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Preface

This book is intended as a textbook (or reference) for a full year
Master’s level (or senior level undergraduate) course in mathemat-
ical statistics aimed at students in statistics, biostatistics, and re-
lated fields.

This book grew from lecture notes and handouts that I developed
for a course in mathematical statistics that I first taught in 1992-
93 at the University of Toronto. In teaching this course, I realized
that many students viewed the course as largely irrelevant to their
education. To me this seemed strange since much of mathematical
statistics is directly relevant to statistical practice; for example,
what statistician has not used a χ2 approximation at some point
in their life? At the same time, I could also sympathize with
their point of view. To a student first encountering the subject,
the traditional syllabus of a mathematical statistics course does
seem heavily weighed down with optimality theory of various
flavours that was developed in the 1940s and 1950s; while this is
interesting (and certainly important), it does leave the impression
that mathematical statistics has little to offer beyond some nice
mathematics.

My main objective in writing this book was to provide a set of
useful tools that would allow students to understand the theoretical
underpinnings of statistical methodology. At the same time, I
wanted to be as mathematically rigorous as possible within certain
constraints. I have devoted a chapter to convergence for sequences
of random variables (and random vectors) since, for better or for
worse, these concepts play an important role in the analysis of
estimation and other inferential procedures in statistics. I have
concentrated on inferential procedures within the framework of
parametric models; however, in recognition of the fact that models
are typically misspecified, estimation is also viewed from a non-
parametric perspective by considering estimation of functional
parameters (or statistical functionals, as they are often called).
This book also places greater emphasis on “classical” (that is,
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Frequentist) methodology than it does on Bayesian methodology
although this should not be interpreted as a claim of superiority
for the Frequentist approach.

The mathematical background necessary for this book is multi-
variate calculus and linear algebra; some exposure to real analysis
(in particular, ε-δ proofs) is also useful but not absolutely necessary.
I have tried to make the book as self-contained as possible although
I have also implicitly assumed that the reader has some familiarity
with basic probability theory and, more importantly, has had some
exposure to statistical methodology so as to provide some context
for this book.

In teaching a course based on drafts of this book, I found it very
useful to encourage the use of statistical software packages (such as
S-Plus and SAS) as well as other mathematical software packages
(such as MATLAB, Maple, and Mathematica). When used appro-
priately, these packages can greatly enhance the effectiveness of this
course by increasing the scope of problems that can be considered
by students. To facilitate this to some extent, I have included a few
sections on computational issues, in particular, generating random
variables and numerical computation of estimates. Moreover, some
of the problems given in the book are most easily approached using
some sort of mathematical or statistical software.

Unlike many other textbooks in mathematical statistics, I decided
not to include tables of the commonly-used distributions in statis-
tics (Normal, χ2, and so on). My reason for this is simple; most
readers will have access to some statistical software that renders
obsolete even the most detailed set of tables.

My first exposure to mathematical statistics was as a graduate
student at the University of Washington where I was fortunate to
have a number of outstanding and inspiring teachers, including An-
dreas Buja, Peter Guttorp, Doug Martin, Ron Pyke, Paul Sampson,
and Jon Wellner. Since then, I have benefited from the collective
wisdom of many, including David Andrews, Richard Davis, Andrey
Feuerverger, Nancy Heckman, Stephan Morgenthaler, John Petkau,
Peter Phillips, Nancy Reid, Sid Resnick, Rob Tibshirani, and Jim
Zidek.

In preparing successive drafts of this book, I received many useful
comments from anonymous reviewers and from students at the
University of Toronto. I would like to acknowledge the assistance
of the editors at Chapman and Hall/CRC Press in completing this
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project. A particular vote of thanks is due Stephanie Harding for
her tenacity in getting me to finish this book. I would also like to
acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada.

Last, but not least, I would like to thank my wife Luisa for her
patience and her gentle but constructive criticisms of various drafts
of this book.

Keith Knight
Toronto
September, 1999
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CHAPTER 1

Introduction to Probability

1.1 Random experiments

In simple terms, a random experiment (or experiment) is a process
whose outcome is uncertain. It is often useful to think of this
process as being repeatable but, in practice, this is seldom the
case. For example, a football game may be regarded as a random
experiment in the sense that the outcome of the game is uncertain
a priori; however, this experiment (the game) is not repeatable as
we surely could not guarantee that each game would be played
under uniform conditions. Nonetheless, it is often plausible that a
given random experiment is conceptually repeatable; for example,
we might be willing to assume that team A would win 40% of
its games against team B under a certain set of conditions. This
“conceptual repeatability” is important as it allows us to interpret
probabilities in terms of long-run frequencies.

For a given random experiment, we can define the following
terms:

• The sample space is the set of all possible outcomes of a random
experiment. We will denote the sample space by Ω.

• A subset of the sample space Ω is called an event. We say that an
event A occurs if the true outcome ω lies in A (that is, ω ∈ A).
An event consisting of no outcomes is called the empty set and
will be denoted by ∅.

Operations on events

Let A and B be arbitrary events defined on a sample space Ω.

• The union of A and B (denoted by A∪B) consists of all outcomes
that belong to at least one of A and B. That is, ω ∈ A ∪ B if,
and only if, ω ∈ A or ω ∈ B.

• The intersection of A and B (denoted by A ∩ B) consists of all
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outcomes that belong to both A and B. That is, ω ∈ A ∩ B if,
and only if, ω ∈ A and ω ∈ B.

• The complement of A (denoted by Ac) consists of all outcomes
in Ω that do not belong to A. That is, ω ∈ Ac if, and only if,
ω �∈ A.

• A and B are disjoint (or mutually exclusive) if A ∩B = ∅.
We can also derive the following properties involving union,

intersection and complement.
• A ∪B ∪ C = (A ∪B) ∪ C = A ∪ (B ∪ C).
A ∩B ∩ C = (A ∩B) ∩ C = A ∩ (B ∩ C).

• A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

• (A ∪B)c = Ac ∩Bc.
(A ∩B)c = Ac ∪Bc.

1.2 Probability measures

Given a random experiment with a sample space Ω, we would like to
define a function or measure P (·) on the subsets (events) of Ω that
assigns a real number to each event; this number will represent the
probability that a given event occurs. Clearly, these probabilities
must satisfy certain “consistency” conditions; for example, if A ⊂ B
then we should have P (A) ≤ P (B). However, from a mathematical
point of view, some care must be taken in defining probability,
and there have been a number of axiomatic approaches to defining
probability. The approach that we will use in this book is due
to Kolmogorov (1933) and effectively defines probability from a
measure theoretic point of view; see Billingsley (1995) for more
technical details. In fact, Kolmogorov’s treatment was facilitated
by the ideas of von Mises (1931) who introduced the notion of a
sample space.
DEFINITION. P (·) is called a probability measure if the follow-

ing axioms are satisfied:

1. P (A) ≥ 0 for any event A.
2. P (Ω) = 1.
3. If A1, A2, · · · are disjoint events then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).
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There are a number of ways of interpreting probabilities. Perhaps
the easiest to conceptualize is the interpretation of probabilities as
long-run frequencies from a sequence of repeatable experiments. If
we assume that a given random experiment is infinitely repeatable
then we can interpret P (A) as the relative frequency of occurrences
of the event A; that is, if the experiment is repeated N times (where
N is large) and A occurs k times then P (A) ≈ k/N . However,
other equally valid interpretations and axiomatic definitions of
probability are possible. For example, P (A) could be defined to be
a person’s degree of belief in the occurrence of the event A; that is,
if B is judged more likely to occur than A, we have P (B) ≥ P (A).
This type of probability is sometimes called subjective probability
or personal probability (Savage, 1972).

Consequences of the axioms

The three axioms given above allow us to derive a number of simple
but useful properties of probability measures.

PROPOSITION 1.1 The following are consequence of the ax-
ioms of probability:
(a) P (Ac) = 1− P (A).
(b) P (A ∩B) ≤ min(P (A), P (B)).
(c) P (A ∪B) = P (A) + P (B)− P (A ∩B).
(d) Suppose that {An} is a nested, increasing sequence of events
(in the sense that An ⊂ An+1) and let A =

⋃∞
k=1 Ak. Then

P (An) → P (A) as n→∞.
(e) Let A1, A2, · · · be any events. Then

P

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

P (Ak).

Proof. (a) Since Ac ∪ A = Ω and A and Ac are disjoint, it follows
that

1 = P (Ω) = P (A ∪Ac) = P (A) + P (Ac)

and so P (Ac) = 1− P (A).
(b) B = (B ∩ A) ∪ (B ∩ Ac). Since B ∩ A and B ∩ Ac are disjoint,
we have

P (B) = P (B ∩A) + P (B ∩Ac) ≥ P (B ∩A).

A similar argument gives P (A) ≥ P (A ∩B).

c© 2000 by Chapman & Hall/CRC



(c) A∪B = A∪ (B ∩Ac). Since A and B ∩Ac are disjoint, we have

P (A ∪B) = P (A) + P (B ∩Ac)

and
P (B ∩Ac) = P (B)− P (B ∩A).

Thus P (A ∪B) = P (A) + P (B)− P (A ∩B).
(d) Define B1 = A1 and Bk = Ak∩Ac

k−1 for k ≥ 2. Then B1, B2, · · ·
are disjoint and

An =
n⋃

k=1

Bk and A =
∞⋃
k=1

Bk.

Hence

P (A) =
∞∑
k=1

P (Bk) = lim
n→∞

n∑
k=1

P (Bk) = lim
n→∞

P (An).

(e) First, it follows from (c) that

P (A1 ∪A2) ≤ P (A1) + P (A2)

and so for any n <∞, we have

P

(
n⋃

k=1

Ak

)
≤

n∑
k=1

P (Ak).

Now let Bn =
⋃n
k=1 Ak, B =

⋃∞
k=1 Ak and note that Bn ⊂ Bn+1.

Thus applying (d),

P (B) = lim
n→∞

P (Bn) ≤ lim
n→∞

n∑
k=1

P (Ak) =
∞∑
k=1

P (Ak)

which completes the proof.

EXAMPLE 1.1: For any events A1, A2, and A3, we have

P (A1 ∪A2 ∪A3) =
P (A1) + P (A2) + P (A3)
−P (A1 ∩A2)− P (A1 ∩A3)− P (A2 ∩A3)

+P (A1 ∩A2 ∩A3).

To see this, note that

P (A1 ∪A2 ∪A3) = P (A1 ∪A2) + P (A3)− P (A3 ∩ (A1 ∪A2))
c© 2000 by Chapman & Hall/CRC



Since A3 ∩ (A1 ∪A2) = (A1 ∩A3) ∪ (A2 ∩A3), it follows that

P (A3 ∩ (A1 ∪A2)) = P (A1 ∩A3) + P (A2 ∩A3)− P (A1 ∩A2 ∩A3)

and the conclusion follows since P (A1 ∪ A2) = P (A1) + P (A2) −
P (A1 ∩A2). ✸

EXAMPLE 1.2: Suppose that A1, A2, · · · is a collection of events.
Then

P

( ∞⋂
i=1

Ai

)
≥ 1−

∞∑
i=1

P (Ac
i ).

To see this, note that

P

( ∞⋂
i=1

Ai

)
= 1− P

( ∞⋃
i=1

Ac
i

)

≥ 1−
∞∑
i=1

P (Ac
i ).

This inequality is known as Bonferroni’s inequality. ✸

Finite sample spaces

When an experiment has a finite sample space, it is sometimes
possible to assume that each outcome is equally likely. That is, if

Ω = {ω1, ω2, · · · , ωN}

then we may be able to assume that P (ωk) = 1/N for k = 1, · · · , N .
This assumption is particularly appropriate in games of chance (for
example, card games and lotteries). However, some care should be
taken before assuming equally likely outcomes.

In the event of equally likely outcomes, for any event A we have

P (A) =
number of outcomes in A

N
.

In some cases, it may be possible to enumerate all possible out-
comes, but in general such enumeration is physically impossible;
for example, enumerating all possible 5 card poker hands dealt
from a deck of 52 cards would take several months under the most
favourable conditions. Thus we need to develop methods for count-
ing the number of outcomes in a given event A or the sample space
itself.
c© 2000 by Chapman & Hall/CRC



Many experiments can be broken down into a sequence of sub-
experiments for which the number of outcomes is easily counted.
For example, consider dealing 5 cards from a deck of 52 cards.
This particular “experiment” is a sequence of 5 sub-experiments
corresponding to the 5 cards being dealt.

