
1

CATEGORICAL DATA ANALYSIS

Solutions to Selected Odd-Numbered Problems

Alan Agresti

Version March 15, 2006, c©Alan Agresti 2006

This manual contains solutions and hints to solutions for many of the odd-numbered
exercises in Categorical Data Analysis, second edition, by Alan Agresti (John Wiley, &
Sons, 2002).

Please report errors in these solutions to the author (Department of Statistics, Univer-
sity of Florida, Gainesville, Florida 32611-8545, e-mail AA@STAT.UFL.EDU), so they
can be corrected in future revisions of this site. The author regrets that he cannot provide
students with more detailed solutions or with solutions of other problems not in this file.

Chapter 1

1. a. nominal, b. ordinal, c. interval, d. nominal, e. ordinal, f. nominal, g. ordi-
nal.

3. π varies from batch to batch, so the counts come from a mixture of binomials rather
than a single bin(n, π). Var(Y ) = E[Var(Y | π)] + Var[E(Y | π)] > E[Var(Y | π)] =
E[nπ(1− π)].

5. π̂ = 842/1824 = .462, so z = (.462 − .5)/
√

.5(.5)/1824 = −3.28, for which P = .001

for Ha: π 6= .5. The 95% Wald CI is .462±1.96
√

.462(.538)/1824 = .462± .023, or (.439,

.485). The 95% score CI is also (.439, .485).

7. a. ℓ(π) = π20, so π̂ = 1.0.

b. Wald statistic z = (1.0 − .5)/
√

1.0(0)/20 = ∞. Wald CI is 1.0 ±1.96
√

1.0(0)/20 =

1.0± 0.0, or (1.0, 1.0).

c. z = (1.0− .5)/
√

.5(.5)/20 = 4.47, P < .0001. Score CI is (0.839, 1.000).

d. Test statistic 2(20) log(20/10) = 27.7, df = 1. From problem 1.25a, the CI is
(exp(−1.962/40), 1) = (0.908, 1.0).
e. P -value = 2(.5)20 = .00000191. Clopper-Pearson CI is (0.832, 1.000). CI using Blaker
method is (0.840, 1.000).
f. n = 1.962(.9)(.1)/(.05)2 = 138.

9. The sample mean is 0.61. Fitted probabilities for the truncated distribution are 0.543,
0.332, 0.102, 0.021, 0.003. The estimated expected frequencies are 108.5, 66.4, 20.3, 4.1,
and 0.6, and the Pearson X2 = 0.7 with df = 3 (0.3 with df = 2 if one truncates at 3
and above).
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11. Var(π̂) = π(1− π)/n decreases as π moves toward 0 or 1 from 0.5.

13. This is the binomial probability of y successes and k − 1 failures in y + k − 1 trials
times the probability of a failure at the next trial.

15. For binomial, m(t) = E(etY ) =
∑

y

(

n
y

)

(πet)y(1−π)n−y = (1−π+πet)n, som′(0) = nπ.

17. a. ℓ(µ) = exp(−nµ)µ
∑

yi, so L(µ) = −nµ + (
∑

yi) log(µ) and L′(µ) = −n +
(
∑

yi)/µ = 0 yields µ̂ = (
∑

yi)/n.

b. (i) zw = (ȳ − µ0)/
√

ȳ/n, (ii) zs = (ȳ − µ0)/
√

µ0/n, (iii) −2[−nµ0 + (
∑

yi) log(µ0) +

nȳ − (
∑

yi) log(ȳ)].

c. (i) ȳ ± zα/2
√

ȳ/n, (ii) all µ0 such that |zs| ≤ zα/2, (iii) all µ0 such that LR statistic

≤ χ2
1(α).

19. a. No outcome can give P ≤ .05, and hence one never rejects H0.
b. When T = 2, mid P -value = .04 and one rejects H0. Thus, P(Type I error) = P(T =
2) = .08.
c. P -values of the two tests are .04 and .02; P(Type I error) = P(T = 2) = .04 with both
tests.
d. P(Type I error) = E[P(Type I error | T )] = (5/8)(.08) = .05.

21. a. With the binomial test the smallest possible P -value, from y = 0 or y = 5, is
2(1/2)5 = 1/16. Since this exceeds .05, it is impossible to reject H0, and thus P(Type I
error) = 0. With the large-sample score test, y = 0 and y = 5 are the only outcomes to

give P ≤ .05 (e.g., with y = 5, z = (1.0− .5)/
√

.5(.5)/5 = 2.24 and P = .025). Thus, for

that test, P(Type I error) = P (Y = 0) + P (Y = 5) = 1/16.
b. For every possible outcome the Clopper-Pearson CI contains .5. e.g., when y = 5, the
CI is (.478, 1.0), since for π0 = .478 the binomial probability of y = 5 is .4785 = .025.

23. For π just below .18/n, P (CI contains π) = P (Y = 0) = (1 − π)n = (1 − .18/n)n ≈
exp(−.18) = 0.84.

25. a. The likelihood-ratio (LR) CI is the set of π0 for testing H0: π = π0 such
that LR statistic = −2 log[(1 − π0)

n/(1 − π̂)n] ≤ z2α/2, with π̂ = 0.0. Solving for π0,

n log(1−π0) ≥ −z2α/2/2, or (1−π0) ≥ exp(−z2α/2/2n), or π0 ≤ 1− exp(−z2α/2/2n). Using

exp(x) = 1+x+ ... for small x, the upper bound is roughly 1−(1−z2.025/2n) = z2.025/2n =
1.962/2n ≈ 22/2n = 2/n.

b. Solve for (0− π)/
√

π(1− π)/n = −zα/2.

c. Upper endpoint is solution to π0
0(1 − π0)

n = α/2, or (1 − π0) = (α/2)1/n, or
π0 = 1 − (α/2)1/n. Using the expansion exp(x) ≈ 1 + x for x close to 0, (α/2)1/n =
exp{log[(α/2)1/n]} ≈ 1+log[(α/2)1/n], so the upper endpoint is≈ 1−{1+log[(α/2)1/n]} =
− log(α/2)1/n = − log(.025)/n = 3.69/n.
d. The mid P -value when y = 0 is half the probability of that outcome, so the upper
bound for this CI sets (1/2)π0

0(1− π0)
n = α/2, or π0 = 1− α1/n.

29. The right-tail mid P -value equals P (T > to) + (1/2)p(to) = 1 − P (T ≤ to) +
(1/2)p(to) = 1− Fmid(to).
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31. Since ∂2L/∂π2 = −(2n11/π
2)− n12/π

2 − n12/(1− π)2 − n22/(1− π)2,
the information is its negative expected value, which is
2nπ2/π2 + nπ(1− π)/π2 + nπ(1− π)/(1− π)2 + n(1− π)/(1− π)2,
which simplifies to n(1 + π)/π(1− π). The asymptotic standard error is the square root

of the inverse information, or
√

π(1− π)/n(1 + π).

33. c. Let π̂ = n1/n, and (1 − π̂) = n2/n, and denote the null probabilities in the two
categories by π0 and (1−π0). Then, X

2 = (n1−nπ0)
2/nπ0+(n2−n(1−π2))

2/n(1−π0)
= n[(π̂ − π0)

2(1− π0) + ((1− π̂)− (1− π0))
2π0]/π0(1− π0),

which equals (π̂ − π0)
2/[π0(1− π0)/n] = z2S.

35. If Y1 is χ2 with df = ν1 and if Y2 is independent χ2 with df = ν2, then the mgf of
Y1 + Y2 is the product of the mgfs, which is m(t) = (1− 2t)−(ν1+ν2)/2, which is the mgf of
a χ2 with df = ν1 + ν2.

Chapter 2

1. P (−|C) = 1/4. It is unclear from the wording, but presumably this means that
P (C̄|+) = 2/3. Sensitivity = P (+|C) = 1 − P (−|C) = 3/4. Specificity = P (−|C̄) =
1− P (+|C̄) can’t be determined from information given.

3. The odds ratio is θ̂ = 7.965; the relative risk of fatality for ‘none’ is 7.897 times that
for ‘seat belt’; difference of proportions = .0085. The proportion of fatal injuries is close
to zero for each row, so the odds ratio is similar to the relative risk.

5. Relative risks are 3.3, 5.4, 11.5, 34.7; e.g., 1994 probability of gun-related death in
U.S. was 34.7 times that in England and Wales.

7. a. .0012, 10.78; relative risk, since difference of proportions makes it appear there is
no association.
b. (.001304/.998696)/(.000121/.999879) = 10.79; this happens when the proportion in
the first category is close to zero.

9. X given Y . Applying Bayes theorem, P (V = w|M = w) = P (M = w|V = w)P (V =
w)/[P (M = w|V = w)P (V = w) + P (M = w|V = b)P (V = b)] = .83 P(V=w)/[.83
P(V=w) + .06 P(V=b)]. We need to know the relative numbers of victims who were
white and black. Odds ratio = (.94/.06)/(.17/.83) = 76.5.

11. a. Relative risk: Lung cancer, 14.00; Heart disease, 1.62. (Cigarette smoking seems
more highly associated with lung cancer)
Difference of proportions: Lung cancer, .00130; Heart disease, .00256. (Cigarette smok-
ing seems more highly associated with heart disease)
Odds ratio: Lung cancer, 14.02; Heart disease, 1.62. e.g., the odds of dying from lung
cancer for smokers are estimated to be 14.02 times those for nonsmokers. (Note similarity
to relative risks.)
b. Difference of proportions describes excess deaths due to smoking. That is, if N = no.
smokers in population, we predict there would be .00130N fewer deaths per year from
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lung cancer if they had never smoked, and .00256N fewer deaths per year from heart
disease. Thus elimination of cigarette smoking would have biggest impact on deaths due
to heart disease.

15. The age distribution is relatively higher in Maine.

17. The odds of carcinoma for the various smoking levels satisfy:
(Odds for high smokers)/(Odds for low smokers) = (Odds for high smokers)/(Odds for nonsmokers)

(Odds for low smokers)/(Odds for nonsmokers)

= 26.1/11.7 = 2.2.

19. gamma = .360 (C = 1508, D = 709); of the untied pairs, the difference between the
proportion of concordant pairs and the proportion of discordant pairs equals .360. There
is a tendency for wife’s rating to be higher when husband’s rating is higher.

