W r DW = 
E-=I Wj2. This has a noncentral x 2 distribution with r degrees of 
freedom and noncentrality parameter <p equal to the sum of the squares 
of the first r coordinates of Q8, namely, the square of the length of the 
vector DQ8. Thus, Z7PZ e  x?(<p\  where <p = 8r Q r DDQ8 = 8r P8.

5. (a) The distribution of — 2 log Xn is approximately noncentral chi-
square, X\(<p\  where the noncentrality parameter <p has the form, 
<p = 8 2( G ] — G l / G 3\  since all of these matrices reduce to scalars. 
Using 5, = « 0 ( 0 . 1 )  and

3 (  cr) =

we find that <p = 10/oq2.
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(b) Again the asymptotic distribution is noncentral chi-square, x H v X  
with the same formula for cp and the same value of 8X, but this time

3 (  <r) =

so that (p =  lOff (1) -  1) independent of /3. Replacing P (1) by its 
value, 7r2/6 , we find that <p = 6.449.

6. From Eq. (4), - 2  log \ n ~ n(Qn -  0o)^(0oX0,i “  ®oX where 0rt is the 
unrestricted maximum-likelihood estimate, which from Theorem 16 has 
an asymptotic normal distribution,

V^(e„ - e 0)

Therefore, the asymptotic problems may be reduced to the following 
fixed sample problems for the normal distribution.

Suppose X e ^ O ,  2), where 2  =cX 00)_I is known. Find the distri­
bution of — 2 log A, where A is the likelihood ratio test statistic for 
testing / / 0: 0, = 0, 02 ~ 0 against (a) H x: 0, > 0, 02 unrestricted, or 
(b) / / T: 6X > 0, 02 > 0, 0 =£ 0. We reformulate this problem by trans­
forming to independent normal variables. Let Yx = X x/<rx and

n  = ( ( X 2/ a 2) -  p ( X x/ a x) ) / y l \  - p 2 .

Then Y <e I), where ijlx — 0x/ o - x and /x2 = ((02/cr2) -  
p( /x1/c r1) ) /  -  p 2 . The hypotheses have become H0: /xx =  0, /x2 = 0 
against (a) H x: > 0 fi2 unrestricted, or (b) H x: /^  > 0, pfxx 
+ \/l  — p 2 /x2 > 0, jut =£ 0.
(a) The unrestricted MLE of jm is Y. The MLE under H0 U is 

(Yx , Y2). On the half plane Yx > 0, —2 log A is the squared dis­
tance of Y to 0. This occurs with probability \  under / / 0, which 
gives x l  with probability On the half plane Yx < 0, Y is pro­
jected onto the line Yx = 0; thus, -  2 log A is the squared distance 
of Yx to zero which gives a with probability

(b) Now the MLE under / / n U H x is the projection of Y onto the cone 
Yx > 0, pYx + yj 1 — p 2 Y2 > 0. Thus there are four regions. On the 
cone itself, Y is unchanged, giving a x l  distribution with the 
probability of the cone. On Yx < 0, Y2 > 0, Y is projected onto the 
line y, = 0, giving a Xi distribution with probability Similarly, 
on the set pYx + y[\ - P 2 Y2 < 0, those Y whose perpendicular 
projection onto the line p Y x + -  p 2 Y2 = 0 ends up with Yx > 0 
are so projected. This occurs also with probability \  and gives a X\
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distribution. All remaining points are projected into the origin 
giving a 80 = \ o  distribution with the remaining probability. The 
probability of the cone under H0 is the angle ft of the cone divided 
by 2 tt. ft is the angle between the line p Y x 4- ]/1 -  p 2 Y2 =  0 with 
Yx > 0  and the line Yx = 0 with Y2 > 0. This is easily found to be 
ft = 77 — arccos p.

SOLUTIONS TO THE EXERCISES OF SECTION 23

1. The minimum x 2 estimate is the value of 0 that minimizes Q„(7t(0)). 
Its asymptotic variance is

v = ( A ( e y  E(«(0)) - '^ (e))1
where E (tt)  denotes ( d / d i t)£ ( tt) . Because A(0)  =  <p(tt(0)), we have 
/4(0) = E(n(0))Tr(0) and V  = (tt(0)' E(Tt(0))Tr(0))_ '. For the expo­
nential family,

lo g /( jr |0 )  = it(0 )'T (x ) -  <p(it ( 0 ) ) ,  

and Fisher Information is

3 ( 0 )  - v a r 9{ * (0 ) 'T (JO  - * ( w ( 0 ) ) * ( 0 ) }  = * ( © ) 'var,{T( A )} tt(0 )

=  'rr(O)' E ( 0 ) t t ( 0 )  =  V~‘.
Thus the MLE and the minimum x 2 estimates have the same asymp­
totic variance.