EXAMPLE 1.3: Consider a simple experiment that consists of
rolling a pair of dice. The outcomes can be denoted by an ordered
pair (i, j) with i representing the outcome of the first die and j
representing the outcome of the second; these can be thought of
as the outcome of two sub-experiments. We can then represent the
sample space by

Ω = {(1, 1), (1, 2), · · · , (1, 6), (2, 1), · · · , (2, 6), · · · , (6, 1), · · · , (6, 6)}.
For each outcome of the first die, there are 6 outcomes of the second
die. Since there are 6 outcomes for the first die, it follows that the
sample space has 6× 6 = 36 outcomes. ✸

Example 1.3 suggests that if an experiment consists of a sequence
of sub-experiments E1, · · · , Ek having, respectively, n1, · · · , nk possi-
ble outcomes then the total number of outcomes is N = n1×· · ·×nk.
However, some care should be taken in defining the numbers
n1, · · · , nk. In many cases, the outcome of sub-experiment Ei de-
pends on the outcome of the previous i − 1 sub-experiments. For
example, if we are dealing 5 cards from a deck of 52 cards, once the
first card is dealt, there are only 51 possible outcomes for the second
card dealt; however, there are in fact 52 possible outcomes for the
second card if we ignore the outcome of the first card. In defining ni
for i ≥ 2, we must take into account the outcomes of the previous
i − 1 sub-experiments. A general rule for counting the number of
outcomes in an experiment can be described as follows: Suppose a
random experiment E consists of sub-experiments E1, · · · , Ek where
the outcome of sub-experiment Ei may depend on the outcomes of
sub-experiments E1, · · · , Ei−1 but the number of outcomes of Ei is
ni independent of the outcomes of E1, · · · , Ei−1. Then the number
of possible outcomes of E is

N = n1 × · · · × nk.

This is sometimes called the product rule for determining the
number of outcomes in the sample space.

EXAMPLE 1.4: Consider an urn consisting of the integers 0 to
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9. We will select three integers from the urn to form a three digit
number. The integers can be selected in two possible ways: “with
replacement” or “without replacement”. If the integers are selected
with replacement, an integer is replaced in the urn after it has been
selected and so can be selected again in subsequent draws. On the
other hand, if the integers are selected without replacement, an
integer is removed from the urn after its selection and therefore
cannot be selected subsequently. If we draw the integers with
replacement, we have 10 × 10 × 10 = 1000 possible three digit
numbers since we have 10 choices at each stage. On the other hand,
if the selection is done without replacement, we have 10×9×8 = 720
possible sequences since we have removed one integer from the urn
at the second stage and two integers at the third stage. ✸

In many cases, the outcomes of an experiment can be represented
as sets of k elements drawn without replacement from a set of n
elements; such sets are called either permutations or combinations
depending on whether we distinguish between distinct orderings
of the elements of the sets. Using the product rule stated above,
we can determine the number of permutations and combinations.
Consider a set consisting of n distinct elements; for convenience, we
will represent this set by S = {1, 2, · · · , n}. Suppose we look at all
sequences of k ≤ n elements drawn (without replacement) from S;
each of these sequences is called a permutation of length k from S.
Using the product rule, it follows that the number of permutations
of length k from S is

n× (n− 1)× · · · × (n− k + 1) =
n!

(n− k)!
.

We can also consider all subsets of size k in S; such a subset is called
a combination of size k. A combination differs from a permutation in
the sense that the ordering of elements is unimportant; that is, the
sets {1, 2, 3}, {2, 1, 3} and {3, 1, 2} represent the same combination
but three distinct permutations. Note that for each subset (or
combination) of size k, we have k! permutations of length k and
so the number of combinations of size k in S is

n!
k!(n− k)!

=

(
n

k

)
.

We can also think of a combination of size k from S as splitting S
into two disjoint subsets, one of size k and one of size n− k. Thus
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(n
k

)
is the number of ways of splitting S into two disjoint subsets of

size n and n − k respectively. We can extend the argument above
to the problem of finding the number of ways of splitting S into
m disjoint subsets of size k1, · · · , km where k1 + · · ·+ km = n; this
number is simply

n!
k1! · · · km!

=
(

n
k1, · · · , km

)
.

The quantities defined above are often called binomial and
multinomial coefficients, respectively, due to their presence in the
following theorems.

THEOREM 1.2 (Binomial Theorem) If n is a nonnegative
integer and a, b real numbers then

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

THEOREM 1.3 (Multinomial Theorem) If n is a nonnega-
tive integer and a1, · · · , am real numbers then

(a1 + a2 + · · ·+ am)n =
∑

k1+···+km=n

(
n

k1, · · · , km

)
ak1

1 · · · akm
m ;

the sum above extends over all nonnegative integers k1, · · · , km
whose sum is n.

EXAMPLE 1.5: Lotto games typically involve “random” select-
ing k numbers from the integers 1 through n. For example, in the
Canadian Lotto 6/49 game, 6 numbers are chosen from the num-
bers 1 through 49; prizes are awarded if a player selects 3 or more
of the 6 numbers. (A 7th “bonus” is also drawn but does not affect
the probability calculations given below.) The order of selection of
the numbers is not important so the sample space for this “ex-
periment” consists of all combinations of 6 numbers from the set
S = {1, · · · , 49}; there are

(49
6

)
= 13983816 such combinations. As-

suming that each outcome is equally likely, we can determine the
probability that a given player who has selected 6 numbers has
won a prize. Suppose we want to determine the probability that
a player selects k numbers correctly. By choosing 6 numbers, the
player has split S into two disjoint subsets one of which consists
of the player’s 6 numbers and another consisting of the 43 other
c© 2000 by Chapman & Hall/CRC



numbers. Selecting k numbers correctly means that the outcome of
the draw consisted of k of the player’s 6 numbers while the other
6− k numbers were among the 43 he did not select. There are

(6
k

)
combinations of k numbers from the player’s selected 6 and

( 43
6−k

)
combinations of 6−k numbers from his unselected 43. Applying the
product rule, we find that the number of outcomes with exactly k
of the selected numbers is

N(k) =

(
6
k

)(
43

6− k

)

and so
p(k) = P (k correct numbers) =

N(k)
13983816

.

Substituting for k, we obtain

p(3) = 1.77× 10−2 ≈ 1/57,
p(4) = 9.69× 10−4 ≈ 1/1032,
p(5) = 1.84× 10−5 ≈ 1/54201

and p(6) = 1/13983816 ≈ 7.15× 10−8.

The number of correct selections is an example of a random
variable, which will be formally defined in section 1.4. ✸

1.3 Conditional probability and independence

So far in defining probabilities, we have assumed no information
over and above that available from specifying the sample space and
the probability measure on this space. However, knowledge that
a particular event has occurred will change our assessment of the
probabilities of other events.

DEFINITION. Suppose that A and B are events defined on some
sample space Ω. If P (B) > 0 then

P (A|B) =
P (A ∩B)
P (B)

is called the conditional probability of A given B.

The restriction to events B with P (B) > 0 in the definition of
conditional probability may not seem too restrictive at this point
in the discussion. However, as we will see later, it does often make
sense to consider P (A|B) where P (B) = 0 and B �= ∅. One possible
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approach to defining conditional probability in this case would be
to take a sequence of events {Bn} decreasing to B (in the sense
that Bn+1 ⊂ Bn and B =

⋂∞
n=1 Bn) such that P (Bn) > 0 for all n.

We could define P (A|B) by

P (A|B) = lim
n→∞

P (A ∩Bn)
P (Bn)

.

However, it is not clear that the limit (if indeed it exists) is
independent of the sequence of events {Bn}. A more fundamental
problem is the fact that this definition fails the most basic test.
Suppose that A = B with P (B) = 0; any reasonable definition of
conditional probability would seem to give P (A|B) = 1. However,
for any sequence of events {Bn} with P (Bn) > 0 for all n, we have
P (A|Bn) = 0 and so P (A|Bn) → 0.

It is easy to see that, for a fixed B, P (·|B) satisfies the axioms of
a probability measure and thus shares the same properties as any
other probability measure.

Given P (A|B), we can write P (A ∩ B) = P (B)P (A|B). This
rearrangement is important because in many situations, it is
convenient to specify conditional probabilities and from these derive
probabilities of given events. For example, as we mentioned earlier,
many experiments can be thought of occurring as a finite (or
countable) number of stages with the outcome of the k-th stage
dependent (or conditional) on the outcome of the previous k − 1
stages. If Ak is some event that refers specifically to the k-th stage
of the experiment, we can write

P (A1 ∩ · · · ∩An) = P (A1 ∩ · · · ∩An−1)P (An|A1 ∩ · · · ∩An−1)
= P (A1)P (A2|A1)× · · ·

×P (An|A1 ∩ · · · ∩An−1).

The following classic example (the “birthday problem”) illustrates
the application of this formula.

EXAMPLE 1.6: Suppose a room is filled with n people who
represent a random sample from the population as a whole. What
is the probability that at least two of the people in the room
share the same birthday? To answer this question, we must first
make a simplifying assumption: we will assume that birthdays are
uniformly distributed over the 365 days of a non-leap year.

Define Bn to be the event where no two people (out of n) share
the same birthday; the probability we want is simply P (Bc

n) =
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1− P (Bn). In order to evaluate P (Bn), it is convenient to think of
the people entering the room one at a time; we can then define the
events

A2 = 2nd person’s birthday is different from 1st person’s
A3 = 3rd person’s birthday is different from previous two

...
...

An = n-th person’s birthday is different from previous n− 1.

Clearly now, Bn = A2 ∩ · · · ∩An and so

P (A2)P (A3|A2) · · ·P (An|A2 ∩ · · · ∩An−1).

From our assumption of uniformity of birthdays, it follows that
P (A2) = 364/365, P (A3|A2) = 363/365, P (A4|A2 ∩A3) = 362/365
and, in general,

P (Ak|A2 ∩ · · · ∩Ak−1) =
366− k

365
since the occurrence of the event A2 ∩ · · · ∩ Ak−1 implies that the
first k − 1 people in the room have k − 1 distinct birthdays and
hence there are 365 − (k − 1) = 366 − k “unclaimed” birthdays.
Thus

P (Bn) =
364
365

× 363
365

× · · · × 366− n

365
.

Substituting into the expression above, it is straightforward to
evaluate the probability of at least one match, namely P (Bc

n). For
n = 5, P (Bc

n) = 0.027 while for n = 30, P (Bc
n) = 0.706 and n = 70,

P (Bc
n) = 0.999; in fact, it is easy to verify that P (Bc

n) ≥ 0.5 for
n ≥ 23, a fact that is somewhat counterintuitive to many people.
A useful approximation is

P (Bc
n) ≈ 1− exp

(
−n(n− 1)

730

)
,

which is valid if n/365 is small. ✸

Bayes’ Theorem

As mentioned above, conditional probabilities are often naturally
specified by the problem at hand. In many problems, we are given
P (A|B1), · · · , P (A|Bk) where B1, · · · , Bk are disjoint events whose
union is the sample space; however, we would like to compute
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P (Bj |A) for some Bj . Provided P (A) > 0, we have

P (Bj |A) =
P (A ∩Bj)

P (A)
.

The following result gives a simple formula for P (A).

PROPOSITION 1.4 (Law of total probability)
If B1, B2, · · · are disjoint events with P (Bk) > 0 for all k and⋃∞
k=1 Bk = Ω then

P (A) =
∞∑
k=1

P (Bk)P (A|Bk).

Proof. Since A = A ∩ (
⋃∞
k=1 Bk), we have

P (A) = P

(
A ∩

( ∞⋃
k=1

Bk

))

= P

( ∞⋃
k=1

(A ∩Bk)

)

=
∞∑
k=1

P (A ∩Bk)

=
∞∑
k=1

P (Bk)P (A|Bk)

since A ∩B1, A ∩B2, · · · are disjoint.

A simple corollary of the law of total probability is Bayes’
Theorem.

PROPOSITION 1.5 (Bayes’ Theorem) Suppose that B1, B2,
B3, · · · are disjoint sets with P (Bk) > 0 for all k and

⋃∞
k=1 Bk = Ω.

Then for any event A,

P (Bj |A) =
P (Bj)P (A|Bj)∑∞
k=1 P (Bk)P (A|Bk)

.

Proof. By definition, P (Bj |A) = P (A∩Bj)/P (A) and P (A∩Bj) =
P (Bj)P (A|Bj). The conclusion follows by applying the law of total
probability to P (A).