21. a. Let “pos” denote positive diagnosis, “dis” denote subject has disease.

P (dis|pos) = P (pos|dis)P (dis)

P (pos|dis)P (dis) + P (pos|no dis)P (no dis)

b. .95(.005)/[.95(.005) + .05(.995)] = .087.

Test

Reality
+ − Total

+ .00475 .00025 .005
− .04975 .94525 .995

Nearly all (99.5%) subjects are not HIV+. The 5% errors for them swamp (in frequency)
the 95% correct cases for subjects who truly are HIV+. The odds ratio = 361; i.e., the
odds of a positive test result are 361 times higher for those who are HIV+ than for those
not HIV+.

23. a. The numerator is the extra proportion that got the disease above and beyond
what the proportion would be if no one had been exposed (which is P (D | Ē)).
b. Use Bayes Theorem and result that RR = P (D | E)/P (D | Ē).

25. Suppose π1 > π2. Then, 1−π1 < 1−π2, and θ = [π1/(1−π1)]/[π2/(1−π2)] > π1/π2 >
1. If π1 < π2, then 1− π1 > 1− π2, and θ = [π1/(1− π1)]/[π2/(1− π2)] < π1/π2 < 1.

27. This simply states that ordinary independence for a two-way table holds in each
partial table.

29. Yes, this would be an occurrence of Simpson’s paradox. One could display the data
as a 2 × 2 × K table, where rows = (Smith, Jones), columns = (hit, out) response for
each time at bat, layers = (year 1, . . . , year K). This could happen if Jones tends to
have relatively more observations (i.e., “at bats”) for years in which his average is high.

33. This condition is equivalent to the conditional distributions of Y in the first I − 1
rows being identical to the one in row I. Equality of the I conditional distributions is
equivalent to independence.
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37. a. Note that ties on X and Y are counted both in TX and TY , and so TXY must be
subtracted. TX =

∑

i ni+(ni+−1)/2, TY =
∑

j n+j(n+j−1)/2, TXY =
∑

i

∑

j nij(nij−1)/2.
c. The denominator is the number of pairs that are untied on X .

39. If in each row the maximum probability falls in the same column, say column 1, then
E[V (Y | X)] =

∑

i πi+(1−π1|i) = 1−π+1 = 1−max{π+j}, so λ = 0. Since the maximum
being the same in each row does not imply independence, λ = 0 can occur even when
the variables are not independent.

Chapter 3

3. X2 = 0.27, G2 = 0.29, P-value about 0.6. The free throws are plausibly indepen-
dent. Sample odds ratio is 0.77, and 95% CI for true odds ratio is (0.29, 2.07), quite
wide.
5. The values X2 = 7.01 and G2 = 7.00 (df = 2) show considerable evidence against
the hypothesis of independence (P -value = .03). The standardized Pearson residuals
show that the number of female Democrats and Male Republicans is significantly greater
than expected under independence, and the number of female Republicans and Male
Democrats is significantly less than expected under independence. e.g., there were 279
female Democrats, the estimated expected frequency under independence is 261.4, and
the difference between the observed count and fitted value is 2.23 standard errors.

7. G2 = 27.59, df = 2, so P < .001. For first two columns, G2 = 2.22 (df = 1), for
those columns combined and compared to column three, G2 = 25.37 (df = 1). The main
evidence of association relates to whether one suffered a heart attack.

9. b. Compare rows 1 and 2 (G2 = .76, df = 1, no evidence of difference), rows 3 and 4
(G2 = .02, df = 1, no evidence of difference), and the 3×2 table consisting of rows 1 and
2 combined, rows 3 and 4 combined, and row 5 (G2 = 95.74, df = 2, strong evidences of
differences).

11.a. X2 = 8.9, df = 6, P = 0.18; test treats variables as nominal and ignores the
information on the ordering.
b. Residuals suggest tendency for aspirations to be higher when family income is higher.
c. Ordinal test gives M2 = 4.75, df = 1, P = .03, and much stronger evidence of an
association.

13. a. It is plausible that control of cancer is independent of treatment used. (i) P -value
is hypergeometric probability P (n11 = 21 or 22 or 23) = .3808, (ii) P -value = 0.638
is sum of probabilities that are no greater than the probability (.2755) of the observed
table.
b. The asymptotic CI (.31, 14.15) uses the delta method formula (3.1) for the SE. The
‘exact’ CI (.21, 27.55) is the Cornfield tail-method interval that guarantees a coverage
probability of at least .95.
c. .3808 - .5(.2755) = .243. With this type of P -value, the actual error probability tends
to be closer to the nominal value, the sum of the two one-sided P-values is 1, and the null



6

expected value is 0.5; however, it does not guarantee that the actual error probability is
no greater than the nominal value.

15. a. (0.0, ∞), b. (.618, ∞),

17. P = 0.164, P = 0.0035 takes into account the positive linear trend information in
the sample.

21. For proportions π and 1−π in the two categories for a given sample, the contribution
to the asymptotic variance is [1/nπ+1/n(1− π)]. The derivative of this with respect to
π is 1/n(1− π)2 − 1/nπ2, which is less than 0 for π < 0.5 and greater than 0 for π > 0.5.
Thus, the minimum is with proportions (.5, .5) in the two categories.

29. For any “reasonable” significance test, whenever H0 is false, the test statistic tends
to be larger and the P -value tends to be smaller as the sample size increases. Even if H0

is just slightly false, the P -value will be small if the sample size is large enough. Most
statisticians feel we learn more by estimating parameters using confidence intervals than
by conducting significance tests.

31. a. Note θ = π1+ = π+1.
b. The log likelihood has kernel

L = n11 log(θ
2) + (n12 + n21) log[θ(1− θ)] + n22 log(1− θ)2

∂L/∂θ = 2n11/θ + (n12 + n21)/θ − (n12 + n21)/(1 − θ) − 2n22/(1 − θ) = 0 gives θ̂ =
(2n11 + n12 + n21)/2(n11 + n12 + n21 + n22) = (n1+ + n+1)/2n = (p1+ + p+1)/2.
c. Calculate estimated expected frequencies (e.g., µ̂11 = nθ̂2), and obtain Pearson X2,
which is 2.8. We estimated one parameter, so df = (4-1)-1 = 2 (one higher than in testing
independence without assuming identical marginal distributions). The free throws are
plausibly independent and identically distributed.

33. By expanding the square and simplifying, one can obtain the alternative formula for
X2,

X2 = n[
∑

i

∑

j

(n2
ij/ni+n+j)− 1].

Since nij ≤ ni+, the double sum term cannot exceed
∑

i

∑

j nij/n+j = J , and since
nij ≤ n+j , the double sum cannot exceed

∑

i

∑

j nij/ni+ = I. It follows that X2 cannot
exceed n[min(I, J)− 1] = n[min(I − 1, J − 1)].

35. Because G2 for full table = G2 for collapsed table + G2 for table consisting of the
two rows that are combined.

43. The observed table has X2 = 6. As noted in problem 42, the probability of
this table is highest at π = .5. For given π, P (X2 ≥ 6) =

∑

k P (X2 ≥ 6 and
n+1 = k) =

∑

k P (X2 ≥ 6 | n+1 = k)P (n+1 = k), and P (X2 ≥ 6 | n+1 = k) is the
P -value for Fisher’s exact test.

45. P (|P̂ − Po| ≤ B) = P (|P̂ − Po|/
√

Po(1− Po)/M ≤ B/
√

Po(1− Po)/M . By the

approximate normality of P̂ , this is approximately 1 − α if B/
√

Po(1− Po)/M = zα/2.
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Solving for M gives the result.

Chapter 4

1. a. Roughly 3%.
b. Estimated proportion π̂ = −.0003 + .0304(.0774) = .0021. The actual value is 3.8
times the predicted value, which together with Fig. 4.8 suggests it is an outlier.
c. π̂ = e−6.2182/[1 + e−6.2182] = .0020. Palm Beach County is an outlier.

3. The estimated probability of malformation increases from .0011 at x = 0 to .0025 +
.0011(7.0) = .0102 at x = 7. The relative risk is .0102/.0011 = 9.3.

5. a. π̂ = -.145 + .323(weight); at weight = 5.2, predicted probability = 1.53, much
higher than the upper bound of 1.0 for a probability.
c. logit(π̂) = -3.695 + 1.815(weight); at 5.2 kg, predicted logit = 5.74, and log(.9968/.0032)
= 5.74.
d. probit(π̂) = -2.238 + 1.099(weight). π̂ = Φ−1(−2.238 + 1.099(5.2)) = Φ−1(3.48) =
.9997

7. a. exp[−.4288 + .5893(2.44)] = 2.74.
b. .5893± 1.96(.0650) = (.4619, .7167).
c. (.5893/.0650)2 = 82.15.
d. Need log likelihood value when β = 0.

e. Multiply standard errors by
√

535.896/171 = 1.77. There is still very strong evidence
of a positie weight effect.

9. a. log(µ̂) = -.502 + .546(weight) + .452c1+ .247c2+ .002c3, where c1, c2, c3 are dummy
variables for the first three color levels.
b. (i) 3.6 (ii) 2.3. c. Test statistic = 9.1, df = 3, P = .03.
d. Using scores 1,2,3,4, log(µ̂) = .089 + .546(weight) - .173(color); predicted values are
3.5, 2.1, and likelihood-ratio statistic for testing color equals 8.1, df = 1. Using the or-
dinality of color yields stronger evidence of an effect, whereby darker crabs tend to have
fewer satellites. Compared to the more complex model in (a), likelihood-ratio stat. =
1.0, df = 2, so the simpler model does not give a significantly poorer fit.

11. Since exp(.192) = 1.21, a 1 cm increase in width corresponds to an estimated in-
crease of 21% in the expected number of satellites. For estimated mean µ̂, the estimated
variance is µ̂ + 1.11µ̂2, considerably larger than Poisson variance unless µ̂ is very small.
The relatively small SE for k̂−1 gives strong evidence that this model fits better than
the Poisson model and that it is necessary to allow for overdispersion. The much larger
SE of β̂ in this model also reflects the overdispersion.