2. (a)
4 25 9

X =  i --------- +  ~5.--------  +  — — 100.
i  ~ e !  -  0 20

So solving
4 25 9

( d / d 0 ) x  = -----------T "•------------- 2 _  t t t  = 0
( - ;  - » )  ( !  -  # )  2 e

gives 0 = 0.1471.
(b)

* 2od = 20(2/3 -  50)2 + 5 0 (| -  2 0 )2 + 30(1 -  2O0/3)2,

{d/d0)Xmod = -200(1  -  50) -  200(1 -  20) -  400(1 -  200/3)

= 0
gives 6 = 0.1475.



(c) The log likelihood is proportional to 201og(l/3 — 0) + 501og(2/3
— 0) +  3Olog(20). The likelihood equation is thus - 2 0 / ( j  -  0)
-  5 0 / ( |  -  0) + 3 0 /0  = 0. The MLE is 0 = 0.1472.

3. (a) Let probit(p)  = 4>~ '(/>). The transformed x 2 becomes

2 = y, (probit(w;/w ) -  ( a  + f3Xj)f (p((a + p Xj) )2 

* ,r 4 > ( a  +  y3jcy)  (1  ~  3 > ( a  +  P x j ) )

using d$>~x( p ) / d p  = 1 Applying modification:

probi, x ‘ - n £  (Pr0b“ ( /,)  ~ -( .V  .
J j \  J j )

(b) Let cogit(p) = tan(7rp ~ 7t/2). The transformed modified x 2 iS 

(cogit ( f j )  -  ( a  + p x  ) f  cos4(t t / j  -  t t / 2)  

coe ,t*  ------------------------------------------------------------------- •
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4. The minimum x 2 equation of Example 4 is

20
(0.4 — e~9/2) / 2  ( 0 . 8 - e ' 9/4) / 4

= 0.
1 - e ~ 9 1 -  e - 9/2 1 -  e ~9/4

We may simplify by replacing the denominators by their estimates 

(0.4 -  e~e/2) / 2  (0.8 — e~9/4) / 4
+ ---------77— —  + ---------7 ^ — —  = 0.0.6 0.2

This reduces to

e - 0/ 2 e ~9/4 4

1.2 0.8 3

Solution by numerical methods gives 6* = 1.7407 •••.
5. nx = 30, «2 = 20, ni = 50, z { — log(0.3), z 2 = log(0.2), z 3 =  log(0.3), 

x | = 0, x2 = 1, and x3 = — 1. The linearized constraint E njaJ = E rijZj 
gives 0O = O.30( + c, where

c = 0.3 log 0.3 + 0.2 log 0.2 + 0.5 log 0.5 = -1.0297.

(d / d 6 i)Q„ = 0 leads to the equation

0, = (9 log0.3 + 26log0.2 -  351og0.5)/(2.7 + 33.8 + 24.5) = -0.4659,
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from which we find 0O = -1.1694. This results in p { = exp{0o} = 
0.3105, p 2 = exp{0o + 0j} = 0.1949, and p 3 = exp{0o — 0j} = 0.4948. 
Because the sum is 1.0002, slightly too large, we modify 00 by subtract­
ing log(1.0002) = 0.0002, to make 0O = -  1.1692.

6. (a) We make the transformation g(jt) = arcsin(jt), g'(x)  = (1 -  x 2)l/2, 
on each coordinate to arrive at the transformed \ 2

** ="E(Z.- -  Xi -  e2?>

where Z, = arcsinO p for i = 1 , . . . ,  d. This is now a simple least- 
squares problem so that

A Sy J A -- A
0, = —j  and 02 = Z — 0xx.

s x

(b) In the transformed ^ 2, A(0) = 0,x + 021, so that A(0) is the d x  2 
matrix (xl). We have

v^(6„ — ©) 2 ) ,  where 2  = (A'MA)

For the transformed \ 2, M is the unit matrix, so

X = (A'A) =
E * } 2 L X j  
E ^ ,  d

(c) To minimize var(0j), we maximize s 2; that is, we put d / 2  observa­
tions at 0 and d / 2  at 1. The same is true if we try to minimize the 
determinant. To minimize the asymptotic variance of 02, we obvi­
ously put all the observations at 0, but this gives us no information 
about 0j. In general, we should put m observations at 0 and d — m 
at 1, where m > d / 2 .  A reasonable compromise might be m — 
2d / 3 .