EXAMPLE 1.7: Suppose that the incidence of a certain disease
in a population is 0.001. A diagnostic test for this disease exists

c© 2000 by Chapman & Hall/CRC



but has a false positive rate of 0.05 and a false negative rate of
0.01; that is, 5% of tests on non-diseased people will indicate the
presence of the disease while 1% of tests on people with the disease
will not indicate the presence of the disease. If a person drawn at
random from the population tests positive, what is the probability
that that person has the disease?

Define the event D to indicate the presence of disease and A
to indicate a positive test for the disease. Then P (D) = 0.001,
P (A|Dc) = 0.05 and P (Ac|D) = 0.01. By Bayes’ Theorem, we have

P (D|A) =
P (D)P (A|D)

P (D)P (A|D) + P (Dc)P (A|Dc)

=
(0.001)(0.99)

(0.001)(0.99) + (0.999)(0.05)
= 0.0194.

This example illustrates the potential danger of mandatory testing
in a population where the false positive rate exceeds the incidence
of the disease; this danger may be particularly acute in situations
where a positive test carries a significant social stigma. ✸

EXAMPLE 1.8: In epidemiology, one is often interested in
measuring the relative risk of disease in one group relative to
another. (For example, we might be interested in the relative risk
of lung cancer in smokers compared to non-smokers.) If we have
two distinct groups, A and B, then the relative risk of disease in
group A compared to group B is defined to be

rr =
incidence of disease in group A

incidence of disease in group B
.

The incidences of disease in groups A and B can be thought of
as the conditional probabilities P (disease|A) and P (disease|B). If
the overall incidence of disease in the population (P (disease)) is
small then the relative risk can be difficult to estimate if one draws
samples from groups A and B. However, using Bayes’ Theorem and
a little algebra, one obtains

rr =
P (A|disease)[θP (B|disease) + (1− θ)P (B|disease-free)]
P (B|disease)[θP (A|disease) + (1− θ)P (A|disease-free)]

c© 2000 by Chapman & Hall/CRC



where θ = P (disease), the overall incidence of disease in the
population. If θ is close to 0 then

rr ≈ P (A|disease)P (B|disease-free)
P (B|disease)P (A|disease-free)

.

This suggests that the relative risk can be estimated by drawing
samples not from the groups A and B but rather from the “disease”
and “disease-free” portions of the population; even though the
absolute number of subjects in the “disease” group is small, they
can typically be easily sampled (since they are usually undergoing
treatment for their illness). Such studies are know as case-control
studies and are very common in epidemiology. ✸

Independence

In discussing conditional probability, we noted that our assessment
of the probability of an event A may change if we have knowledge
about the occurrence of another event B; if our assessment of
the probability of A changes then we can say that there is some
dependence between A and B. In some cases, this knowledge
will not change our assessment of the probability of A, that is,
P (A|B) = P (A). In this case, we say that the events A and B are
independent.

Since we have defined P (A|B) only for events B with P (B) > 0,
the “definition” of independence given in the previous paragraph
is not completely satisfactory as it does not allow us to deal with
events that have probability 0. However, if both P (A) and P (B)
are positive then this definition is consistent in the sense that
P (A|B) = P (A) is equivalent to P (B|A) = P (B). Also note
that if P (A|B) = P (A) then P (A ∩ B) = P (A)P (B); since the
probabilities in the latter equality are always well-defined, we will
use it as a formal definition of independence when at least one of
P (A) or P (B) is positive.

DEFINITION. Events A and B are said to be independent if
P (A ∩B) = P (A)P (B).

Some care must be taken in interpreting independence of A and
B when P (A) or P (B) is equal to 0 or 1. For example, if B = Ω
then A ∩ B = A and hence P (A ∩ B) = P (A) = P (A)P (B) which
implies that A is always independent of the sample space. This
is somewhat counterintuitive since in this case, it follows that the
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event A implies the event B = Ω. This would suggest that A and
B are independent but intuitively A should not be independent of
the sample space. The following example illustrates the problem.

EXAMPLE 1.9: Suppose that Ω = [0, 1] and that probabilities
of events are assigned so that if A = [a, b] (with 0 ≤ a ≤ b ≤ 1),
P (A) = b−a. (It turns out that this simple specification is sufficient
to define probabilities for virtually all events of interest on Ω.) From
this, it follows that for events C consisting of a single outcome
(that is, C = {c} where c is a real number), we have P (C) = 0.
Let A = {1/4, 3/4} and B = {3/4} so P (A) = P (B) = 0; clearly,
knowing that the outcome of the experiment belongs to A gives
us fairly significant information about the occurrence of B. In
fact, heuristic considerations suggest that if A is known to have
occurred then the two outcomes of A are equally likely, in which
case P (B|A) = 1/2 �= P (B). (In any event, it seems reasonable
that P (B|A) > 0.) ✸

We can extend our notion of independence to a finite or countably
infinite collection of events. It is tempting to define independence
of A1, · · · , An to mean that the probability of the intersection of
these events equals the product of their probabilities. However, this
definition is defective in the sense that if P (Aj) = 0 (for some
j) then P (A1 ∩ · · · ∩ An) = 0 regardless of the other Aj ’s; this
would mean, for example, that independence of A1, · · · , An does
not imply independence of any given pair of events, which seems
somewhat illogical. Therefore, in defining independence of a finite
or countably infinite collection of events, we look at all possible
finite intersections.

DEFINITION. A1, · · · , An (or A1, A2, · · ·) are (mutually) inde-
pendent events if for any finite sub-collection Ai1 , · · · , Aik ,

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) =
k∏

j=1

P (Aij ).

Thus if A1, · · · , An are independent then Ai is independent of
Aj for i �= j; that is, mutual independence implies pairwise
independence. However, the converse is not true as the following
example indicates.

EXAMPLE 1.10: Consider an experiment with the following
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sample space

Ω = {abc, bac, cab, bca, acb, cba, aaa, bbb, ccc}

where each outcome is equally likely. Define events

Ak = a in k-th position (for k = 1, 2, 3).

It is easy to see that P (Ak) = 1/3 for k = 1, 2, 3 and P (Aj ∩Ak) =
1/9 for j �= k; thus Aj and Ak are independent for all j �= k.
However, P (A1 ∩A2 ∩A3) = 1/9 �= 1/27 and so A1, A2 and A3 are
not independent. This example shows that pairwise independence
does not imply mutual independence. ✸

1.4 Random variables

Consider an experiment where a coin is tossed 20 times. We can
represent the sample space as the sets of all 220 ≈ 106 sequences of
heads and tails:

Ω = {HH · · ·H,THH · · ·H,HTH · · ·H, · · · , TT · · ·T}

For such experiments, we are usually not interested in every event
defined on Ω but rather just those events involving, for example, the
number of heads in the 20 tosses. In this case, we could “redefine”
to be the set of all possible values of the number of heads:

Ω′ = {0, 1, 2, · · · , 20}

Note that each outcome ω′ ∈ Ω′ corresponds to an event defined
on Ω; for example, the outcome {0} ∈ Ω′ corresponds to the single
outcome {HH · · ·H} ∈ Ω while the outcome {1} ∈ Ω′ corresponds
to the event {TH · · ·H,HTH · · ·H, · · · , H · · ·HT}. Thus we can
define a function X mapping Ω to Ω′ that counts the number of
heads in 20 tosses of the coin; such a function is called a random
variable.
DEFINITION. A random variable X is a function that maps the

sample space to the real line; that is, for each ω ∈ Ω, X(ω) is a
real number.

EXAMPLE 1.11: Consider an experiment where a coin is tossed
until the first heads comes up. The sample space for this experiment
can be represented as

Ω = {H,TH, TTH, TTTH, · · ·}
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where H and T represent heads and tails. We can define a random
variable X that counts the number of tails until the first heads:

X(H) = 0
X(TH) = 1

X(TTH) = 2

and so on. In this case, each value of the random variable X
corresponds to a single outcome in Ω. ✸

Random variables allow us, in some sense, to ignore the sample
space; more precisely, we can redefine the sample space to be the
range of a random variable or a collection of random variables.

Probability distributions

Suppose that X is a random variable defined on a sample space Ω.
If we define the event

[a ≤ X ≤ b] = {ω ∈ Ω : a ≤ X(ω) ≤ b} = A

then P (a ≤ X ≤ b) = P (A).

DEFINITION. Let X be a random variable (defined on some
sample space Ω). The distribution function of X is defined by

F (x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) .

(The distribution function is often referred to as the cumulative
distribution function.)

Distribution functions satisfy the following basic properties:
• If x ≤ y then F (x) ≤ F (y). (F is a non-decreasing function.)
• If y ↓ x then F (y) ↓ F (x). (F is a right-continuous function

although it is not necessarily a continuous function.)
• limx→−∞ F (x) = 0; limx→∞ F (x) = 1.

Figure 1.1 shows a generic distribution function on the interval
[0, 1]. Note that the distribution function has a jump at x = 0.25;
the height of this jump is the probability that the random variable
is equal to 0.25. The distribution function is also flat over [0.25, 0.5)
indicating that X can take no values in this interval.

If X has a distribution function F then knowledge of F (x) for
all x allows us to compute P (X ∈ A) for any given set A. It is
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Figure 1.1 A distribution function on the interval [0, 1].

important to note that we could also define the distribution function
to be P (X < x); this function would be left-continuous rather than
right-continuous.

Suppose that X is a random variable with distribution function
F . Then

• P (a < X ≤ b) = F (b)− F (a);

• P (X < a) = F (a−) = limx↑a F (x); (F (a−) is called the left-
hand limit of F at the point a; if F is continuous at a then
F (a−) = F (a).)

• P (X > a) = 1− F (a);

• P (X = a) = F (a)− F (a−). If F is continuous at a then

P (X = a) = 0.

These simple properties are useful for computing P (X ∈ A).
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Discrete random variables

DEFINITION. A random variable X is discrete if its range is
a finite or countably infinite set. That is, there exists a set
S = {s1, s2, · · ·} such that P (X ∈ S) = 1.

From the definition above, we can deduce that the probability
distribution of a discrete random variable is completely determined
by specifying P (X = x) for all x.

DEFINITION. The frequency function of a discrete random
variable X is defined by

f(x) = P (X = x).

The frequency function of a discrete random variable is known by
many other names: some examples are probability mass function,
probability function and density function. We will reserve the term
“density function” for continuous random variables.

Given the frequency function f(x), we can determine the distri-
bution function:

F (x) = P (X ≤ x) =
∑
t≤x

f(t).

Thus F (x) is a step function with jumps of height f(x1), f(x2), · · ·
occurring at the points x1, x2, · · ·. Likewise, we have

P (X ∈ A) =
∑
x∈A

f(x);

in the special case where A = (−∞,∞), we obtain

1 = P (−∞ < X <∞) =
∑

−∞<x<∞
f(x).

EXAMPLE 1.12: Consider an experiment consisting of indepen-
dent trials where each trial can result in one of two possible out-
comes (for example, success or failure). We will also assume that the
probability of success remains constant from trial to trial; we will
denote this probability by θ where 0 < θ < 1. Such an experiment
is sometimes referred to as Bernoulli trials.

We can define several random variables from a sequence of Ber-
noulli trials. For example, consider an experiment consisting of n
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Bernoulli trials. The sample space can be represented as all possible
2n sequences of successes (S) and failures (F ):

Ω = {F · · ·F, SF · · ·F, FSF · · ·F, · · · , S · · ·S}.

We can define a random variable X that counts the number of
“successes” in the n Bernoulli trials. To find the frequency function
of X, we need to
• determine the probability of each outcome in Ω, and
• count the number of outcomes with exactly x successes.
Let ω be any outcome consisting of x successes and n−x failures for
some specified x between 0 and n. By independence, it is easy to see
that P (ω) = θx(1− θ)n−x for each such outcome ω; these outcomes
are also disjoint events. To count the number of outcomes with x
successes, note that this number is exactly the same as the number
of combinations of size x from the set of integers {1, 2, · · · , n} which
is (

n

x

)
=

n!
x!(n− x)!

.

Thus it follows that the frequency function of X is given by

fX(x) = P (X = x)

=

(
n

x

)
θx(1− θ)n−x for x = 0, 1, · · · , n

X is said to have a Binomial distribution with parameters n and
θ; we will abbreviate this by X ∼ Bin(n, θ). When n = 1, X has a
Bernoulli distribution with parameter θ (X ∼ Bern(θ)).