13. a. α̂ = .456 (SE = .029). O’Neal’s estimated probability of making a free throw is
.456, and a 95% confidence interval is (.40, .51). However, X2 = 35.5 (df = 22) provides
evidence of lack of fit (P = .034). The exact test using X2 gives P = .028. Thus, there
is evidence of lack of fit.
b. Using quasi likelihood,

√

X2/df = 1.27, so adjusted SE = .037 and adjusted interval
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is (.38, .53), reflecting slight overdispersion.

15. Model with main effects and no interaction has fit log(µ̂) = 1.72 + .59x− .23z. This
shows some tendency for a lower rate of imperfections at the high thickness level (z =
1), though the std. error of -.23 equals .17 so it is not significant. Adding an interaction
(cross-product) term does not provide a significantly better fit, as the coefficient of the
cross product of .27 has a std. error of .36.

17. The link function determines the function of the mean that is predicted by the linear
predictor in a GLM. The identity link models the binomial probability directly as a linear
function of the predictors. It is not often used, because probabilities must fall between 0
and 1, whereas straight lines provide predictions that can be any real number. When the
probability is near 0 or 1 for some predictor values or when there are several predictors, it
is not unusual to get predicted probabilities below 0 or above 1. With the logit link, any
real number predicted value for the linear model corresponds to a probability between
0 and 1. Similarly, Poisson means must be nonnegative. If we use an identity link, we
could get negative predicted values. With the log link, a predicted negative log mean
still corresponds to a positive mean.

19. With single predictor, log[π(x)] = α + βx. Since log[π(x + 1)] − log[π(x)] = β, the
relative risk is π(x + 1)/π(x) = exp(β). A restriction of the model is that to ensure
0 < π(x) < 1, it is necessary that α + βx < 0.

23. For j = 1, xij = 0 for group B, and for observations in group A, ∂µA/∂ηi is constant,
so likelihood equation sets

∑

A(yi − µA)/µA = 0, so µ̂A = ȳA. For j = 0, xij = 1 and the
likelihood equation gives

∑

A

(yi − µA)

µA

(

∂µA

∂ηi

)

+
∑

B

(yi − µB)

µB

(

∂µB

∂ηi

)

= 0.

The first sum is 0 from the first likelihood equation, and for observations in group B,
∂µB/∂ηi is constant, so second sum sets

∑

B(yi − µB)/µB = 0, so µ̂B = ȳB.

25. Letting φ = Φ′, wi = [φ(
∑

j βjxij)]
2/[Φ(

∑

j βjxij)(1− Φ(
∑

j βjxij))/ni]

27. a. With identity link the GLM likelihood equations simplify to, for each i,
∑ni

j=1(yij−
µi)/µi = 0, from which µ̂i =

∑

j yij/ni.
b. Deviance = 2

∑

i

∑

j [yij log(yij/ȳi).

29. a. Since φ is symmetric, Φ(0) = .5. Setting α + βx = 0 gives x = −α/β.
b. The derivative of Φ at x = −α/β is βφ(α + β(−α/β)) = βφ(0). The logistic pdf has
φ(x) = ex/(1 + ex)2 which equals .25 at x = 0; the standard normal pdf equals 1/

√
2π

at x = 0.
c. Φ(α + βx) = Φ(x−(−α/β)

1/β
).

35. For log likelihood L(µ) = −nµ + (
∑

i yi) log(µ), the score is u = (
∑

i yi − nµ)/µ,
H = −(

∑

i yi)/µ
2, and the information is n/µ. It follows that the adjustment to µ(t) in

Fisher scoring is [µ(t)/n][(
∑

i yi−nµ(t))/µ(t)] = ȳ−µ(t), and hence µ(t+1) = ȳ. For Newton-
Raphson, the adjustment to µ(t) is µ(t)− (µ(t))2/ȳ, so that µ(t+1) = 2µ(t)− (µ(t))2/ȳ. Note
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that if µ(t) = ȳ, then also µ(t+1) = ȳ.

37. ∂ηi/∂µi = v(µi)
−1/2, so wi = (∂µi/∂ηi)

2/Var(Yi) = v(µi)/v(µi = 1. For the Poisson,

v(µi) = µi, so g′(µi) = µ
−1/2
i , so g(µi) = 2

√
µ.

Chapter 5

1. a. π̂ = e−3.7771+.1449(8)/[1 + e−3.7771+.1449(8)].
b. π̂ = .5 at −α̂/β̂ = 3.7771/.1449 = 26.
c. At LI = 8, π̂ = .068, so rate of change is β̂π̂(1− π̂) = .1449(.068)(.932) = .009.

e. eβ̂ = e.1449 = 1.16.
f. The odds of remission at LI = x + 1 are estimated to fall between 1.029 and 1.298
times the odds of remission at LI = x.
g. Wald statistic = (.1449/.0593)2 = 5.96, df = 1, P -value = .0146 for Ha:β 6= 0.
h. Likelihood-ratio statistic = 34.37 - 26.07 = 8.30, df = 1, P -value = .004.

3. logit(π̂) = -3.866 + 0.397(snoring). Fitted probabilities are .021, .044, .093, .132. Mul-
tiplicative effect on odds equals exp(0.397) = 1.49 for one-unit change in snoring, and
2.21 for two-unit change. Goodness-of-fit statistic G2 = 2.8, df = 2 shows no evidence of
lack of fit.

5. The Cochran–Armitage test uses the ordering of rows and has df = 1, and tends to
give smaller P -values when there truly is a linear trend.

7. The model does not fit well (G2 = 31.7, df = 4), with a particularly large negative
residual for the first count. However the fit shows strong evidence of a tendency for the
likelihood of lung cancer to increase at higher levels of smoking.

9. a. Black defendants with white victims had estimated probability e−3.5961+2.4044/[1 +
e−3.5961+2.4044] = .23.
b. For a given defendant’s race, the odds of the death penalty when the victim was white
are estimated to be between e1.3068 = 3.7 and e3.7175 = 41.2 times the odds when the
victim was black.
c. Wald statistic (−.8678/.3671)2 = 5.6, LR statistic = 5.0, each with df = 1. P -value
= .025 for LR statistic.
d. G2 = .38, X2 = .20, df = 1, so model fits well.

11. For main effects logit model with intercourse as response, estimated conditional odds
ratios are 3.7 for race and 1.9 for gender; e.g., controlling for gender, the odds of having
ever had sexual intercourse are estimated to be exp(1.313) = 3.72 times higher for blacks
than for whites. Goodness-of-fit test gives G2 = 0.06, df = 1, so model fits well.

13. The main effects model fits very well (G2 = .0002, df = 1). Given gender, the odds
of a white athlete graduating are estimated to be exp(1.015) = 2.8 times the odds of a
black athlete. Given race, the odds of a female graduating are estimated to be exp(.352)
= 1.4 times the odds of a male graduating. Both effects are highly significant, with Wald
or likelihood-ratio tests (e.g., the race effect of 1.015 has SE = .087, and the gender
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effect of .352 has SE = .080).

15. R = 1: logit(π̂) = −6.7 + .1A+ 1.4S. R = 0: logit(π̂) = −7.0 + .1A + 1.2S.
The YS conditional odds ratio is exp(1.4) = 4.1 for blacks and exp(1.2) = 3.3 for whites.
Note that .2, the coeff. of the cross-product term, is the difference between the log odds
ratios 1.4 and 1.2. The coeff. of S of 1.2 is the log odds ratio between Y and S when R
= 0 (whites), in which case the RS interaction does not enter the equation. The P -value
of P < .01 for smoking represents the result of the test that the log odds ratio between
Y and S for whites is 0.

21. The original variables c and x relate to the standardized variables zc and zx by
zc = (c−2.44)/.80 and zx = (x−26.3)/2.11, so that c = .80zc+2.44 and x = 2.11zx+26.3.
Thus, the prediction equation is
logit(π̂) = −10.071− .509[.80zc + 2.44] + .458[2.11zx + 26.3],
The coefficients of the standardized variables are -.509(.80) = -.41 and .458(2.11) = .97.
Controlling for the other variable, a one standard deviation change in x has more than
double the effect of a one standard deviation change in c. At x̄ = 26.3, the estimated
logits at c = 1 and at c = 4 are 1.465 and -.062, which correspond to estimated proba-
bilities of .81 and .48.

25. Logit model gives fit, logit(π̂) = -3.556 + .053(income).

29. The odds ratio eβ is approximately equal to the relative risk when the probability is
near 0 and the complement is near 1, since
eβ = [π(x+ 1)/(1− π(x+ 1))]/[π(x)/(1− π(x))] ≈ π(x+ 1)/π(x).

31. The square of the denominator is the variance of logit(π̂) = α̂+ β̂x. For large n, the
ratio of (α̂ + β̂x - logit(π0) to its standard deviation is approximately standard normal,
and (for fixed π0) all x for which the absolute ratio is no larger than zα/2 are not contra-
dictory.

33. a. Let ρ = P(Y=1). By Bayes Theorem,

P (Y = 1|x) = ρ exp[−(x−µ1)
2/2σ2]/{ρ exp[−(x−µ1)

2/2σ2+(1−ρ) exp[−(x−µ0)
2/2σ2]}

= 1/{1 + [(1− ρ)/ρ] exp{−[µ2
0 − µ2

1 + 2x(µ1 − µ0)]/2σ
2}

= 1/{1 + exp[−(α + βx)]} = exp(α + βx)/[1 + exp(α + βx)],

where β = (µ1 − µ0)/σ
2 and α = − log[(1− ρ)/ρ] + [µ2

0 − µ2
1]/2σ

2.

35. a. Given {πi}, we can find parameters so model holds exactly. With constraint
βI = 0, log[πI/(1− πI)] = α determines α. Since log[πi/(1− πi)] = α+βi, it follows that

βi = log[πi/(1− πi)])− log[πI/(1− πI)].

That is, βi is the log odds ratio for rows i and I of the table. When all βi are equal, then
the logit is the same for each row, so πi is the same in each row, so there is independence.