SOLUTIONS TO THE EXERCISES OF SECTION 24

1. (a) Under / / 0, all expected cell frequencies are equal to 20. So,

2 (10 -  20)2 (24 -  20)2 (16 — 20)2
*"• 20 + 20 + ’ + 20 ~~ 9 '2 '

This is close to the 10% cutoff point, *52(0.90) = 9.24, so we accept 
at the 5% level.
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(b) If /?, and p 6 are known to be equal, then they are estimated as 
( n { + n6)/(2n),  et cetera. The expected cell frequencies become 
13, 24, 23, 23, 24, and 13, respectively. We find

Xhx
(10 -  13) 

13
+ ••• = 2.167.

Since this x 2 distribution has 3 degrees of freedom, we obviously 
accept H {.

(c) For testing H0 against H {, we use Xh0 ~~ Xh, = 9.2 — 2.167 = 7.133. 
Since this is beyond ^|(0.95) = 5.99 we would reject H0 if it were 
known that H { were true.

(d) The noncentrality parameters may be computed in the same way as 
the * 2,s above, but pretending that the observations were 15, 15,
15, 15, 30, and 30, respectively. We find </>Hq = (15 -  20)2/2 0  + ••• 
= 15. At 5 degrees of freedom at the 5% level, we find the power 
from the Fix tables (Table 3) to be about fi = 0.86. Similarly, under 
H y we estimate p x = p 6 = (15 + 30)/240 et cetera and compute 
(I>h1 = (15 — 22.5)2/22.5 + ••• = 10. At 3 degrees of freedom, we 
find the power to be fi = 0.86 again. The noncentrality parameter 
for the test of H0 against / /, is the difference, (f> = (j>Ho — <f>H] =  5. 
At 2 degrees of freedom, this gives a power of fi =  0.50.

2. (a) Estimate p n by n u/ n , p l2 = p 2\ by (n X2 + n21)/(2n),  et cetera, 
and evaluate the x 2 as

(6 -  8.5) (10 -  16.5) (20 -  17.5)2
8.5 16.5 17.5

=  7.306.

The x 2 has 3 degrees of freedom, and since A':?(0.95) = 7.81, we 
are close to rejecting at the 5% level.

(b) Under hypothesis H0, the likelihood is proportional to

L ~ p r - ( p {p 2y (Pi Ps )  P231 "2n* ( p 2p 3)

= p ” 1 +" ip»*+H-tp *y+n-h

We find the maximum-likelihood estimates of /?,, p 2, and p 3 to be 
P\ ~  («i-+ n .j)/(2n) = (31 + 49)/400 = 0.20, p 2 = 0.18, and p 3 
= 0.62 from which we may compute the table of expected values,

8
7.2

24.8

7.2
6.48

22.32

24.8
22.32
76.88
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from which the x 2 maY be computed as Xhq = (15 — 8)2/8  + 
••• = 24.09. Nine cells and two parameters estimated leaves 6 

degrees of freedom. Since ^62(0.95) = 12.59, we reject H0 strongly,
(c) Our x 2 ls now Xh ~ X h =  16.78, again highly significant when 

compared to ^|(0.95) = 7.81.
3. We find the maximum-likelihood estimates of the ptj under the two 

hypotheses. The likelihood function, L(p) is proportional to

L(P) 11 f i P i / ’ 
i=l ;=1

(a) Under //, we seek to maximize L(p) under the constraints Ey^j 
ptj = 1 / / .  This occurs at p /; = n ^ / U n ^  for all i and j, where 
nh=  Ey=] rijj. The x 2 statistic is

= £  £  ( n tj -  N p , ) 2 _  £  ( n , - ( N / I ))2

/=! ; = 1 Npn N / l

For each i , 7 —1 parameters were estimated so the x 2 has 
( IJ — 1) — I(J -  1) = /  — 1 degrees of freedom.