Next consider an experiment consisting of a sequence of Bernoulli
trials, which is stopped as soon as r ≥ 1 successes are observed.
Thus all the outcomes in the sample space consist of exactly r
successes and x ≥ 0 failures. We can define a random variable
Y that counts the number of failures before the r successes are
observed. To derive the frequency function of Y , we note that if
Y = y (y ≥ 0) then there are r + y Bernoulli trials observed before
the termination of the experiment (r successes and y failures) and
the outcome of the (r + y)-th trial is necessarily a success; thus
we observed r − 1 successes in the first r + y − 1 trials. By the
independence of Bernoulli trials, we have

fY (y) = P (r − 1 S’s in first r + y − 1 trials)P (S on r-th trial) .
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Using the Binomial frequency function derived earlier, we have

P (r − 1 S’s in first r + y − 1 trials) =

(
r + y − 1
r − 1

)
θr−1(1− θ)y

and so

fY (y) =

(
r + y − 1
r − 1

)
θr(1− θ)y for y = 0, 1, 2, · · ·.

Note that since
(r+y−1

r−1

)
=

(r+y−1
y

)
, we can also write

fY (y) =

(
r + y − 1

y

)
θr(1− θ)y for y = 0, 1, 2, · · ·.

The random variable Y is said to have a Negative Binomial
distribution with parameters r and θ; we will sometimes write
Y ∼ NegBin(r, θ). When r = 1, we say that Y has a Geometric
distribution (with parameter θ) and write Y ∼ Geom(θ). ✸

EXAMPLE 1.13: Consider a finite population consisting of two
distinct groups (group A and group B). Assume that the total
population is N with M belonging to group A and the remaining
N −M belonging to group B. We draw a random sample of size
n(≤ N) without replacement from the population and define the
random variable

X = number of items from group A in the sample.

Using combinatorial arguments, it follows that the frequency
function of X is

f(x) =

(
M

x

)(
N

n

)/(
N −M

n− x

)
for x = max(0, n + M − N), · · · ,min(M,n). The range of X is
determined by the fact that we cannot have more than M group
A items in the sample nor more than N −M group B items. This
distribution is known as the Hypergeometric distribution. ✸

Continuous random variables

DEFINITION. A random variable X is said to be continuous if
its distribution function F (x) is continuous at every real number
x.
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Equivalently, we can say that X is a continuous random variable
if P (X = x) = 0 for all real numbers x. Thus we have

P (a ≤ X ≤ b) = P (a < X < b)

for a < b. The fact that P (X = x) = 0 for any x means that we
cannot usefully define a frequency function as we did for discrete
random variables; however, for many continuous distributions, we
can define an analogous function that is useful for probability
calculations.

DEFINITION. A continuous random variable X has a proba-
bility density function f(x) ≥ 0 if for −∞ < a < b < ∞, we
have

P (a ≤ X ≤ b) =
∫ b

a
f(x) dx.

It is important to note that density functions are not uniquely
determined; that is, given a density function f , it is always possible
to find another density function f∗ such that∫ b

a
f(x) dx =

∫ b

a
f∗(x) dx

for all a and b but for which f∗(x) and f(x) differ at a finite
number of points. This non-uniqueness does not pose problems, in
general, for probability calculations but can pose subtle problems
in certain statistical applications. If the distribution function F is
differentiable at x, we can take the density function f to be the
derivative of F at x: f(x) = F ′(x). For purposes of manipulation,
we can assume that f(x) = F ′(x) when the derivative is well-defined
and define f(x) arbitrarily when it is not.

EXAMPLE 1.14: Suppose that X is a continuous random
variable with density function

f(x) =
{

kx3 for 0 ≤ x ≤ 1
0 otherwise

where k is some positive constant. To determine the value of k, we
note that

1 = P (−∞ < X <∞) =
∫ ∞

−∞
f(x) dx.
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Since f(x) = 0 for x < 0 and for x > 0, we have

1 =
∫ ∞

−∞
f(x) dx =

∫ 1

0
kx3 dx =

k

4

and so k = 4. We can also determine the distribution function by
integrating the density from −∞ to any point x; we obtain

F (x) =


0 for x < 0
x4 for 0 ≤ x ≤ 1
1 for x > 1

.

As we noted above, we can modify the density function at a
countable number of points and still obtain the same distribution
function; for example, if we define

f∗(x) =
{

4x3 for 0 < x < 1
0 otherwise

then we obtain the same distribution function although f∗(x) differs
from f(x) at x = 0 and x = 1. ✸

Typically, it turns out to be more convenient to specify the
probability distribution of a continuous random variable via its
density function rather than via its distribution function. The
density function essentially describes the probability that X takes
a value in a “neighbourhood” of a point x (and thus it is analogous
to the frequency function of a discrete random variable); from the
definition above, we have

P (x ≤ X ≤ x + ∆) =
∫ x+∆

x
f(t) dx ≈ ∆f(x)

if ∆ is small and f is continuous at x. Thus f(x) > f(y) suggests
that we are more likely to see values of X close to x than values of
X close to y.

EXAMPLE 1.15: (Normal distribution) A random variable X
is said to have a Normal distribution with parameters µ and σ2

(X ∼ N(µ, σ2)) if its density is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

It is easy to see that f(x) has its maximum value at x = µ (which
is called the mode of the distribution). When µ = 0 and σ2 = 1,
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X is said to have a standard Normal distribution; we will denote
the distribution function of X ∼ N(0, 1) by

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−t2/2

)
dt.

If X ∼ N(µ, σ2) then its distribution function is

F (x) = Φ
(
x− µ

σ

)
.

Tables of Φ(x) can be found in many books, and Φ(x) can be
evaluated numerically using practically any statistical software
package. ✸

EXAMPLE 1.16: (Uniform distribution) Suppose that X is a
continuous random variable with density function

f(x) =
{

(b− a)−1 for a ≤ x ≤ b
0 otherwise .

We say that X has a Uniform distribution on the interval [a, b]; we
will sometimes write X ∼ Unif(a, b). Simple integration shows that
the distribution function is given by F (x) = (x − a)/(b − a) for
a ≤ x ≤ b (F (x) = 0 for x < a and F (x) = 1 for x > b). ✸

An important special case of the Uniform family of distributions
is the Uniform distribution on [0, 1]. The following two results are
quite useful.
THEOREM 1.6 Suppose that X is a continuous random variable
with distribution function F (x) and let U = F (X). Then U ∼
Unif(0, 1).
Proof. Since 0 ≤ F (x) ≤ 1, we have P (0 ≤ U ≤ 1) = 1. Thus
we need to show that P (U < y) = y for 0 < y < 1. (This, in
turn, implies that P (U ≤ y) = y.) For given y, choose x such that
F (x) = y; such an x exists since F is continuous. Then

P (U < y) = P (U < y,X < x) + P (U < y,X ≥ x).

Since F is a non-decreasing function, U = F (X) and y = F (x), it
follows that the event [X < x] is a subset of the event [U < y] and
so

P (U < y,X < x) = P (X < x) = F (x) = y.

Furthermore the event [U < y,X ≥ x] is the empty set and so
P (U < y,X ≥ x) = 0. Thus P (U < y) = y for 0 < y < 1.
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Figure 1.2 The inverse distribution function F−1(t) corresponding to F (x) in
Figure 1.1.

An easier proof of Theorem 1.6 can be obtained if we assume that
F is strictly increasing. In this case, we can define a continuous
inverse F−1 of F satisfying F (F−1(y)) = y for 0 < y < 1 and so

P (U ≤ y) = P (X ≤ F−1(y)) = F (F−1(y)) = y.

We can also invert this argument. If U ∼ Unif(0, 1) and F is a
strictly increasing continuous distribution function then the random
variable X = F−1(U) has distribution function F :

P (X ≤ x) = P (U ≤ F (x)) = F (x).

In fact, this latter result holds for an arbitrary distribution function
F provided that the inverse function is defined appropriately.

THEOREM 1.7 Let F be any distribution function and define
F−1(t) = inf{x : F (x) ≥ t} to be its inverse function for 0 < t < 1.
If U ∼ Unif(0, 1) and X = F−1(U) then the distribution function
of X is F .

Before proceeding to the proof of Theorem 1.7, we will briefly
discuss the function F−1, which is also called the quantile function
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of X with F−1(α) being the α quantile (or 100α percentile) of
the distribution of X. F−1(t) is simplest to define when F (x) is
continuous and strictly increasing; in this case, we can define F−1(t)
via the equation F (F−1(t)) = t, that is, F−1 agrees with the usual
definition of inverse function. A somewhat more complicated case
occurs when F is the distribution function of a discrete random
variable in which case F is piecewise constant with jumps at certain
points. If t is such that F (x) = t for a ≤ x < b then F−1(t) = a; if
t is such that F (a) > t and F (a−) < t (so that t falls in the middle
of a jump in F ) then F−1(t) = a since a is the smallest value of
x with F (x) ≥ t. Figure 1.2 illustrates the form of F−1(t) for the
generic distribution function F in Figure 1.1. It is also important
to note that F−1(t) cannot always be defined for t = 0 or t = 1; in
the context of defining X = F−1(U) (where U ∼ Unif(0, 1)) this is
not important since P (U = 0) = P (U = 1) = 0.

Proof. (Theorem 1.7) From the definition of F−1(t) and the fact
that F (x) is a right-continuous function, we have that F−1(t) ≤ x
if, and only if, t ≤ F (x). Thus

P (X ≤ x) = P
(
F−1(U) ≤ x

)
= P (U ≤ F (x)) = F (x)

and so the distribution function of X is F .

A common application of Theorem 1.7 is the simulation of
random variables with a particular distribution. If we can simulate a
random variable U ∼ Unif(0, 1) then given any distribution function
F with inverse F−1, X = F−1(U) will have distribution function
F . A drawback with this method is the fact that F−1(t) is not
necessarily easily computable.

The quantiles are sometimes used to describe various features of
a distribution. For example, F−1(1/2) is called the median of the
distribution and is sometimes useful as a measure of the centre
of the distribution. Another example is the interquartile range,
F−1(3/4) − F−1(1/4), which is used as a measure of dispersion.

EXAMPLE 1.17: (Exponential distribution) Suppose that X is
a continuous random variable with density

f(x) =
{

λ exp(−λx) for x ≥ 0
0 for x < 0 .
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X is said to have an Exponential distribution with parameter λ
(X ∼ Exp(λ)). The distribution function of X is

F (x) =
{

0 for x < 0
1− exp(−λx) for x ≥ 0 .

Since F (x) is strictly increasing over the set where F (x) > 0, we
can determine the inverse F−1(t) by solving the equation

1− exp
(
−λF−1(t)

)
= t,

which yields
F−1(t) = − 1

λ
ln(1− t).

Thus if U ∼ Unif(0, 1) then Y = −λ−1 ln(1 − U) ∼ Exp(λ). Note
that since 1 − U has the same distribution as U , we also have
−λ−1 ln(U) ∼ Exp(λ). ✸

EXAMPLE 1.18: Suppose that X has a Binomial distribution
with parameters n = 3 and θ = 1/2. We then have F (x) = 1/8 for
0 ≤ x < 1, F (x) = 1/2 for 1 ≤ x < 2 and F (x) = 7/8 for 2 ≤ x < 3
(F (x) = 0 and F (x) = 1 for x < 0 and x ≥ 3 respectively). The
inverse of F is given by

F−1(t) =


0 for 0 < t ≤ 1/8
1 for 1/8 < t ≤ 1/2
2 for 1/2 < t ≤ 7/8
3 for 7/8 < t < 1

.

If U ∼ Unif(0, 1) then it is simple to see that F−1(U) ∼ Bin(3, 0.5).
✸

Hazard functions

Suppose that X is a nonnegative, continuous random variable with
density function f(x); it is useful to think of X as a lifetime of some
object, for example, a human or an electronic component. Suppose
we know that the object is still alive at time x, that is, we know
that X > x; given this information, we would like to determine
the probability of death in the next instant (of length ∆) following
time x:

P (x < X ≤ x + ∆|X > x) =
P (x < X ≤ x + ∆, X > x)

P (X > x)
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=
P (x < X ≤ x + ∆)

P (X > x)

=
F (x + ∆)− F (x)

1− F (x)

Since F is continuous, the conditional probability above tends to 0
as ∆ tends to 0. However, by dividing the conditional probability
by ∆ and letting ∆ ↓ 0, we obtain (if F ′(x) = f(x)),

lim
∆↓0

1
∆
P (x < X ≤ x + ∆|X > x) =

f(x)
1− F (x)

.

DEFINITION. Suppose that a nonnegative random variable X
has distribution function F and density function f . The function

λ(x) =
f(x)

1− F (x)

is called the hazard function of X. (If F (x) = 1 then λ(x) is
defined to be 0.)