37. d. When yi is a 0 or 1, the log likelihood is
∑

i[yi log πi + (1− yi) log(1− πi)].
For the saturated model, π̂i = yi, and the log likelihood equals 0. So, in terms of the ML
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fit and the ML estimates {π̂i} for this linear trend model, the deviance equals

D = −2
∑

i[yi log π̂i + (1− yi) log(1− π̂i)] = −2
∑

i[yi log
(

π̂i

1−π̂i

)

+ log(1− π̂i)]

= −2
∑

i[yi(α̂ + β̂xi) + log(1− π̂i)].
For this model, the likelihood equations are

∑

i yi =
∑

i π̂i and
∑

i xiyi =
∑

i xiπ̂i.
So, the deviance simplifies to
D = −2[α̂

∑

i π̂i + β̂
∑

i xiπ̂i +
∑

i log(1− π̂i)]
= −2[

∑

i π̂i(α̂+ β̂xi) +
∑

i log(1− π̂i)]

= −2
∑

i π̂i log
(

π̂i

1−π̂i

)

− 2
∑

i log(1− π̂i).

41. a. Expand log[p/(1− p)] in a Taylor series for a neighborhood of points around p =
π, and take just the term with the first derivative.
b. Let pi = yi/ni. The ith sample logit is

log[pi/(1− pi)] ≈ log[π
(t)
i /(1− π

(t)
i )] + (pi − π

(t)
i )/π

(t)
i (1− π

(t)
i )

= log[π
(t)
i /(1− π

(t)
i )] + [yi − niπ

(t)
i ]/niπ

(t)
i (1− π

(t)
i )

Chapter 6

1. logit(π̂) = -9.35 + .834(weight) + .307(width).
a. Like. ratio stat. = 32.9 (df = 2), P < .0001. There is extremely strong evidence that
at least one variable affects the response.
b. Wald statistics are (.834/.671)2 = 1.55 and (.307/.182)2 = 2.85. These each have df
= 1, and the P -values are .21 and .09. These predictors are highly correlated (Pearson
corr. = .887), so this is the problem of multicollinearity.

5. a. The estimated odds of admission were 1.84 times higher for men than women.
However, θ̂AG(D) = .90, so given department, the estimated odds of admission were .90
times as high for men as for women. Simpson’s paradox strikes again! Men applied
relatively more often to Departments A and B, whereas women applied relatively more
often to Departments C, D, E, F. At the same time, admissions rates were relatively high
for Departments A and B and relatively low for C, D, E, F. These two effects combine to
give a relative advantage to men for admissions when we study the marginal association.
c. The values of G2 are 2.68 for the model with no G effect and 2.56 for the model with
G and D main effects. For the latter model, CI for conditional AG odds ratio is (0.87,
1.22).

9. The CMH statistic simplifies to the McNemar statistic of Sec. 10.1, which in chi-
squared form equals (14 − 6)2/(14 + 6) = 3.2 (df = 1). There is slight evidence of a
better response with treatment B (P = .074 for the two-sided alternative).

13. logit(π̂) = −12.351 + .497x. Prob. at x = 26.3 is .674; prob. at x = 28.4 (i.e., one
std. dev. above mean) is .854. The odds ratio is [(.854/.146)/(.674/.326)] = 2.83, so λ
= 1.04, δ = 5.1. Then n = 75.
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23. We consider the contribution to theX2 statistic of its two components (corresponding
to the two levels of the response) at level i of the explanatory variable. For simplicity,
we use the notation of (4.21) but suppress the subscripts. Then, that contribution is
(y − nπ)2/nπ + [(n − y)− n(1 − π)]2/n(1 − π), where the first component is (observed
- fitted)2/fitted for the “success” category and the second component is (observed -
fitted)2/fitted for the “failure” category. Combining terms gives (y − nπ)2/nπ(1 − π),
which is the square of the residual. Adding these chi-squared components therefore gives
the sum of the squared residuals.

25. The noncentrality is the same for models (X +Z) and (Z), so the difference statistic
has noncentrality 0. The conditional XY independence model has noncentrality propor-
tional to n, so the power goes to 1 as n increases.

29 a. P (y = 1) = P (α1 + β1x1 + ǫ1 > α0 + β0x0 + ǫ0) = P [(ǫ0 − ǫ1)/
√
2 < ((α1 − α0) +

(β1 − β0)x)/
√
2] = Φ(α∗ + β∗x) where α∗ = (α1 − α0)/

√
2, β∗ = (β1 − β0)/

√
2.

31. (log π(x2))/(log π(x1)) = exp[β(x2 − x1)], so π(x2) = π(x1)
exp[β(x2−x1)]. For x2 − x1 =

1, π(x2) equals π(x1) raised to the power exp(β).

Chapter 7

1. a.
log(π̂1/π̂2) = (.883+ .758)+(.419− .105)x1+(.342− .271)x2 = 1.641+ .314x+1+ .071x2.
b. The estimated odds for females are exp(0.419) = 1.5 times those for males, controlling
for race; for whites, they are exp(0.342) = 1.4 times those for blacks, controlling for
gender.
c. π̂1 = exp(.883+.419+.342)/[1+exp(.883+.419+.342)+exp(−.758+.105+.271)] = .76.
f. For each of 2 logits, there are 4 gender-race combinations and 3 parameters, so
df = 2(4) − 2(3) = 2. The likelihood-ratio statistic of 7.2, based on df = 2, has a
P -value of .03 and shows evidence of a gender effect.

3. Both gender and race have significant effects. The logit model with additive effects
and no interaction fits well, with G2 = 0.2 based on df = 2. The estimated odds of
preferring Democrat instead of Republican are higher for females and for blacks, with
estimated conditional odds ratios of 1.8 between gender and party ID and 9.8 between
race and party ID.

5. For any collapsing of the response, for Democrats the estimated odds of response in the
liberal direction are exp(.975) = 2.65 times the estimated odds for Republicans. The esti-
mated probability of a very liberal response equals exp(−2.469)/[1+exp(−2.469)] = .078
for Republicans and exp(−2.469 + .975)/[1 + exp(−2.469 + .975)] = .183 for Democrats.

7. a. Four intercepts are needed for five response categories. For males in urban areas
wearing seat belts, all dummy variables equal 0 and the estimated cumulative proba-
bilities are exp(3.3074)/[1 + exp(3.3074)] = .965, exp(3.4818)/[1 + exp(3.4818)] = .970,
exp(5.3494)/[1 + exp(5.3494)] = .995, exp(7.2563)/[1 + exp(7.2563)] = .9993, and 1.0.
The corresponding response probabilities are .965, .005, .025, .004, and .0007.
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b. Wald CI is exp[−.5463±1.96(.0272)] = (exp(−.600), exp(−.493)) = (.549, .611). Give
seat belt use and location, the estimated odds of injury below any fixed level for a female
are between .549 and .611 times the estimated odds for a male.
c. Estimated odds ratio equals exp(−.7602−.1244) = .41 in rural locations and exp(−.7602) =
.47 in urban locations. The interaction effect -.1244 is the difference between the two log
odds ratios.

9. a. Setting up dummy variables (1,0) for (male, female) and (1,0) for (sequential,
alternating), we get treatment effect = -.581 (SE = 0.212) and gender effect = -.541
(SE = .295). The estimated odds ratios are .56 and .58. The sequential therapy leads
to a better response than the alternating therapy; the estimated odds of response with
sequential therapy below any fixed level are .56 times the estimated odds with alternating
therapy.
b. The main effects model fits well (G2 = 5.6, df = 7), and adding an interaction term
does not give an improved fit (The interaction model has G2 = 4.5, df = 6).

11. a. The model has 12 baseline-category logits (2 for each of the 6 combinations of
S and A) and 8 parameters (an intercept, an A effect and two S effects, for each logit),
so df = 4. The model does not account for ordinality, since the model allows different
effects for each logit and treats A as a factor. Also, it does not permit interaction.
b. Since exp(.663) = 1.94, the effect of smoking is 94% higher for the older-aged subjects.
c. For this age group the log odds ratio with smoking is β1+β3 for smoking levels one unit
apart and 2(β1+β3) for smoking levels two units apart. Thus, the estimated odds ratios
are exp(.115 + .663) = 2.18 and exp[2(.115 + .663)] = 4.74. For the extreme categories
of B, which are two units apart, the log odds ratios double and the odds ratios square.

13. For x2 = 0, P̂ (Y > 2) = 1− P̂ (Y ≤ 1) = 1−Φ(−.161− .195x1) = Φ(.161+ .195x1) =
Φ([x1 − .83]/5.13), so the shape is that of a normal cdf with µ = .83 and σ = 5.13. For
x2 = 1, µ = 2.67 and σ = 5.13.

17. a. CMH statistic for correlation alternative, using equally-spaced scores, equals 6.3
(df = 1) and has P -value = .012. When there is roughly a linear trend, this tends to be
more powerful and give smaller P -values, since it focuses on a single degree of freedom.
b. LR statistic for cumulative logit model with linear effect of operation = 6.7, df = 1,
P = .01; strong evidence that operation has an effect on dumping, gives similar results
as in (a).
c. LR statistic comparing this model to model with four separate operation parameters
equals 2.8 (df = 3), so simpler model is adequate.

27. ∂π3(x)/∂x = −[β1 exp(α1+β1x)+β2 exp(α2+β2x)]
[1+exp(α1+β1x)+exp(α2+β2x)]2

.
a. The denominator is positive, and the numerator is negative when β1 > 0 and β2 > 0.

29. No, because the baseline-category logit model refers to individual categrories rather
than cumulative probabilities. There is not linear structure for baseline-category logits
that implies identical effects for each cumulative logit.

31. For j < k, logit[P (Y ≤ j | X = xi)] - logit[P (Y ≤ k | X = xi)] = (αj −
αk) + (βj − βk)x. This difference of cumulative probabilities cannot be positive since
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P (Y ≤ j) ≤ P (Y ≤ k); however, if βj > βk then the difference is positive for large x,
and if βj > βk then the difference is positive for small x.

33. The local odds ratios refer to a narrow region of the response scale (categories j and
j − 1 alone), whereas cumulative odds ratios refer to the entire response scale.

35. From the argument in Sec. 7.2.3, the effect β refers to an underlying continuous
variable with a normal distribution with standard deviation 1.

37. a. df = I(J − 1)− [(J − 1) + (I − 1)] = (I − 1)(J − 2).
b. The full model has an extra I − 1 parameters.
c. The cumulative probabilities in row a are all smaller or all greater than those in row
b depending on whether µa > µb or µa < µb.