(b) Under H0, we seek to maximize L when ptj is replaced by pj and 
we have the constraint Ey= { Pj = \ / / .  The maximum-likelihood 
estimates are pf  = n . - / ( I N \  and the chi-square is

'  '  (*„■ -  Np f ) 2 

1 h  h  "p'  '

It has ( / /  — 1) — U  -  1 ) =  IJ -  J degrees of freedom.
(c) To test H0 against H -  H0, we use x l  ~ xl -  It has (IJ -  J)  -  

( /  -  1) = IJ — /  — J + 1 = ( /  -  1X7 -  1) degrees of freedom. 
Under H0, x l  ~ x l  is asymptotically equivalent to the x 2 °f 
Example 1 for testing the homogeneity of a contingency table.

4. All tests are of the form: Reject H0 if

E  ^
u . k  Np>ik

(a) L a  Ylijk(Piqjrk)tt,,k = ( r i p ? ' X r i p / ' X n />£*), so p, = n,../N,  
Pi =  n. j /N,  and p k =  n. k/ N.

d.f. = ( I J K -  1) -  ( /  -  1) -  (J -  1) -  ( K  -  1)

= IJK -  I -  J -  K  + 2.



(b) L  a  n ,7*(A<?,*)""* = <npt '  XUqfk‘k), so p t = nh/ N ,  qjk = n.jk/ N.  
d.f. = (IJK -  1) -  (I -  1) -  (JK -  1) = ( I  -  1XJK -  1).

(c) L a  n ijk('iTiqjk)n'it = ( n < '  ) ( n ^ * X  SO qjk = n.jk/ N .  d.f. = (IJK
-  1) -  (JK -  1) = IJK -  JK.

(d) L a  n , j k( p , lkq]lkrkr ^  = ( U p ^ C n q ^ X U r ^ ) ,  so p nk =
qnk = n.jk/ n . jk, and rk = n.k/ N .  d.f. = (IJK -  1) -  K( I

-  1) -  K(J  — 1) — (/C — 1) = UK - I K - J K - K .
(e) L a  U ijk( p iqirk{ij)n"" = ( U p ^ n q J i X U r ^ f j ) ,  so p, = nh/ N,  qt 

= n.j./N,  and rk[lj = nijk/ n i}, d.f.  = (IJK -  1) -  ( /  -  1) -  (7 -
1) -  1J(K -  1) = ( /  -  IX / -  1).

5. (a) In this problem, there are 10 independent * 2’swith two cells each. 
Let ntj and X tj represent the total number of ticks and the number 
of dead ticks, respectively, of species St given treatment T:. Then, 
collapsing the two-celled /y 2,s into one-celled, we have a x  ° f  the
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form

,2 = £  (*.;• -  nliPj) + £  (x2j -  n2j 17;)

j -1 n ijPi(l ~P j )  j -1 "2y«y(l -  TTj) ’

with 10 degrees of freedom. If Pj =  ttj, the common value of Pj and 
7Tj is estimated by the total number of deaths divided by the total 
number of observations, namely, pf =  ttj =  ( X }]- + X 2j) / ( r i y  +  
n2j). Thus, p x =  tt, = (30 + 42)/(50 + 77) = 0.567, p 2 = 0.728, 
/?3 = 0.552, p 4 =  0.308, p 5 = 0.400. Replacing the pj and the TTj in 
the x 2 by their estimates, we find

1.652 3.422 0.082 1.232 0.22
X ---------- + -----— + -----— + — —  +

12.28 10.5 28.1 13.0 6.72

1.652 3.422 0.082 1.232 0.22
j----------- 1------------1----------- 1----------- 1--------- = 2 73 (

18.9 12.08 9.89 9.16 12.48 ‘ ‘ w

Since we lost 5 degrees of freedom estimating five parameters, this 
X2 has five degrees of freedom, so the null hypothesis is obviously 
accepted.

(b) The numerators of the x 2 in (1) depend on the X }j and *2; only 
through the differences, ( X ^ / i t y )  — ( X 2j / n 2j). In fact,

( x  r>\2 ^  l Xli X l i \ 2 
(« .; + n2j)2 \ nV n2j J '

The noncentrality parameter at any alternative such that pj -  ttj =
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0.1 may be found by replacing the differences ( X ij/ n iJ) — ( X 2j/ n 2j) 
by 0.1 in the numerators of the \ 2.

3.032 2.842 2.962 2.522 1.822
<b — -------  "I- ------- -------  “I- -------  -------
v  12.28 10.5 28.1 13.0 6.72

3.032 2.842 2.962 2.522 1.822
18.9 + 12.08 + 9.89 + 9.16 + 12.48 = 5 '81'

From the Fix Tables at a  = .05 and 5 degrees of freedom, we find 
that the power is only about 0.42.
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