The hazard function is useful in applications (such as insurance
and reliability) where we are interested in the probability of failure
(for example, death) given survival up to a certain point in time.
For example, if X represents a lifetime and has hazard function
λ(x) then

P (x ≤ X ≤ X + ∆|X ≥ x) ≈ ∆λ(x)

if ∆ is sufficiently small.
Given the hazard function of nonnegative continuous random

variable X, we can determine both the distribution function and
the density of X. Integrating the hazard function from 0 to x, we
get ∫ x

0
λ(t) dt =

∫ x

0

f(t)
1− F (t)

dt

=
∫ F (x)

0

du

1− u
(where u = F (x))

= − ln(1− F (x))

and so
F (x) = 1− exp

(
−

∫ x

0
λ(t) dt

)
.
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Differentiating F (x), we get

f(x) = λ(x) exp
(
−

∫ x

0
λ(t) dt

)
.

Thus the hazard function gives another way of specifying the
distribution of a nonnegative continuous random variable.

EXAMPLE 1.19: Suppose that a nonnegative random variable
X has a hazard function λ(x) = λβxβ−1 for some λ > 0 and β > 0;
when β < 1, the hazard function is decreasing over time while if
β > 1, the hazard function is increasing over time. The distribution
function of X is

F (x) = 1− exp
(
−λxβ

)
(x > 0)

while its density function is

f(x) = λβxβ−1 exp
(
−λxβ

)
(x > 0).

The distribution of X is called a Weibull distribution and is
commonly used as a model in reliability and survival analysis. The
Exponential distribution is a special case of the Weibull with β = 1;
it is easy to see that when β = 1, the hazard function is constant
and X has the “memoryless” property

P (X > x + t|X > x) = P (X > t)

for any x > 0 and t > 0. ✸

1.5 Transformations of random variables

Suppose X is a random variable and Y = g(X) for some function
g. Given the distribution of X, what is the distribution of Y ?

First consider the case where X is discrete. If Y = g(X), it follows
that Y is also discrete since Y can assume no more values than X.
To determine the frequency function of Y , define

A(y) = {x : g(x) = y};
then if fX(x) is the frequency function of X, we have

fY (y) =
∑

x∈A(y)

fX(x).

The continuous case is somewhat more complicated but the
underlying principle is essentially the same as for discrete random
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variables. First we will assume that g is strictly monotone (that is,
either strictly increasing or strictly decreasing) and differentiable
(at least over a set A such that P (X ∈ A) = 1). To find the density
of Y , we will first find FY (y) = P (Y ≤ y) and try to express this
as

FY (y) =
∫ y

−∞
fY (t) dt

or, alternatively, differentiate FY to determine fY . For example, if
g is strictly increasing then

P (Y ≤ y) = P (g(X) ≤ y)
= P (X ≤ g−1(y))
= FX(g−1(y))

=
∫ g−1(y)

−∞
fX(x) dx

where g−1(y) is the inverse of g (g(g−1(y)) = y). Making a change
of variables u = g(x), we get

FY (y) =
∫ y

−∞
fX(g−1(t))

d

dt
g−1(t).

The derivative of g−1(y) is 1/g′(g−1(y)) and so

fY (y) =
fX(g−1(y))
g′(g−1(y))

.

The argument in the case where g is strictly decreasing is similar
except in this case,

P (Y ≤ y) = P (X ≥ g−1(y)) = 1− FX(g−1(y))

and so
fY (y) = −fX(g−1(y))

g′(g−1(y))
.

Note that g′(x) < 0 when g is strictly decreasing and so the density
fY will always be nonnegative. If we put the two cases (strictly
increasing and strictly decreasing) together, we get

fY (y) =
fX(g−1(y))
|g′(g−1(y))| .

EXAMPLE 1.20: Suppose that X ∼ N(0, 1) (see Example 1.15)
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and define Y = µ + σX for some σ > 0. Then

fY (y) =
1
σ
fX

(
y − µ

σ

)
and so

fY (y) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

Thus Y ∼ N(µ, σ2). ✸

If g is not a monotone function then a somewhat more careful
analysis is needed to find the density of Y = g(X). However, the
underlying principle is the same as when g is monotone; first, we
express P (Y ≤ y) as P (X ∈ A(y)) where

A(y) = {x : g(x) ≤ y}.
Then P (X ∈ A(y)) is differentiated with respect to y to obtain
fY (y). The following examples illustrate the approach.

EXAMPLE 1.21: Suppose that X is a continuous random
variable with density

fX(x) =
{ |x| for −1 ≤ x ≤ 1

0 otherwise

and define Y = X2; note that the function g(x) = x2 is not
monotone for −1 ≤ x ≤ 1. Since P (−1 ≤ X ≤ 1) = 1, it follows
that P (0 ≤ Y ≤ 1) = 1. Thus for 0 ≤ y ≤ 1, we have

P (Y ≤ y) = P (−√y ≤ X ≤ √
y)

= FX(
√
y)− FX(−√y).

Now differentiating with respect to y, we get

fY (y) = fX(
√
y)

(
1
2
y−1/2

)
+ fX(−√y)

(
1
2
y−1/2

)
=

1
2

+
1
2

= 1 for 0 ≤ y ≤ 1.

Thus Y ∼ Unif(0, 1). ✸

1.6 Expected values

Suppose that X is a random variable with distribution function
F ; given F (x) for all values of x, we know everything we need to
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know about X. However, it is sometimes useful to summarize the
distribution of X by certain characteristics of the distribution (for
example, the median of the distribution). Expected values are one
way to characterize a distribution; essentially, the expected value
of X is the “centre of mass” of its distribution.

EXAMPLE 1.22: Define X to be a discrete random variable
taking values x1, · · · , xk with probabilities p1, · · · , pk. Imagine an
infinite (weightless) beam with masses p1, · · · , pk suspended at the
points x1, · · · , xk. Suppose that we try to balance the beam about
a fulcrum placed at a point µ; the force exerted downwards by the
mass placed at xi is proportional to pi|xi − µ| and so, in order for
the beam to be in balance at the fulcrum µ, we must have∑

xi<µ

pi|xi − µ| =
∑
xi>µ

pi|xi − µ|

or ∑
xi<µ

pi(µ− xi) =
∑
xi>µ

pi(xi − µ).

Solving for µ, we get

µ =
k∑
i=1

xipi =
k∑
i=1

xiP (X = xi)

to be the centre of mass; µ is called the expected value of X. ✸

Note if X takes only two values, 0 and 1, then the expected value
of X (according to Example 1.22) is simply P (X = 1). Thus given
some event A, if we define a random variable X = I(A), where the
indicator function I(A) = 1 if A occurs and I(A) = 0 otherwise,
then E(X) = E[I(A)] = P (A). For example, E[I(Y ≤ y)] = F (y)
for any random variable Y where F is the distribution function of
Y .

Extending the “centre of mass” definition of expected value to
more general distributions is possible although it does involve some
mathematical subtleties: it is not clear that the centre of mass will
exist if X can take an infinite (whether countable or uncountable)
number of values.

EXAMPLE 1.23: Suppose that X is a discrete random variable
with frequency function

f(x) =
6

π2x2
for x = 1, 2, 3, · · ·.
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Then following Example 1.22, we have

µ =
∞∑
x=1

x f(x) =
6
π2

∞∑
x=1

x−1 = ∞

and so this distribution does not have a finite expected value. ✷

The fact that the expected value in Example 1.23 is infinite does
not pose any problems from a mathematical point of view; since
X is positive, the infinite summation defining the expected value is
unambiguously defined. However, when the random variable takes
both positive and negative values, the definition of the expected
value becomes somewhat more delicate as an infinite summation
with both positive and negative summands need not have a well-
defined value. We will split the random variable X into its positive
and negative parts X+ and X− where

X+ = max(X, 0) and X− = max(−X, 0);

then X = X+ − X− and |X| = X+ + X−. Provided that at
least one of E(X+) and E(X−) is finite, we can define E(X) =
E(X+) − E(X−); otherwise (that is, if both E(X+) and E(X−)
are infinite), E(X) is undefined.

We will now give a (somewhat non-intuitive) definition of the
expected value in the general case.

DEFINITION. Suppose that X is a nonnegative random variable
with distribution function F . The expected value or mean of X
(denoted by E(X)) is defined to be

E(X) =
∫ ∞

0
(1− F (x)) dx,

which may be infinite. In general, if X = X+ − X−, we define
E(X) = E(X+) − E(X−) provided that at least one of E(X+)
and E(X−) is finite; if both are infinite then E(X) is undefined.
If E(X) is well-defined then

E(X) =
∫ ∞

0
(1− F (x)) dx−

∫ 0

−∞
F (x) dx.

The definition given above may appear to be inconsistent with
our previous discussion of expected values for discrete random vari-
ables; in fact, the two definitions are exactly the same in this case.
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If X is a discrete random variable with frequency function f(x)
then

E(X) =
∑
x

x f(x)

provided that at least one of

E(X+) =
∑
x>0

x f(x) and E(X−) = −
∑
x<0

x f(x)

is finite.
If X is a continuous random variable with density function f(x),

we have

E(X) =
∫ ∞

0
(1− F (x)) dx−

∫ 0

−∞
F (x) dx

=
∫ ∞

0

∫ ∞

x
f(t) dt dx−

∫ 0

−∞

∫ x

−∞
f(t) dt dx

=
∫ ∞

0

∫ t

0
f(t) dx dt−

∫ 0

−∞

∫ 0

t
f(t) dx dt

=
∫ ∞

0
t f(t) dt +

∫ 0

−∞
t f(t) dt

=
∫ ∞

−∞
t f(t) dt.

THEOREM 1.8 Suppose that X has a distribution function F
with F (x) = pFc(x) + (1 − p)Fd(x) where Fc is a continuous
distribution function with density function fc and Fd is a discrete
distribution function with frequency function fd. If E(X) is well-
defined then

E(X) = p

∫ ∞

−∞
x fc(x) dx + (1− p)

∑
x

x fd(x)

The expected value (when it is finite) is a measure of the “centre”
of a probability distribution. For example, if the distribution of X
is symmetric around µ in the sense that

P (X ≤ µ− x) = P (X ≥ µ + x)

for all x then it is easy to show that E(X) = µ if E(X) is well-
defined. We noted earlier that the median is also a measure of
the center of a distribution. In the case where the distribution
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is symmetric around µ then the mean and median will coincide;
however, if the distribution is not symmetric then the mean and
median can differ substantially.

We now give a few examples to illustrate the computation of
expected values.

EXAMPLE 1.24: Suppose that X has the density function

f(x) =
λαxα−1

Γ(α)
exp (−λx) for x > 0

where λ > 0, α > 0 and Γ(α) is the Gamma function defined by

Γ(α) =
∫ ∞

0
tα−1 exp(−t) dt.

X is said to a Gamma distribution with shape parameter α and
scale parameter λ (X ∼ Gamma(α, λ)). Using properties of the
function Γ(α), we have

E(X) =
∫ ∞

−∞
x f(x) dx

=
∫ ∞

0

λαxα

Γ(α)
exp (−λx) dx

=
Γ(α + 1)
λΓ(α)

∫ ∞

0

λα+1xα+1−1

Γ(α + 1)
exp (−λx) dx

=
Γ(α + 1)
λΓ(α)

=
α

λ

since Γ(α + 1) = αΓ(α). Note that the Exponential distribution
(see Example 1.17) is a special case of the Gamma distribution with
α = 1 and so if X ∼ Exp(λ) then E(X) = 1/λ. Figure 1.3 shows
three Gamma density functions with different shape parameters α
with the scale parameters λ = α chosen so that each distribution
has expected value equal to 1. ✸

EXAMPLE 1.25: Suppose that X has a Binomial distribution
with parameters n and θ. Since X is discrete, we have

E(X) =
n∑

x=0

x

(
n

x

)
θx(1− θ)n−x
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Figure 1.3 Gamma density functions for α = 1, λ = 1 (solid line), α = 0.5,
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=
n∑

x=1

n!
(n− x)!(x− 1)!

θx(1− θ)n−x

= nθ
n∑

x=1

(n− 1)!
(n− x)!(x− 1)!

θx−1(1− θ)n−x

= nθ
n−1∑
y=0

(
n− 1
y

)
θy(1− θ)n−1−y

= nθ

where the last equality follows by applying the Binomial Theorem.
✸

EXAMPLE 1.26: Suppose that X is a continuous random
variable with density

f(x) =
1

π(1 + x2)
for −∞ < x <∞;

X is said to have a Cauchy distribution. Note that X is symmetric
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around 0 so that E(X) should be 0 if E(X) exists. However, note
that

E(X+) =
∫ ∞

0
xf(x) dx

=
1
π

∫ ∞

0

x

1 + x2
dx

=
1
2π

lim
x→∞

ln(1 + x2)
= ∞.