41. For a given subject, the model has the form

πj =
αj + βjx+ γuj

∑

h αh + βhx+ γuh
.

For a given cost, the odds a female selects a over b are exp(βa − βb) times the odds for
males. For a given gender, the log odds of selecting a over b depend on ua − ub.

Chapter 8

1. a. G2 values are 2.38 (df = 2) for (GI,HI), and .30 (df = 1) for (GI,HI,GH).
b. Estimated log odds ratios is -.252 (SE = .175) for GH association, so CI for odds
ratio is exp[−.252± 1.96(.175)]. Similarly, estimated log odds ratio is .464 (SE = .241)
for GI association, leading to CI of exp[.464 ± 1.96(.241)]. Since the intervals contain
values rather far from 1.0, it is safest to use model (GH,GI,HI), even though simpler
models fit adequately.

3. For either approach, from (8.14), the estimated conditional log odds ratio equals

λ̂AC
11 + λ̂AC

22 − λ̂AC
12 − λ̂AC

21

5. a. Let S = safety equipment, E = whether ejected, I = injury. Then, G2(SE, SI, EI) =
2.85, df = 1. Any simpler model has G2 > 1000, so it seems there is an association for
each pair of variables, and that association can be regarded as the same at each level
of the third variable. The estimated conditional odds ratios are .091 for S and E (i.e.,
wearers of seat belts are much less likely to be ejected), 5.57 for S and I, and .061 for E
and I.
b. Loglinear models containing SE are equivalent to logit models with I as response
variable and S and E as explanatory variables. The loglinear model (SE, SI, EI) is
equivalent to a logit model in which S and E have additive effects on I. The estimated
odds of a fatal injury are exp(2.798) = 16.4 times higher for those ejected (controlling
for S), and exp(1.717) = 5.57 times higher for those not wearing seat belts (controlling
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for E).

7. Injury has estimated conditional odds ratios .58 with gender, 2.13 with location, and
.44 with seat-belt use. “No” is category 1 of I, and “female” is category 1 of G, so the
odds of no injury for females are estimated to be .58 times the odds of no injury for males
(controlling for L and S); that is, females are more likely to be injured. Similarly, the
odds of no injury for urban location are estimated to be 2.13 times the odds for rural
location, so injury is more likely at a rural location, and the odds of no injury for no seat
belt use are estimated to be .44 times the odds for seat belt use, so injury is more likely
for no seat belt use, other things being fixed. Since there is no interaction for this model,
overall the most likely case for injury is therefore females not wearing seat belts in rural
locations.

9. a. (GRP,AG,AR,AP ). Set βG
h = 0 in model in previous logit model.

b. Model with A as response and additive factor effects for R and P , logit(π) =
α + βR

i + βP
j .

c. (i) (GRP,A), logit(π) = α, (ii) (GRP,AR), logit(π) = α + βR
i ,

(iii) (GRP,APR,AG), add term of form βRP
ij to logit model in Exercise 5.23.

13. Homogeneous association model (BP,BR,BS, PR, PS,RS) fits well (G2 = 7.0,
df = 9). Model deleting PR association also fits well (G2 = 10.7, df = 11), but we use
the full model.
For homogeneous association model, estimated conditional BS odds ratio equals exp(1.147)
= 3.15. For those who agree with birth control availability, the estimated odds of view-
ing premarital sex as wrong only sometimes or not wrong at all are about triple the
estimated odds for those who disagree with birth control availability; there is a positive
association between support for birth control availability and premarital sex. The 95%
CI is exp(1.147± 1.645(.153)) = (2.45, 4.05).
Model (BPR,BS, PS,RS) has G2 = 5.8, df = 7, and also a good fit.

17. b. log θ11(k) = logµ11k + log µ22k − log θ12k − log θ21k = λXY
11 + λXY

22 − λXY
12 − λXY

21 ; for
zero-sum constraints, as in problem 16c this simplifies to 4λXY

11 .
e. Use equations such as

λ = log(µ111), λX
i = log

(

µi11

µ111

)

, λXY
ij = log

(

µij1µ111

µi11µ1j1

)

λXY Z
ijk = log

(

[µijkµ11k/µi1kµ1jk]

[µij1µ111/µi11µ1j1]

)

19. a. When Y is jointly independent of X and Z, πijk = π+j+πi+k. Dividing πijk by
π++k, we find that P (X = i, Y = j|Z = k) = P (X = i|Z = k)P (Y = j). But when
πijk = π+j+πi+k, P (Y = j|Z = k) = π+jk/π++k = π+j+π++k/π++k = π+j+ = P (Y = j).
Hence, P (X = i, Y = j|Z = k) = P (X = i|Z = k)P (Y = j) = P (X = i|Z = k)P (Y =
j|Z = k) and there is XY conditional independence.
b. For mutual independence, πijk = πi++π+j+π++k. Summing both sides over k, πij+ =
πi++π+j+, which is marginal independence in the XY marginal table.
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c. No. For instance, model (Y,XZ) satisfies this, but X and Z are dependent (the
conditional association being the same as the marginal association in each case, for this
model).
d. When X and Y are conditionally independent, then an odds ratio relating them using
two levels of each variable equals 1.0 at each level of Z. Since the odds ratios are identical,
there is no three-factor interaction.

21. Use the definitions of the models, in terms of cell probabilities as functions of marginal
probabilities. When one specifies sufficient marginal probabilities that have the required
one-way marginal probabilities of 1/2 each, these specified marginal distributions then
determine the joint distribution. Model (XY, XZ, YZ) is not defined in the same way;
for it, one needs to determine cell probabilities for which each set of partial odds ratios
do not equal 1.0 but are the same at each level of the third variable.
a.

Y Y
.125 .125 .125 .125

X .125 .125 .125 .125

Z = 1 Z = 2

This is actually a special case of (X,Y,Z) called the equiprobability model.
b.

.15 .10 .15 .10

.10 .15 .10 .15

c.

1/4 1/24 1/12 1/8
1/8 1/12 1/24 1/4

d.

2/16 1/16 4/16 1/16
1/16 4/16 1/16 2/16

e. Any 2× 2× 2 table

23. Number of terms = 1 +

(

T
1

)

+

(

T
2

)

+ ...+

(

T
T

)

=
∑

i

(

T
i

)

1i1T−i = (1+1)T ,

by the Binomial theorem.

25. a. The λXY term does not appear in the model, so X and Y are conditionally
independent. All terms in the saturated model that are not in model (WXZ,WYZ)
involve X and Y , so permit an XY conditional association.
b. (WX,WZ,WY,XZ, Y Z)

27. β = (α1, α2, β)
′, X is the 6×3 matrix with rows (1, 0, x1, / 0, 1, x1, / 1, 0, x2, / 0,

1, x2, / 1, 0, x3, / 0, 1, x3), C is the 3×12 matrix with rows (1, -1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0 / 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, / 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
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-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, / 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1), and A is
the 12×9 matrix with rows (1, 0, 0, 0, 0, 0, 0, 0, 0, / 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, / 0, 0, 0, 0, 0, 0, 1, 0, 0, / 0, 0, 0, 0, 0, 0, 0, 1, 1),

29. For this model, in a given row the J cell probabilities are equal. The likelihood
equations are µ̂i+ = ni+ for all i. The fitted values that satisfy the model and the
likelihood equations are µ̂ij = ni+/J .

31. For model (XY,Z), log likelihood is

L = nλ +
∑

i

ni++λ
X
i +

∑

j

n+j+λ
Y
j +

∑

k

n++kλ
Z
k +

∑

i

∑

j

nij+λ
XY
ij −

∑∑∑

µijk

The minimal sufficient statistics are {nij+}, {n++k}. Differentiating with respect to
λXY
ij and λZ

k gives the likelihood equations µ̂ij+ = nij+ and µ̂++k = n++k for all i, j, and
k. For this model, since πijk = πij+π++k, µ̂ijk = µ̂ij+µ̂++k/n = nij+n++k/n. Residual df
= IJK − [1 + (I − 1) + (J − 1) + (K − 1) + (I − 1)(J − 1)] = (IJ − 1)(K − 1).

33. For (XY,Z), df = IJK − [1 + (I − 1) + (J − 1) + (K − 1) + (I − 1)(J − 1)]. For
(XY, Y Z), df = IJK− [1+(I−1)+(J −1)+(K−1)+(I−1)(J −1)+(J −1)(K−1)].
For (XY,XZ, Y Z), df = IJK − [1 + (I − 1) + (J − 1) + (K − 1) + (I − 1)(J − 1) + (J −
1)(K − 1) + (I − 1)(J − 1)].

35. a. The formula reported in the table satisfies the likelihood equations µ̂h+++ =
nh+++, µ̂+i++ = n+i++, µ̂++j+ = n++j+, µ̂+++k = n+++k, and they satisfy the model,
which has probabilistic form πhijk = πh+++π+i++π++j+π+++k, so by Birch’s results they
are ML estimates.
b. Model (WX, Y Z) says that the composite variable (having marginal frequencies
{nhi++}) is independent of the Y Z composite variable (having marginal frequencies
{n++jk}). Thus, df = [no. categories of (XY )-1][no. categories of (Y Z)-1] = (HI −
1)(JK − 1). Model (WXY,Z) says that Z is independent of the WXY composite vari-
able, so the usual results apply to the two-way table having Z in one dimension, HIJ
levels of WXY composite variable in the other; e.g., df = (HIJ − 1)(K − 1).

37. β = (λ, λX
1 , λ

Y
1 , λ

Z
1 )

′, µ = (µ111, µ112, µ121, µ122, µ211, µ212, µ221, µ222)
′, and X is a 8×4

matrix with rows (1, 1, 1, 1, / 1, 1, 1, 0, / 1, 1, 0, 1, / 1, 1, 0, 0, / 1, 0, 1, 1, / 1, 0, 1, 0,
/ 1, 0, 0, 1, / 1, 0, 0, 0).

39. Take π
(t+1)
ij = π

(t)
ij (ri/π

(t)
i+), so row totals match {ri}, and then π

(t+2)
ij = π

(t+1)
ij (cj/π

(t+1)
+j ),

so column totals match, for t = 1, 2, · · ·, where {π(0)
ij = pij}.