Likewise E(X−) = ∞ and so it follows that E(X) is not well-
defined. ✸

We can also define the expected value of a function of X. If
Y = h(X) for some function h then we can define E[h(X)] by
applying the definition of expected value for the random variable
Y ; to do this, of course, requires that we determine the distribution
function of Y . However, if X has a distribution function F with
F = pFc + (1− p)Fd as before then

E[h(X)] = p

∫ ∞

−∞
h(x)fc(x) dx + p

∑
x

h(x)fd(x)

provided the integral and sum are well-defined.
Suppose that h(x) = h1(x) + h2(x). Then if both E[h1(X)] and

E[h2(X)] are finite, it follows that

E[h(X)] = E[h1(X)] + E[h2(X)].

If h(x) = a g(x) where a is constant then E[h(X)] = aE[g(X)]; the
expected value of h(X) is well-defined if, and only if, the expected
value of g(X) is. From these two properties of expected values, we
can deduce

E[a g(X) + b) = aE[g(X)] + b

if a and b are constants. In general, E[g(X)] = g(E(X)) only if g(x)
is a linear function, that is, if g(x) = ax + b.

If g(x) is a convex function, that is,

g(tx + (1− t)y) ≤ t g(x) + (1− t) g(y)

for 0 ≤ t ≤ 1, then we have Jensen’s inequality, which says that
g(E(X)) ≤ E[g(X)]; a simple example of Jensen’s inequality is
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|E(X)|r ≤ E[|X|r], which holds for r ≥ 1 since the function
g(x) = |x|r is convex for r ≥ 1.

At this point, we will introduce a convenient shorthand for writ-
ing expected values. Given a random variable X with distribution
function F , we will write

E[h(X)] =
∫ ∞

−∞
h(x) dF (x) ,

that is, E[h(X)] is the integral of h(x) with respect to the
distribution function F . For example, if we write h(x) = I(x ≤ t)
then E[h(X)] = P (X ≤ t) = F (t) and so

F (t) =
∫ ∞

−∞
I(x ≤ t) dF (x) =

∫ t

−∞
dF (x).

From a mathematical point of view, this integral can be interpreted
as a Riemann-Stieltjes integral or (more usefully) as a Lebesgue-
Stieltjes integral; precise definitions of these integrals can be found
in Rudin (1976). If F is a discrete distribution function then
the integral above is interpreted as a summation while if F is a
continuous distribution function with a density function then the
integral is interpreted as the Riemann integral of calculus.

This integral representation can be manipulated usefully as the
following example suggests.

EXAMPLE 1.27: Suppose that X is a positive random variable
with distribution function F and set γ = E[w(X)] < ∞ for some
nonnegative function w(x). Given F and γ, we can define a new
distribution function G by

G(x) =
1
γ

∫ x

0
w(t) dF (t) for x ≥ 0.

G is sometimes called the selection biased distribution of F . A
random variable with distribution G might arise as follows. Suppose
that X is a discrete random variable uniformly distributed on the
set S = {a1, · · · , an} where the ai > 0 for i = 1, · · · , n. Rather
than sampling uniformly from S, we sample so that the probability
that ai is selected is proportional to ai (this is called length biased
sampling); that is, we sample a discrete random variable Y so that
P (Y = ai) = kai for some constant k. It is easy to see that for Y
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to have a valid probability distribution, we must have

P (Y = ai) =
ai∑n
j=1 aj

=
ai

nE(X)
.

The distribution function of Y has a jump of ai/[nE(X)] at ai (for
i = 1, · · · , n) and so can be written as

P (Y ≤ x) =
1

E(X)

∫ x

0
t dF (t)

where F is the distribution function of X. Returning to the general
case, it is fairly easy to see that, given G and the function w, it
is possible to determine F and hence evaluate E[h(X)] for any
function h. For example, in the case of length biased sampling
(w(x) = x), we can determine µ = E(X) by noting that

E[g(Y )] =
∫ ∞

0
g(y) dG(y) =

1
µ

∫ ∞

0
y g(y) dF (y).

Substituting g(y) = 1/y above, we get

E(1/Y ) =
1
µ

∫ ∞

0
dF (x) =

1
µ

and so µ = [E(1/Y )]−1. ✸

Variance and moment generating function

DEFINITION. Let X be a random variable with µ = E(X).
Then the variance of X, Var(X), is defined to be

Var(X) = E[(X − µ)2].

If E(X2) < ∞ then Var(X) < ∞; if E(X2) = ∞ then we will
define Var(X) = ∞ (even if E(X) is not finite or is not defined).

Given σ2 = Var(X), we can define the standard deviation of X
to be

SD(X) = σ =
√

Var(X).

We can also obtain the following properties of the variance and
standard deviation of a random variable.
• Var(X) ≥ 0 and Var(X) = 0 if, and only if, P (X = µ) = 1 where
µ = E(X).

• Var(X) = E(X2)− µ2.
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• For any constants a and b, Var(aX + b) = a2Var(X) and so it
follows that SD(aX + b) = |a|SD(X).
The last property above is particularly important as it indicates

that both the variance and standard deviation somehow measure
the amount of “dispersion” in the distribution of a random variable
and are unaffected by changes in the “location” of a random
variable (since Var(X + b) = Var(X)). The standard deviation has
the same units of measurement as the random variable itself and so
has a more natural interpretation than the variance (whose units
are the square of the original units). However, as we will see, the
variance has very nice algebraic and computational properties. It is
important to note that there is nothing particularly special about
the variance and standard deviation as measures of dispersion; one
problem is the fact that both can be distorted by small amounts of
probability occurring in the “tails” of the distribution.

EXAMPLE 1.28: Suppose that X has a Uniform distribution on
[a, b]. Then

E(X) =
1

b− a

∫ b

a
x dx =

b2 − a2

2(b− a)
=

1
2
(a + b)

and

E(X2) =
1

b− a

∫ b

a
x2 dx =

b3 − a3

3(b− a)
=

1
3
(a2 + ab + b2).

Thus Var(X) = E(X2)− [E(X)]2 = (b− a)2/12. ✸

EXAMPLE 1.29: Suppose that X has a Binomial distribution
with parameters n and θ. To compute the variance of X, it is
convenient to introduce the formula

Var(X) = E[X(X − 1)] + E(X)− [E(X)]2,

which follows from the identity Var(X) = E(X2) − [E(X)]2. We
now have

E[X(X − 1)] =
n∑

x=0

x(x− 1)

(
n

x

)
θx(1− θ)n−x

=
n∑

x=2

n!
(x− 2)!(n− x)!

θx(1− θ)n−x
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= n(n− 1)θ2
n−2∑
y=0

(
n− 2
y

)
θy(1− θ)n−2−y

= n(n− 1)θ2.

Using the fact that E(X) = nθ (as shown in Example 1.25), it
follows that Var(X) = nθ(1− θ). ✸

EXAMPLE 1.30: Suppose that X has a standard Normal
distribution. Since the density of X is symmetric around 0, it follows
that E(X) = 0, provided of course that the integral is well-defined.
Since

1√
2π

∫ ∞

0
x exp(−x2/2) dx =

1√
2π

∫ ∞

0
exp(−y) dy =

1√
2π

is finite, E(X) is well-defined and equals 0. To compute the variance
of X, note that Var(X) = E(X2) and so

Var(X) =
1√
2π

∫ ∞

−∞
x2 exp

(
−x2/2

)
dx

=
2√
2π

∫ ∞

0
x2 exp

(
−x2/2

)
dx

=
2√
2π

∫ ∞

0
2
√

2y exp(−y) dy

=
1√
π

∫ ∞

0

√
y exp(−y) dy

= 1

since ∫ ∞

0

√
y exp(−y) dy =

√
π.

If Y = µ + σX then Y ∼ N(µ, σ2) and it follows that E(Y ) =
µ + σE(X) = µ and Var(Y ) = σ2Var(X) = σ2. ✸

An useful tool for computing means and variances is the moment
generating function, which, when it exists, uniquely characterizes a
probability distribution.
DEFINITION. Let X be a random variable and define

m(t) = E[exp(tX)].

If m(t) < ∞ for |t| ≤ b > 0 then m(t) is called the moment
generating function of X.
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It is important to note that the moment generating function
is not defined for all random variables and, when it is, m(t) is
not necessarily finite for all t. However, if the moment generating
function m(t) is well-defined then it essentially determines the
probability distribution of the random variable.

THEOREM 1.9 Suppose that X and Y are random variables
such that

mX(t) = E[exp(tX)] = E[exp(tY )] = mY (t)

for all |t| ≤ b > 0. Then X and Y have the same probability
distribution; that is,

P (X ≤ x) = P (Y ≤ x)

for all x.

The proof of Theorem 1.9 is quite difficult and will not be pursued
here. However, the proof relies on a parallel result to that given
here: If we define the characteristic function of X to be the complex-
valued function φ(t) = E[exp(itX)] where exp(is) = cos(s)+i sin(s)
then φ(t) specifies the probability distribution in the sense that
equality of characteristic functions implies equality of distribution
functions. It can be shown that under the hypothesis of Theorem
1.9, we obtain equality of the characteristic functions of X and
Y and hence equality in distribution. It should be noted that the
characteristic function of a random variable is always well-defined.

EXAMPLE 1.31: Suppose that X is an Exponential random
variable with parameter λ. The moment generating function (if it
exists) is defined by

m(t) = E[exp(tX)] =
∫ ∞

0
λ exp(−(λ− t)x) dx.

Note that the integral defining m(t) is finite if, and only if, λ−t > 0
or, equivalently, if t < λ. Since λ > 0, we then have m(t) < ∞
for t in a neighbourhood around 0 and so the moment generating
function exists. Simple integration gives

m(t) =
λ

λ− t

for t < λ. ✸
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EXAMPLE 1.32: Suppose that X has a Binomial distribution
with parameters n and θ. The moment generating function is given
by

m(t) = E[exp(tX)] =
n∑

x=0

exp(tx)

(
n

x

)
θx(1− θ)n−x

=
n∑

x=0

(
n

x

)
(θ exp(t))x(1− θ)n−x

= [1 + θ(exp(t)− 1)]n

where the final line follows by the Binomial Theorem. Note that
m(t) <∞ for all t. ✸

EXAMPLE 1.33: Suppose that X has a Poisson distribution with
parameter λ > 0 (X ∼ Pois(λ)); this is a discrete distribution with
frequency function

f(x) =
exp(−λ)λx

x!
for x = 0, 1, 2, · · ·.

The moment generating function of X is

m(t) =
∞∑
x=0

exp(tx)
exp(−λ)λx

x!

= exp(−λ)
∞∑
x=0

[λ exp(t)]x

x!

= exp(−λ) exp[λ exp(t)]
= exp[λ(exp(t)− 1)]

since
∑∞

x=0 a
x/x! = exp(a) for any a. ✸

EXAMPLE 1.34: Suppose that X has a standard Normal
distribution. The moment generating function of X is

m(t) =
1√
2π

∫ ∞

−∞
exp(tx) exp

(
−x2/2

)
dx

=
1√
2π

∫ ∞

−∞
exp

(
tx− x2/2

)
dx

=
1√
2π

∫ ∞

−∞
exp

(
−(x− t)2/2 + t2/2

)
dx
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=
exp(t2/2)√

2π

∫ ∞

−∞
exp

(
−(x− t)2/2

)
dx

= exp(t2/2).

If Y = µ + σX so that Y is normally distributed with mean
µ and variance σ2 then the moment generating function of Y is
mY (t) = exp(µt + σ2t2/2). ✸

The moment generating function has no real useful interpreta-
tion; it is used almost exclusively as a technical device for com-
puting certain expected values and as a device for proving limit
theorems for sequences of distribution functions. Also given the
moment generating function of a random variable, it is possible to
invert the moment generating function (or the characteristic func-
tion) to obtain the distribution or density function; however, using
these inversion formulas can involve some very delicate analytical
and numerical techniques.

As the name suggests, moment generating functions are useful
for computing the moments of a random variable. The moments of
X are defined to be the expected values E(X), E(X2), E(X3), · · ·.
E(Xk) is defined to be the k-th moment of X.

THEOREM 1.10 Suppose that X is a random variable with
moment generating function m(t). Then for any r > 0, E(|X|r) <
∞ and E(X) = m′(0), E(X2) = m′′(0) and in general E(Xk) =
m(k)(0) where m(k)(t) denotes the k-th derivative of m at t.

Proof. If X has moment generating function then |X| has a moment
generating function m∗(t). Then for any t > 0, we have |x|r ≤
exp(t|x|) for |x| sufficiently large (say, for |x| ≥ c). We then have

E[|X|r] = E[|X|rI(|X| ≤ c)] + E[|X|rI(|X| > c)]
≤ E[|X|rI(|X| ≤ c)] + E[exp(tX)I(|X| > c)]
≤ cr + m∗(t) <∞

and so E(|X|r) <∞. Now using the expansion

exp(tx) =
∞∑
k=0

tkxk

k!

we obtain

m(t) = E[exp(tX)] =
∞∑
k=0

tkE(Xk)
k!

.
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(It can be shown in this instance that taking expectations inside
the infinite summation is valid; however, this is not true in general.)
Differentiating with respect to t, we get

m′(t) =
∞∑
k=1

ktk−1E(Xk)
k!

= E(X) +
∞∑
k=2

tk−1E(Xk)
(k − 1)!

and setting t = 0, it follows that E(X) = 0. Repeatedly
differentiating, we get

m(k)(t) = E(Xk) +
∞∑

j=k+1

tj−kE(Xj)
(j − k)!

and so m(k)(0) = E(Xk). (Again, in this case, we are justified in
differentiating inside the infinite summation although this is not
true in general.)

EXAMPLE 1.35: Suppose that X is an Exponential random vari-
able with parameter λ. In Example 1.31, we found the moment gen-
erating function to be m(t) = λ/(λ− t) (for t < λ). Differentiating
we obtain m′(t) = λ/(λ− t)2, m′′(t) = 2λ/(λ− t)3 and, in general,

m(k)(t) =
k!λ

(λ− t)k+1
.

Thus, setting t = 0, we get E(Xk) = k!λ−k; in particular, E(X) =
λ−1 and Var(X) = E(X2)− [E(X)]2 = λ−2. ✸

EXAMPLE 1.36: Suppose that X ∼ Geom(θ) (Example 1.12);
recall that the frequency function of this random variable is

f(x) = θ(1− θ)x for x = 0, 1, 2, · · ·.
Thus the moment generating function is given by

m(t) = E[exp(tX)] =
∞∑
x=0

exp(tx)θ(1− θ)x

= θ
∞∑
x=0

[(1− θ) exp(t)]x.

The infinite series above converges if, and only if, |(1−θ) exp(t)| < 1
or (since (1−θ) exp(t) > 0) for t < − ln(1−θ). Since − ln(1−θ) > 0,
the moment generating function of X is

m(t) =
θ

1− (1− θ) exp(t)

c© 2000 by Chapman & Hall/CRC



for t < − ln(1 − θ) (which includes a neighbourhood of 0) and
differentiating, we get

m′(t) =
θ(1− θ) exp(t)

(1− (1− θ) exp(t))2

and m′′(t) =
θ(1− θ) exp(t)(1− exp(t)θ(1− θ))

(1− (1− θ) exp(t))3
.

We obtain E(X) = (1 − θ)/θ and Var(X) = (1 − θ)/θ2 by setting
t = 0. ✸

The converse to Theorem 1.10 is not true; that is, the finiteness
of E(Xk) for all k > 0 does not imply the existence of the moment
generating function of X. The following example illustrates this.

EXAMPLE 1.37: Define X to be a continuous random variable
such that ln(X) has a standard Normal distribution; the density of
X is

f(x) =
1

x
√

2π
exp

(
−(ln(x))2/2

)
for x > 0

(X is said to have a log-Normal distribution). Since Y = ln(X) is
a standard Normal random variable, it follows that

E(Xk) = E [exp(kY )] = exp(k2/2)

(using the moment generating function of the standard Normal
distribution) and so E(Xk) < ∞ for any real k. However, X does
not have a moment generating function. To see this, note that

E [exp(tX)] =
1√
2π

∫ ∞

0
exp(tx)x−1 exp

(
−(ln(x))2/2

)
dx

=
1√
2π

∫ ∞

−∞
exp

(
t exp(y)− y2/2

)
dy;

for t > 0, the integral is infinite since t exp(y) − y2/2 → ∞ as
y → ∞ (for t > 0). Thus E [exp(tX)] = ∞ for t > 0 and so the
moment generating function of X does not exist. ✸

Taken together, Theorems 1.9 and 1.10 imply that if X and Y are
two random variables such that E(Xk) = E(Y k) for k = 1, 2, 3, · · ·
and X has a moment generating function then X and Y have the
same distribution. However, the fact that X and Y have similar
moment generating functions does not mean that X and Y will
c© 2000 by Chapman & Hall/CRC



have similar distributions; for example, McCullagh (1994) gives
an example of two moment generating functions that are virtually
indistinguishable (they differ by at most 3× 10−9) but correspond
to very different distributions (see also Waller, 1995). Moreover,
equality of E(Xk) and E(Y k) (for k = 1, 2, · · ·) does not imply
equality of distributions if moment generating functions do not exist
as the following example illustrates.

EXAMPLE 1.38: Suppose that X and Y are continuous random
variables with density functions

fX(x) =
1

x
√

2π
exp

(
−(ln(x))2/2

)
for x > 0

and

fY (x) =
1

x
√

2π
exp

(
−(ln(x))2/2

)
(1 + sin(2π ln(x))) for x > 0.

(X has the log-Normal distribution of Example 1.37.) For any
k = 1, 2, 3, · · ·, we have

E(Y k) = E(Xk)

+
1√
2π

∫ ∞

0
xk−1 exp

(
−(ln(x))2

2

)
sin(2π ln(x))) dx

and making the substitution y = ln(x)− k, we have∫ ∞

0
xk−1 exp

(
−(ln(x))2/2

)
sin(2π ln(x))) dx

=
∫ ∞

−∞
exp

(
k2 + ky − (y + k)2/2

)
sin(2π(y + k)) dy

= exp
(
k2/2

) ∫ ∞

−∞
exp

(
−y2/2

)
sin(2πy) dy

= 0

since the integrand exp
(
−y2/2

)
sin(2πy) is an odd function. Thus

E(Xk) = E(Y k) for k = 1, 2, 3, · · · even though X and Y have
different distributions. ✸

1.7 Problems and complements

1.1: Show that

P (A1 ∪ · · · ∪An) =
n∑
i=1

P (Ai)−
∑ ∑

i<j
P (Ai ∩Aj)
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+
∑ ∑ ∑

i<j<k
P (Ai ∩Aj ∩Ak)

− · · · − (−1)nP (A1 ∩ · · · ∩An).

1.2: Suppose that A and B are independent events. Determine
which of the following pairs of events are always independent
and which are always disjoint.
(a) A and Bc.
(b) A ∩Bc and B.
(c) Ac and Bc.
(d) Ac and B.
(e) Ac ∩Bc and A ∪B.

1.3: Consider an experiment where a coin is tossed an infinite
number of times; the probability of heads on the k-th toss is
(1/2)k.
(a) Calculate (as accurately as possible) the probability that at
least one head is observed.
(b) Calculate (as accurately as possible) the probability that
exactly one head is observed.

1.4: Suppose that A1, A2, · · · are independent events with P (Ak) =
pk. Define

B =
∞⋃
k=1

Ak.

Show that P (B) = 1 if, and only if,
∞∑
k=1

ln(1− pk) = −∞.

1.5: (a) Suppose that {An} is a decreasing sequence of events with
limit A; that is An+1 ⊂ An for all n ≥ 1 with

A =
∞⋂
n=1

An.

Using the axioms of probability show that

lim
n→∞

P (An) = P (A).

(b) Let X be a random variable and suppose that {xn} is a
strictly decreasing sequence of numbers (that is, xn > xn+1 for
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all n) whose limit is x0. Define An = [X ≤ xn]. Show that

∞⋂
n=1

An = [X ≤ x0]

and hence (using part (a)) that P (X ≤ xn) → P (X ≤ x0).
(c) Now let {xn} be a strictly increasing sequence of numbers
(that is, xn < xn+1 for all n) whose limit is x0. Again defining
An = [X ≤ xn] show that

∞⋃
n=1

An = [X < x0]

and hence that P (X ≤ xn) → P (X < x0).
1.6: Let A,B,C be events. We say that A and B are conditionally

independent given C if

P (A ∩B|C) = P (A|C)P (B|C).

Suppose that

• A and B are conditionally independent given C, and
• A and B are conditionally independent given Cc.

Show that A and B are not necessarily independent but that
A and B are independent if C is independent of either A or B.

1.7: Suppose that F1(x), · · · , Fk(x) are distribution functions.
(a) Show that G(x) = p1F1(x) + · · ·+ pkFk(x) is a distribution
function provided that pi ≥ 0 (i = 1, · · · , k) and p1+· · ·+pk = 1.
(b) If F1(x), · · · , Fk(x) have density (frequency) functions f1(x),
· · · , fk(x), show that G(x) defined in (a) has density (frequency)
function g(x) = p1f1(x) + · · ·+ pkfk(x).

1.8: (a) Let X be a nonnegative discrete random variable taking
values x1, x2, · · · with probabilities f(x1), f(x2), · · ·. Show that

E(X) =
∫ ∞

0
P (X > x) dx =

∞∑
k=1

xkf(xk).

(Hint: Note that P (X > x) has downward jumps of height
f(xk) at x = xk and is constant between the jumps.)
(b) Suppose that X only takes nonnegative integer values 0, 1,
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2, · · ·. Show that

E(X) =
∞∑
k=0

P (X > k) =
∞∑
k=1

P (X ≥ k).

1.9: Suppose that X is a random variable with distribution
function F and inverse (or quantile function) F−1. Show that

E(X) =
∫ 1

0
F−1(t) dt

if E(X) is well-defined.
1.10: Suppose that X is stochastically greater than Y in the sense

that P (X > x) ≥ P (Y > x) for all x.
(a) Suppose that at least one of E(X) or E(Y ) is finite. Show
that E(X) ≥ E(Y ).
(b) Let F−1

X (t) and F−1
Y (t) be the quantile functions of X and

Y , respectively. Show that F−1
X (t) ≥ F−1

Y (t) for all t.
1.11: Let X be a random variable with finite expected value E(X)

and suppose that g(x) is a convex function:

g(tx + (1− t)y) ≤ t g(x) + (1− t) g(y)

for 0 ≤ t ≤ 1.
(a) Show that for any x0, there exists a linear function h(x) =
ax + b such that h(x0) = g(x0) and h(x) ≤ g(x) for all x.
(b) Prove Jensen’s inequality: g(E(X)) ≤ E[g(X)]. (Hint: Set
x0 = E(X) in part (a); then h(X) ≤ g(X) with probability 1
and so E[h(X)] ≤ E[g(X)].)

1.12: The Gamma function Γ(x) is defined for x > 0 via the
integral

Γ(x) =
∫ ∞

0
tx−1 exp(−t) dt

Prove the following facts about Γ(x).
(a) Γ(x + 1) = xΓ(x) for any x > 0. (Hint: Integrate Γ(x + 1)
by parts.)
(b) Γ(k) = (k − 1)! for k = 1, 2, 3, · · ·.
(c) Γ(1/2) =

√
π. (Hint: Note that

Γ(1/2) =
∫ ∞

0
t−1/2 exp(−t) dt

= 2
∫ ∞

0
exp(−s2) ds
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and so

Γ2(1/2) = 4
∫ ∞

0

∫ ∞

0
exp

[
−(s2 + t2)

]
ds dt.

Then make a change of variables to polar coordinates.)

1.13: Suppose that X ∼ Gamma(α, λ). Show that
(a) E(Xr) = Γ(r + α)/(λ2Γ(α)) for r > −α;

(b) Var(X) = α/λ2.

1.14: Suppose that X ∼ Gamma(k, λ) where k is a positive integer.
Show that

P (X > x) =
k−1∑
j=0

exp(−λx)(λx)j

j!

for x > 0; thus we can evaluate the distribution function of X
in terms of a Poisson distribution. (Hint: Use integration by
parts.)

1.15: Suppose that X ∼ N(0, 1).

(a) Show that E(Xk) = 0 if k is odd.

(b) Show that E(Xk) = 2k/2Γ((k + 1)/2)/Γ(1/2) if k is even.

1.16: Suppose that X is a continuous random variable with density
function

f(x) = k(p) exp(−|x|p) for −∞ < x <∞

where p > 0.