Chapter 9

1. a. For any pair of variables, the marginal odds ratio is the same as the conditional
odds ratio (and hence 1.0), since the remaining variable is conditionally independent of
each of those two.
b. (i) For each pair of variables, at least one of them is conditionally independent of
the remaining variable, so the marginal odds ratio equals the conditional odds ratio. (ii)
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these are the likelihood equations implied by the λAC term in the model.
c. (i) Both A and C are conditionally dependent with M , so the association may change
when one controls for M . (ii) For the AM odds ratio, since A and C are conditionally
independent (given M), the odds ratio is the same when one collapses over C. (iii) These
are likelihood equations implied by the λAM and λCM terms in the model.
d. (i) no pairs of variables are conditionally independent, so collapsibility conditions are
not satisfied for any pair of variables. (ii) These are likelihood equations implied by the
three association terms in the model.

5. Model (AC,AM,CM) fits well. It has df = 1, and the likelihood equations imply
fitted values equal observed in each two-way marginal table, which implies the difference
between an observed and fitted count in one cell is the negative of that in an adjacent
cell; their SE values are thus identical, as are the standardized Pearson residuals. The
other models fit poorly; e.g. for model (AM,CM), in the cell with each variable equal
to yes, the difference between the observed and fitted counts is 3.7 standard errors.

15. With log link, G2 = 3.79, df = 2; estimated death rate for older age group is
e1.25 = 3.49 times that for younger group.

17. Do a likelihood-ratio test with and without time as a factor in the model

19. The model appears to fit adequately. The estimated constant collision rate is exp()
= .0153 accidents per million miles of travel.

21.a. The ratio of the rate for smokers to nonsmokers decreases markedly as age increases.
b. G2 = 12.1, df = 4.
c. For age scores (1,2,3,4,5), G2 = 1.5, df = 3. The interaction term = -.309, with std.
error = .097; the estimated ratio of rates is multiplied by exp(−.309) = .73 for each
successive increase of one age category.

25. W and Z are separated using X alone or Y alone or X and Y together. W and Y are
conditionally independent given X and Z (as the model symbol implies) or conditional
on X alone since X separates W and Y . X and Z are conditionally independent given
W and Y or given only Y alone.

27. a. Yes – let U be a composite variable consisting of combinations of levels of Y and
Z; then, collapsibility conditions are satisfied as W is conditionally independent of U ,
given X .
b. No.

33. From the definition, it follows that a joint distribution of two discrete variables is
positively likelihood-ratio dependent if all odds ratios of form µijµhk/µikµhj ≥ 1, when
i < h and j < k.
a. For L×L model, this odds ratio equals exp[β(uh−ui)(vk−vj)]. Monotonicity of scores
implies ui < uh and vj < vk, so these odds ratios all are at least equal to 1.0 when β ≥ 0.
Thus, when β > 0, as X increases, the conditional distributions on Y are stochastically
increasing; also, as Y increases, the conditional distributions on X are stochastically in-
creasing. When β < 0, the variables are negatively likelihood-ratio dependent, and the
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conditional distributions on Y (X) are stochastically decreasing as X (Y ) increases.
b. For row effects model with j < k, µhjµik/µhkµij = exp[(µi − µh)(vk − vj)]. When
µi −µh > 0, all such odds ratios are positive, since scores on Y are monotone increasing.
Thus, there is likelihood-ratio dependence for the 2× J table consisting of rows i and h,
and Y is stochastically higher in row i.

35. a. Note the derivative of the log likelihood with respect to β is
∑

i

∑

j uivj(nij −µij),
which under indep. estimates is n

∑

i

∑

j uivj(pij − pi+p+j).
b. Use formula (3.9). In this context, ζ =

∑∑

uivj(πij − πi+π+j) and φij = uivj −
ui(
∑

b vbπ+b) − vj(
∑

a uaπa+) Under H0, πij = πi+π+j , and
∑∑

πijφij simplifies to
−(
∑

uiπi+)(
∑

vjπ+j). Also under H0,

∑

i

∑

j

πijφ
2
ij =

∑

i

∑

j

u2
i v

2
jπi+π+j + (

∑

j

vjπ+j)
2(
∑

i

u2
iπi+) + (

∑

i

uiπi+)
2(
∑

j

v2jπ+j)

+2(
∑

i

∑

j

uivjπi+π+j)(
∑

i

uiπi+)(
∑

j

vjπ+j)−2(
∑

i

u2
iπi+)(

∑

j

vjπ+j)
2−2(

∑

j

v2jπ+j)(
∑

i

uiπi+)
2.

Then σ2 in (3.9) simplifies to

[
∑

i

u2
iπi+ − (

∑

i

uiπi+)
2][
∑

j

v2jπ+j − (
∑

j

vjπ+j)
2].

The asymptotic standard error is σ/
√
n, the estimate of which is the same formula with

πij replaced by pij.

37. a. If parameters do not satisfy these constraints, set λ̄X
i = λX

i −λX
I , λ̄Y

j = λY
j −λY

I +
µ1(vj−vI), µ̄i = µi−µI . Then logmij = λ+(λ̄X

i +λX
I )+[λ̄Y

j +λY
I +µI(vI−vj)]+(µ̄i+µI)vj

= λ′ + λ̄X
i + λ̄Y

j + µ̄ivj , where λ′ = λ + λX
I + λY

I + uIvI . This has row effects form with
the indicated constraints.
b. For Poisson sampling, log likelihood is

L = nλ+
∑

i

ni+λ
X
i +

∑

j

n+jλ
Y
j +

∑

i

µi[
∑

j

nijvj ]−
∑

i

∑

j

exp(λ+ ...)

Thus, the minimal sufficient statistics are {ni+}, {n+j}, and {∑j nijvj}. Differentiating
with respect to the parameters and setting results equal to zero gives the likelihood
equations. For instance, ∂L/∂µi =

∑

j vjnij −
∑

j vjµij, i = 1, ..., I, from which follows
the I equations in the third set of likelihood equations.

39. a. These equations are obtained successively by differentiating with respect to
λXZ , λY Z , and β. Note these equations imply that the correlation between the scores
for X and the scores for Y is the same for the fitted and observed data. This model uses
the ordinality of X and Y , and is a parsimonious special case of model (XY,XZ, Y Z).
b. Can calculate this directly, or simply note that the model has one more parameter
than the conditional XY independence model (XZ, Y Z), so it has one fewer df than
that model.
c. When I = J = 2, λXY has only one nonredundant value. For zero-sum constraints,
we can take u1 = v1 = −u2 = −v2 and have βuivj = λXY

ij . (Note the distinction between
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ordinal and nominal is irrelevant when there are only two categories; we cannot exploit
“trends” until there are at least 3 categories.)
d. The third equation is replaced by the K equations,

∑

i

∑

j

uivjµ̂ijk =
∑

i

∑

j

uivjnijk, k = 1, ..., K.

This model corresponds to fitting L × L model separately at each level of Z. The G2

value is the sum of G2 for separate fits, and df is the sum of IJ − I − J values from
separate fits (i.e., df = K(IJ − I − J)).

41. a.

log µijk = λ+ λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk + µivj ,

where {vj} are fixed scores and the row effects satisfy a constraint such as
∑

i µi = 0. The
likelihood equations are {µ̂i+k = ni+k}, {µ̂+jk = n+jk}, and {∑j vjµ̂ij+ =

∑

j vjnij+},
and residual df = IJK -[1 + (I-1) + (J-1) + (K-1) + (I-1)(K-1) + (J-1)(K-1) + (I-1)]. For
unit-spaced scores, within each level k of Z, the odds that Y is in category j +1 instead
of j are exp(µa − µb) times higher in level a of X than in level b of X . Note this model
treats Y alone as ordinal, and corresponds to an adjacent-categories logit model for Y as
a response in which X and Z have additive effects but no interaction. For equally-spaced
scores, those effects are the same for each logit.
b. Replace final term in model in (a) by µikvj , where parameters satisfy constraint such
as
∑

i µik = 0 for each k. Replace final term in df expression by K(I−1). Within level k
of Z, the odds that Y is in category j + 1 rather than j are exp(µak − µbk) times higher
at level a of X than at level b of X .

47. Suppose ML estimates did exist, and let c = µ̂111. Then c > 0, since we must be able
to evaluate the logarithm for all fitted values. But then µ̂112 = n112 − c, since likelihood
equations for the model imply that µ̂111 + µ̂112 = n111 + n112 (i.e., µ̂11+ = n11+). Using
similar arguments for other two-way margins implies that µ̂122 = n122+c, µ̂212 = n212+c,
and µ̂222 = n222 − c. But since n222 = 0, µ̂222 = −c < 0, which is impossible. Thus we
have a contradiction, and it follows that ML estimates cannot exist for this model.

Chapter 10

1. a. Sample marginal proportions are 1300/1825 = 0.712 and 1187/1825 = 0.650. The
difference of .062 has an estimated variance of [(90+203)/1825−(90−203)2/18252]/1825 =
.000086, for SE = .0093. The 95% Wald CI is .062 ±1.96(.0093), or .062 ±.018, or (.044,
.080).
b. McNemar chi-squared = (203 − 90)2/(203 + 90) = 43.6, df = 1, P < .0001; there is
strong evidence of a higher proportion of ‘yes’ responses for ‘let patient die.’
c. β̂ = log(203/90) = log(2.26) = 0.81. For a given respondent, the odds of a ‘yes’ re-
sponse for ‘let patient die’ are estimated to equal 2.26 times the odds of a ‘yes’ response
for ‘suicide.’

3. a. Ignoring order, (A=1,B=0) occurred 45 times and (A=0,B=1)) occurred 22 times.
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The McNemar z = 2.81, which has a two-tail P -value of .005 and provides strong evi-
dence that the response rate of successes is higher for drug A.
b. Pearson statistic = 7.8, df = 1

5. a. Symmetry model has X2 = .59, based on df = 3 (P = .90). Independence has
X2 = 45.4 (df = 4), and quasi independence has X2 = .01 (df = 1) and is identical to
quasi symmetry. The symmetry and quasi independence models fit well.
b. G2(S | QS) = 0.591 − 0.006 = 0.585, df = 3 − 1 = 2. Marginal homogeneity is
plausible.
c. Kappa = .389 (SE = .060), weighted kappa equals .427 (SE = .0635).

13. Under independence, on the main diagonal, fitted = 5 = observed. Thus, kappa =
0, yet there is clearly strong association in the table.

15. a. Good fit, with G2 = 0.3, df = 1. The parameter estimates for Coke, Pepsi, and
Classic Coke are 0.580 (SE = 0.240), 0.296 (SE = 0.240), and 0. Coke is preferred to
Classic Coke.
b. model estimate = 0.57, sample proportion = 29/49 = 0.59.

17. a. For testing fit of the model, G2 = 4.6, X2 = 3.2 (df = 6). Setting the β̂5 = 0 for
Sanchez, β̂1 = 1.53 for Seles, β̂2 = 1.93 for Graf, β̂3 = .73 for Sabatini, and β̂4 = 1.09 for
Navratilova. The ranking is Graf, Seles, Navratilova, Sabatini, Sanchez.
b. exp(−.4)/[1 + exp(−.4)] = .40. This also equals the sample proportion, 2/5. The
estimate β̂1 − β̂2 = −.40 has SE = .669. A 95% CI of (-1.71, .91) for β1 − β2 translates
to (.15, .71) for the probability of a Seles win.
c. Using a 98% CI for each of the 10 pairs, only the difference between Graf and Sanchez
is significant.

21. The matched-pairs t test compares means for dependent samples, and McNemar‘s
test compares proportions for dependent samples. The t test is valid for interval-scale
data (with normally-distributed differences, for small samples) whereas McNemar’s test
is valid for binary data.

23. a. This is a conditional odds ratio, conditional on the subject, but the other model
is a marginal model so its odds ratio is not conditional on the subject.
c. This is simply the mean of the expected values of the individual binary observations.
d. In the three-way representation, note that each partial table has one observation in
each row. If each response in a partial table is identical, then each cross-product that
contributes to the M-H estimator equals 0, so that table makes no contribution to the
statistic. Otherwise, there is a contribution of 1 to the numerator or the denominator,
depending on whether the first observation is a success and the second a failure, or the
reverse. The overall estimator then is the ratio of the numbers of such pairs, or in terms
of the original 2×2 table, this is n12/n21.

25. When {αi} are identical, the individual trials for the conditional model are identical
as well as independent, so averaging over them to get the marginal Y1 and Y2 gives bino-
mials with the same parameters.
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29. Consider the 3×3 table with cell probabilities, by row, (.2, .10, 0, / 0, .3, .10, / .10,
0, .2).

39. a. Since πab = πba, it satisfies symmetry, which then implies marginal homogeneity
and quasi symmetry as special cases. For a 6= b, πab has form αaβb, identifying βb with
αb(1− β), so it also satisfies quasi independence.
c. β = κ = 0 is equivalent to independence for this model, and β = κ = 1 is equivalent
to perfect agreement.

41. a. The association term is symmetric in a and b. It is a special case of the quasi
association model in which the main-diagonal parameters are replaced by a common pa-
rameter δ.
c. Likelihood equations are, for all a and b, µ̂a+ = na+, µ̂+b = n+b,

∑

a

∑

b uaubµ̂ab =
∑

a

∑

b uaubnab,
∑

a µ̂aa =
∑

a naa.

Chapter 11

1. The sample proportions of yes responses are .86 for alcohol, .66 for cigarettes, and .42
for marijuana. To test marginal homogeneity, the likelihood-ratio statistic equals 1322.3
and the general CMH statistic equals 1354.0 with df = 2, extremely strong evidence of
differences among the marginal distributions.

3. a. Since R = G = S1 = S2 = 0, estimated logit is −.57 and estimated odds =
exp(−.57).
b. Race does not interact with gender or substance type, so the estimated odds for white
subjects are exp(0.38) = 1.46 times the estimated odds for black subjects.
c. For alcohol, estimated odds ratio = exp(−.20+0.37) = 1.19; for cigarettes, exp(−.20+
.22) = 1.02; for marijuana, exp(−.20) = .82.
d. Estimated odds ratio = exp(1.93 + .37) = 9.97.
e. Estimated odds ratio = exp(1.93) = 6.89.

7. a. Subjects can select any number of the sources, from 0 to 5, so a given subject could
have anywhere from 0 to 5 observations in this table. The multinomial distribution does
not apply to these 40 cells.
b. The estimated correlation is weak, so results will not be much different from treating
the 5 responses by a subject as if they came from 5 independent subjects. For source
A the estimated size effect is 1.08 and highly significant (Wald statistic = 6.46, df = 1,
P < .0001). For sources C, D, and E the size effect estimates are all roughly -.2.
c. One can then use such a parsimonious model that sets certain parameters to be equal,
and thus results in a smaller SE for the estimate of that effect (.063 compared to values
around .11 for the model with separate effects).

9. a. The general CMH statistic equals 14.2 (df = 3), showing strong evidence against
marginal homogeneity (P = .003). Likewise, Bhapkar W = 12.8 (P = .005)
b. With a linear effect for age using scores 9, 10, 11, 12, the GEE estimate of the age
effect is .086 (SE = .025), based on the exchangeable working correlation. The P -value
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(.0006) is even smaller than in (a), as the test is focused on df = 1.

11. GEE estimate of cumulative log odds ratio is 2.52 (SE = .12), similar to ML.

13. b. λ̂ = 1.08 (SE = .29) gives strong evidence that the active drug group tended to
fall asleep more quickly, for those at the two highest levels of initial time to fall asleep.

15. First-order Markov model has G2 = 40.0 (df = 8), a poor fit. If we add association
terms for the other pairs of ages, we get G2 = 0.81 and X2 = 0.84 (df = 5) and a good
fit.

21. CMH methods summarize information from the counts in the various strata, treating
them as hypergeometric after conditioning on row and column totals in each stratum.
When a subject makes the same response for each drug, the stratum for the subject
has observations in one column only, and the generalized hypergeometric distribution is
degenerate and has variance 0 for each count.

23. Since ∂µi/∂β = 1, u(β) =
∑

i

(

∂µi

∂β

)′

v(µi)
−1(yi − µi) =

∑

i µ
−1
i (yi − µi) =

∑

i(yi −

β)/β. Setting this equal to 0,
∑

i yi = nβ. Also, V =
[

∑

i

(

∂µi

∂β

)′

[v(µi)]
−1

(

∂µi

∂β

)]−1

=

[
∑

i µ
−1
i ]−1 = [n/β]−1 = β/n. Also, the actual asymptotic variance that allows for vari-

ance misspecification is

V

[

∑

i

(

∂µi

∂β

)′

[v(µi)]
−1Var(Yi)[v(µi)]

−1
(

∂µi

∂β

)]

V = (β/n)[
∑

i

µ−1
i µ2

iµ
−1
i ](β/n) = β2/n.

Replacing the true variance µ2
i in this expression by (yi−ȳ)2, the last expression simplifies

(using µi = β) to
∑

i(yi − ȳ)2/n2.

25. Since v(µi) = µi for the Poisson and since µi = β, the model-based asymptotic
variance is

V =
[

∑

i

(

∂µi

∂β

)′

[v(µi)]
−1
(

∂µi

∂β

)]−1

= [
∑

i

(1/µi)]
−1 = β/n.

Thus, the model-based asymptotic variance estimate is ȳ/n. The actual asymptotic
variance that allows for variance misspecification is

V

[

∑

i

(

∂µi

∂β

)′

[v(µi)]
−1Var(Yi)[v(µi)]

−1
(

∂µi

∂β

)]

V

= (β/n)[
∑

i

(1/µi)Var(Yi)(1/µi)](β/n) = (
∑

i

Var(Yi))/n
2,

which is estimated by [
∑

i(Yi − ȳ)2]/n2. The model-based estimate tends to be better
when the model holds, and the robust estimate tends to be better when there is severe
overdispersion so that the model-based estimate tends to underestimate the SE.

27. a. QL assumes only a variance structure but not a particular distribution. They are
equivalent if one assumes in addition that the distribution is in the natural exponential
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family with that variance function.
b. GEE does not assume a parametric distribution, but only a variance function and a
correlation structure.
c. An advantage is being able to extend ordinary GLMs to allow for overdispersion, for
instance by permitting the variance to be some constant multiple of the variance for the
usual GLM. A disadvantage is not having a likelihood function and related likelihood-
ratio tests and confidence intervals.
d. They are consistent if the model for the mean is correct, even if one misspecifies the
variance function and correlation structure. They are not consistent if one misspecifies
the model for the mean.

31. Yes, because it is still true that given yt, Yt+1 does not depend on y0, y1, . . . , yt−1.

33. a. For this model, given the state at a particular time, the probability of transition
to a particular state is independent of the time of transition.

Chapter 12

1. a. With a sufficient number of quadrature points, the number of which depends
on starting values, β̂ converges to 0.813 with SE = 0.127. For a given subject, the esti-
mated odds of approval for the second question are exp(.813) = 2.25 times the estimated
odds for the first question.
b. Same as conditional ML β̂ = log(203/90) (SE = 0.127).

3. For a given subject, the odds of having used cigarettes are estimated to equal
exp[1.6209− (−.7751) = 11.0 times the odds of having used marijuana. The large value
of σ̂ = 3.5 reflects strong associations among the three responses.

7. β̂B = 1.99 (SE = .35), β̂C = 2.51 (SE = .37), with σ̂ = 0. e.g., for a given subject for
any sequence, the estimated odds of relief for A are exp(−1.99) = .13 times the estimated
odds for B (and odds ratio = .08 comparing A to C and .59 comparing B and C). Taking
into account SE values, B and C are better than A.

9. Comparing the simpler model with the model in which treatment effects vary by se-
quence, double the change in maximized log likelihood is 13.6 on df = 10; P = .19 for
comparing models. The simpler model is adequate. Adding period effects to the simpler
model, the likelihood-ratio statistic = .5, df = 2, so the evidence of a period effect is
weak.

11. a. For a given department, the estimated odds of admission for a female are
exp(.173) = 1.19 times the estimated odds of admission for a male.
b. For a given department, the estimated odds of admission for a female are exp(.163) =
1.18 times the estimated odds of admission for a male.
c. The estimated mean log odds ratio between gender and admissions, given department,
is .176, corresponding to an odds ratio of 1.19. Because of the extra variance component,
permitting heterogeneity among departments, the estimate of β is not as precise.
d. The marginal odds ratio of exp(−.07) = .93 is in a different direction, corresponding
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to an odds of being admitted that is lower for females than for males. This is Simpson’s
paradox, and by results in Chapter 9 on collapsibility is possible when Department is
associated both with gender and with admissions.
e. The random effects model assumes the true log odds ratios come from a normal dis-
tribution. It smooths the sample values, shrinking them toward a common mean.

15. a. There is more support for increasing government spending on education than on
the others.

17. The likelihood-ratio statistic equals −2(−593 − (−621)) = 56. The null distribution
is an equal mixture of degenerate at 0 and χ2

1, and the P -value is half that of a χ2
1 variate,

and is 0 to many decimal places. There is extremely strong evidence that σ > 0.

19. β̂2M − β̂1M = .39 (SE = .09), β̂2A − β̂1A = .07 (SE = .06), with σ̂1 = 4.1, σ̂2 = 1.8,
and estimated correlation .33 between random effects.

21. d. When σ̂ is large, the log likelihood is flat and many N values are consistent with
the sample. A narrower interval is not necessarily more reliable. If the model is incorrect,
the actual coverage probability may be much less than the nominal probability.

27. When σ̂ = 0, the model is equivalent to the marginal one deleting the random effect.
Then, probability = odds/(1 + odds) = exp[logit(qi) + α]/[1 + exp[logit(qi) + α]]. Also,
exp[logit(qi)] = exp[log(qi)−log(1−qi)] = qi/(1−qi). The estimated probability is mono-
tone increasing in α̂. Thus, as the Democratic vote in the previous election increases, so
does the estimated Democratic vote in this election.

29. a. P (Yit = 1|ui) = Φ(x
′

itβ + z
′

itui), so

P (Yit = 1) =
∫

P (Z ≤ x
′

itβ + z
′

itui)f(u;Σ)dui,

where Z is a standard normal variate that is independent of ui. Since Z − z
′

itui has a
N(0, 1+z

′

itΣzit) distribution, t he probability in the integrand is Φ(x
′

itβ[1+z
′

itΣzit]
−1/2),

which does not depend on ui, so the integral is the same.
b. The parameters in the marginal model equal those in the GLMM divided by [1 +
z

′

itΣzit]
1/2, which in the univariate case is

√
1 + σ2.

31. b. Two terms drop out because µ̂11 = n11 and µ̂22 = n22.
c. Setting β0 = 0, the fit is that of the symmetry model, for which log(µ̂21/µ̂12) = 0.

35. a. For a given subject, the odds of response (Yit ≤ j) for the second observation are
exp(β) times those for the first observation. The corresponding marginal model has a
population-averaged rather than subject-specific interpretation.
b. The estimate given is the conditional ML estimate of β for the collapsed table. It is
also the random effects ML estimate if the log odds ratio in that collapsed table is non-
negative. The model applies to that collapsed table and those estimates are consistent
for it.
c. For the (I−1)×2 table of the off-diagonal counts from each collapsed table, the ratio
in each row estimates exp(β). Thus, the sum of the counts across the rows gives row
totals for which the ratio also estimates exp(β). The log of this ratio is β̃.
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Chapter 13

1. Since q = 2, I = 2, and T = 3, the model has residual and df = IT − qT (I − 1)− q =
0 and is saturated.

7. With the QL approach with beta-binomial type variance, there is mild overdispersion
with ρ̂ = .071 (logit link). The intercept estimate is -0.186 (SE = .164). An estimate of
-.186 for the common value of the logit corresponds to an estimate of .454 for the mean
of the beta distribution for πi. The estimated standard deviation of that distribution is

then
√

.071(.454× .546) = .133. We estimate that Shaq’s probability of success varies
from game to game with a mean of .454 and standard deviation of .133.

9.a. Including litter size as a predictor, its estimate is -.102 with SE = .070. There is
not strong evidence of a litter size effect. b. The ρ̂ estimates for the four groups are .32,
.02, -.03, and .02. Only the placebo group shows evidence of overdispersion.

11. The estimated constant accident rate is exp(−4.177) = .015 per million miles of
travel, the same as for a Poisson model. Since the dispersion parameter estimate is rel-
atively small, the SE of .153 for the log rate with this model is not much greater than
the SE of .132 for the log rate for the Poisson model in Problem 9.19.

13. The estimated difference of means is 1.552 for each model, but SE = .196 for the
Poisson model and SE = .665 for the negative binomial model. The Poisson SE is not
realistic because of the extreme overdispersion. Using the negative binomial model, a
95% Wald confidence interval for the difference of means is 1.552 ± 1.96(.665), or (.25,
2.86).

15. a. log µ̂ = −4.05 + 0.19x.
b. log µ̂ = −5.78 + 0.24x, with estimated standard deviation 1.0 for the random effect.

17. For the other group, sample mean = .177 and sample variance = .442, also showing
evidence of overdispersion. The only significant difference is between whites and blacks.

25. In the multinomial log likelihood,

∑

ny1,...,yT log πy1,...,yT ,

one substitutes

πy1,...,yT =
q
∑

z=1

[
T
∏

t=1

P (Yt = yt | Z = z)]P (Z = z).

27. The null model falls on the boundary of the parameter space in which the weights
given the two components are (1, 0). For ordinary chi-squared distributions to apply, the
parameter in the null must fall in the interior of the parameter space.

29. When θ = 0, the beta distribution is degenerate at µ and formula (13.9) simplifies

to
(

n
y

)

µy(1− µ)n−y.
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31. E(Yit) = πi = E(Y 2
it), so Var(Yit) = πi−π2

i . Also, Cov(YitYis) = Corr(YitYis)
√

[Var(Yit)][Var(Yis)] =

ρπi(1− πi). Then,

Var(
∑

i

Yit) =
∑

i

Var(Yit+2
∑

i<j

Cov(Yit, Yis) = niπi(1−πi)+ni(ni−1)ρπi(1−πi) = niπi(1−πi)[1+(ni−1)ρ].

33. A binary response must have variance equal to µi(1− µi) (See, e.g., Problem 13.31),
which implies φ = 1 when ni = 1.

37. The likelihood is proportional to

(

k

µ+ k

)nk( µ

µ+ k

)

∑

i
yi

The log likelihood depends on µ through

−nk log(µ+ k) +
∑

i

yi[logµ− log(µ+ k)]

Differentiate with respect to µ, set equal to 0, and solve for µ yields µ̂ = ȳ.

45. With a normally distributed random effect, with positive probability the Poisson
mean (conditional on the random effect) is negative.

Chapter 14

5. Using the delta method, the asymptotic variance is (1 − 2π)2/4n. This vanishes
when π= 1/2, and the convergence of the estimated standard deviation to the true value
is then faster than the usual rate.

7a. By the delta method with the square root function,
√
n[
√

Tn/n −√
µ] is asymptot-

ically normal with mean 0 and variance (1/2
√
µ)2(µ), or in other words

√
Tn − √

nµ is
asymptotically N(0, 1/4).

b. If g(p) = arcsin(
√
p), then g′(p) = (1/

√
1− p)(1/2

√
p) = 1/2

√

p(1− p), and the result
follows using the delta method. Ordinary least squares assumes constant variance.

13. The vector of partial derivatives, evaluated at the parameter value, is zero. Hence
the asymptotic normal distribution is degenerate, having a variance of zero. Using the
second-order terms in the Taylor expansion yields an asymptotic chi-squared distribu-
tion.

17.a. The vector ∂π/∂θ equals (2θ, 1−2θ, 1−2θ,−2(1−θ))′. Multiplying this by the diag-
onal matrix with elements [1/θ, [θ(1−θ)]−1/2, [θ(1−θ)]−1/2, 1/(1−θ)] on the main diagonal
shows that A is the 4×1 vector A = [2, (1−2θ)/[θ(1−θ)]1/2, (1−2θ)/[θ(1−θ)]1/2,−2]′.
b. From Problem 3.31, recall that θ̂ = (p1++p+1)/2. Since A

′A = 8+(1−2θ)2/θ(1−θ),
the asymptotic variance of θ̂ is (A′A)−1/n = 1/n[8+(1−2θ)2/θ(1−θ)], which simplifies
to θ(1 − θ)/2n. This is maximized when θ = .5, in which case the asymptotic variance
is 1/8n. When θ = 0, then p1+ = p+1 = 0 with probability 1, so θ̂ = 0 with probability
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1, and the asymptotic variance is 0. When θ = 1, θ̂ = 1 with probability 1, and the
asymptotic variance is also 0. In summary, the asymptotic normality of θ̂ applies for
0 < θ < 1, that is when θ is not on the boundary of the parameter space. This is one of
the regularity conditions that is assumed in deriving results about asymptotic distribu-
tions.
c. The asymptotic covariance matrix is (∂π/∂θ)(A′A)−1(∂π/∂θ)′ = [θ(1− θ)/2][2θ, 1−
2θ, 1− 2θ,−2(1− θ)]′[2θ, 1− 2θ, 1− 2θ,−2(1− θ)].
d. df = N − t− 1 = 4− 1− 1 = 2.
(Note: This model is equivalent to the Poisson loglinear model logmij = µ+λi+λj ; that
is, there is independence plus each marginal distribution has the same parameters, which
gives marginal homogeneity. There are four cells and two parameters in the model, so the
usual df formula for loglinear models tells us df = 2, 1 higher than for the independence
model. This is a parsimonious special case of the independence model.)

23. X2 and G2 necessarily take very similar values when (1) the model holds, (2) the
sample size n is large, and (3) the number of cells N is small compared to the sample size
n, so that the expected frequencies in the cells are relatively large.

Chapter 15

17a. From Sec. 15.2.1, the Bayes estimator is (n1+α)/(n+α+β), in which α > 0, β > 0.
No proper prior leads to the ML estimate, n1/n.
b. The ML estimator is the limit of Bayes estimators as α and β both converge to 0.
c. This happens with the improper prior, proportional to [π1(1 − π1)]

−1, which we get
from the beta density by taking the improper settings α = β = 0.