(a) Show that k(p) = p/(2Γ(1/p)).

(b) Show that E[|X|r] = Γ((r + 1)/p)/Γ(1/p) for r > −1.

1.17: Let m(t) = E[exp(tX)] be the moment generating function
of X. c(t) = lnmX(t) is often called the cumulant generating
function of X.

(a) Show that c′(0) = E(X) and c′′(0) = Var(X).

(b) Suppose that X has a Poisson distribution with parameter
λ as in Example 1.33. Use the cumulant generating function of
X to show that E(X) = Var(X) = λ.

(c) The mean and variance are the first two cumulants of a
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distribution; in general, the k-th cumulant is defined to be
c(k)(0). Show that the third and fourth cumulants are

c(3)(0) = E(X3)− 3E(X)E(X2) + 2[E(X)]3

c(4)(0) = E(X4)− 4E(X3)E(X3) + 12E(X2)[E(X)]2

−3[E(X2)]2 − 6[E(X)]4.

(d) Suppose that X ∼ N(µ, σ2). Show that all but the first two
cumulants of X are exactly 0.

1.18: Suppose that X is an integer-valued random variable with
moment generating function m(t). The probability generating
function of X is defined to be

p(t) = E(tX) for t > 0.

Note that p(t) = m(ln(t)).

(a) Show that p′(1) = E(X).

(b) Let p(k)(t) be the k-th derivative of p. Show that

p(k)(1) = E[X(X − 1)× · · · × (X − k + 1)].

(c) Suppose that X is nonnegative. Show that

P (X = k) = p(k)(0)/k!.

1.19: The Gompertz distribution is sometimes used as a model
for the length of human life; this model is particular good for
modeling survival beyond 40 years. Its distribution function is

F (x) = 1− exp[−β(exp(αx)− 1)] for x ≥ 0

where α, β > 0.

(a) Find the hazard function for this distribution.

(b) Suppose that X has distribution function F . Show that

E(X) =
exp(β)

α

∫ ∞

1

exp(−βt)
t

dt

while the median of F is

F−1(1/2) =
1
α

ln (1 + ln(2)/β) .

(c) Show that F−1(1/2) ≥ E(X) for all α > 0, β > 0.

1.20: Suppose that X is a nonnegative random variable.
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(a) Show that

E(Xr) = r

∫ ∞

0
xr−1(1− F (x)) dx.

for any r > 0.
(b) Since X is nonnegative, it follows that φ(t) = E[exp(−tX)]
is finite for t ≥ 0. Show that for any r > 0,

E(1/Xr) =
1

Γ(r)

∫ ∞

0
tr−1φ(t) dt.

(Hint: Write φ(t) as an integral involving the distribution
function of X.)

1.21: Suppose that X is a nonnegative random variable where
E(Xr) is finite for some r > 0. Show that E(Xs) is finite for
0 ≤ s ≤ r.

1.22: Let X be a continuous random variable with distribution
function FX(x). Suppose that Y = g(X) where g is a strictly
increasing continuous function. If F−1

X (t) is the inverse of FX
show that the inverse of the distribution function of Y is

F−1
Y (t) = g(F−1

X (t)).

1.23: Suppose that X is a nonnegative random variable with
distribution function F (x) = P (X ≤ x). Show that

E(Xr) = r

∫ ∞

0
xr−1(1− F (x)) dx.

for any r > 0.
1.24: Let U be a Uniform random variable on [0, 1] and define

X = tan(π(U − 1/2)). Show that the density of X is

f(x) =
1

π(1 + x2)
.

(This is the Cauchy distribution in Example 1.26.)
1.25: Suppose that X has a distribution function F (x) with inverse

F−1(t).
(a) Suppose also that E(|X|) <∞ and define g(t) = E[|X− t|].
Show that g is minimized at t = F−1(1/2).
(b) The assumption that E(|X|) < ∞ in (a) is unnecessary if
we redefine g(t) = E[|X − t| − |X|]. Show that g(t) is finite for
all t and that t = F−1(1/2) minimizes g(t).
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(c) Define ρα(x) = αxI(x ≥ 0) + (α − 1)xI(x < 0) for some
0 < α < 1. Show that g(t) = E[ρα(X−t)−ρα(X)] is minimized
at t = F−1(α).

1.26: Suppose that X is a random variable with E[X2] <∞. Show
that g(t) = E[(X − t)2] is minimized at t = E(X).

1.27: Let X be a positive random variable with distribution
function F . Show that E(X) <∞ if, and only if,

∞∑
k=1

P (X > kε) <∞

for any ε > 0.
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CHAPTER 2

Random vectors and joint
distributions

2.1 Introduction

To this point, we have considered only a single random variable
defined on a sample space. It is, of course, possible to define more
than one random variable for a given experiment. Consider, for
example, sampling from a finite population consisting of N people.
Each person in the population has a number of attributes that
can be measured: height, weight, age, and so on. Clearly, we can
define random variables that measure each of these attributes for
a randomly chosen person. If we take a sample of n < N people
from this population, we can define random variables X1, · · · , Xn

that measure a certain attribute (for example, weight) for each of
the n people in the sample.

Suppose we have random variables X1, · · · , Xk defined on some
sample space. We then call the vector X = (X1, · · · , Xk) a random
vector.

DEFINITION. The joint distribution function of a random
vector (X1, · · · , Xk) is

F (x1, · · · , xk) = P (X1 ≤ x1, · · · , Xk ≤ xk)

where the event [X1 ≤ x1, · · · , Xk ≤ xk] is the intersection of the
events [X1 ≤ x1], · · · , [Xk ≤ xk].

Given the joint distribution function of random vector X, we can
determine P (X ∈ A) for any set A ⊂ Rk.

Not surprisingly, it is often convenient to think of random vectors
as (random) elements of a vector space; this allows us, for example,
to manipulate random vectors via the operations of linear algebra.
When this is the case, we will assume (by default) that the random
vector is, in fact, a column vector unless explicitly stated otherwise.
Hopefully, this will be clear from the context.
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2.2 Discrete and continuous random vectors

For single random variables, we noted earlier that it is possible to
describe the probability distribution by means of a density function
or frequency function, depending on whether the random variable
is continuous or discrete. It is possible to define analogous functions
in the case of random vectors.
DEFINITION. Suppose that X1, · · · , Xk are discrete random

variables defined on the same sample space. Then the joint
frequency function of X = (X1, · · · , Xk) is defined to be

f(x1, · · · , xk) = P (X1 = x1, · · · , Xk = xk).

If X1, · · · , Xk are discrete then the joint frequency function must
exist.

DEFINITION. Suppose that X1, · · · , Xn are continuous random
variables defined on the same sample space and that

P [X1 ≤ x1, · · · , Xk ≤ xk] =
∫ xk

−∞
· · ·

∫ x1

−∞
f(t1, · · · , tk) dt1 · · · dtk

for all x1, · · · , xk. Then f(x1, · · · , xk) is the joint density function
of (X1, · · · , Xk) (provided that f(x1, · · · , xk) ≥ 0).
To avoid confusion, we will sometimes refer to the density or

frequency function of a random variable Xi as its marginal density
or frequency function. The joint density and frequency functions
must satisfy the following conditions:∑

(x1,···,xk)

f(x1, · · · , xk) = 1

if f(x1, · · · , xk) is a frequency function, and∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, · · · , xk) dx1 · · · dxk = 1

if f(x1, · · · , xk) is a density function. Moreover, we can determine
the probability that (X1, · · · , Xn) lies in a given set A by summing
or integrating f(x1, · · · , xn) over A.

EXAMPLE 2.1: Suppose that X and Y are continuous random
variables with joint density function

f(x, y) =
1
π

for x2 + y2 ≤ 1.
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X and Y thus have a Uniform distribution on a disk of radius 1
centered at the origin. Suppose we wish to determine P (X ≤ u) for
−1 ≤ u ≤ 1. We can do this by integrating the joint density f(x, y)
over the region {(x, y) : −1 ≤ x ≤ u, x2 + y2 ≤ 1}. Thus we have

P (X ≤ u) =
∫ u

−1

∫ √
1−x2

−
√

1−x2

1
π
dy dx

=
1
π

∫ u

−1
2
√

1− x2 dx

=
1
2

+
1
π
u
√

1− u2 +
1
π

sin−1(u).

Note that to find the marginal density of X, we can differentiate
P (X ≤ u) with respect to u:

fX(x) =
2
π

√
1− x2 for |x| ≤ 1.

It is easy to see (by symmetry) that Y has the same marginal
density. ✸

The following result indicates how to obtain the joint density
(frequency) function of a subset of X1, · · · , Xk or the marginal
density function of one of the Xi’s.

THEOREM 2.1 (a) Suppose that X = (X1, · · · , Xk) has joint
frequency function f(x). For : < k, the joint frequency function of
(X1, · · · , X�) is

g(x1, · · · , x�) =
∑

x�+1,···,xk

f(x1, · · · , xk).

(b) Suppose that X = (X1, · · · , Xk) has joint density function f(x).
For : < k, the joint density function of (X1, · · · , X�) is

g(x1, · · · , x�) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, · · · , xk) dx�+1 · · · dxk.

Proof. (a) This result follows trivially since

P (X1 = x1, · · · , X� = x�) =
∑

(x�+1,···,xk)

P (X1 = x1, · · · , Xk = xk)

for any x1, · · · , x�.
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(b) For any x1, · · · , x�,

P (X1 ≤ x1, · · · , X� ≤ x�)

=
∫ x1

−∞
· · ·

∫ x�

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(t1, · · · , tk) dtk · · · dt�+1dt� · · · dt1

=
∫ x1

−∞
· · ·

∫ x�

−∞
g(t1, · · · , t�) dt� · · · dt1

and so g(x1, · · · , x�) is the joint density of (X1, · · · , X�).
Theorem 2.1 can be applied to find the marginal density function

of X in Example 2.1. Since f(x, y) = 0 for |y| >
√

1− x2 and
|x| ≤ 1, it follows that the marginal density of X is

fX(x) =
1
π

∫ √
1−x2

−
√

1−x2
dy

=
2
π

√
1− x2

for |x| ≤ 1 as given in Example 2.1.
As is the case for continuous random variables, the joint density

function of a continuous random vector is not uniquely defined; for
example, we could change f(x) at a countably infinite number of
points and the resulting function would still satisfy the definition.
However, just as it is useful to think of the density function as
the derivative of the distribution function of a random variable,
we can think of the joint density as a partial derivative of
the joint distribution function. More precisely, if F (x1, · · · , xk) is
differentiable then we can write

f(x1, · · · , xk) =
∂k

∂x1 · · · ∂xk
F (x1, · · · , xk).

It is also important to note that the joint density function
of (X1, · · · , Xk) need not exist even if each of X1, · · · , Xk have
their own marginal density function. For example, suppose that
X2 = g(X1) for some continuous function g. Existence of a joint
density f(x1, x2) of (X1, X2) implies that the range of (X1, X2)
contains an open rectangle of the form

{(x1, x2) : a1 < x1 < b1, a2 < x2 < b2}.

However, since the range of (X1, X2) is at most

{(x1, x2) : −∞ < x1 <∞, x2 = g(x1)}
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which does not contain an open rectangle, we can conclude that
(X1, X2) does not have a joint density function.

Independent random variables

DEFINITION. Let X1, · · · , Xk be random variables defined on
the same sample space. X1, · · · , Xk are said to be independent if
the events [a1 < X1 ≤ b1], [a2 < X2 ≤ b2], · · · , [ak < Xk ≤ bk] are
independent for all ai < bi, i = 1, · · · , k. An infinite collection
X1, X2, · · · of random variables are independent if every finite
collection of random variables is independent.
If (X1, · · · , Xk) have a joint density or joint frequency function

then there is a simple equivalent condition for independence.
THEOREM 2.2 If X1, · · · , Xk are independent and have joint
density (or frequency) function f(x1, · · · , xk) then

f(x1, · · · , xk) =
k∏
i=1

fi(xi)

where fi(xi) is the marginal density (frequency) function of Xi.
Conversely, if the joint density (frequency) function is the product
of marginal density (frequency) functions then X1, · · · , Xk are
independent.
Proof. We will give the proof only for the case where f(x1, · · · , xn)
is a joint density function; the proof for the frequency function case
is similar. If X1, · · · , Xk are independent,

P (a1 < X1 ≤ b1, · · · , ak < Xk ≤ bk)

=
k∏
i=1

P (ai < Xi ≤ bi)

=
k∏
i=1

∫ bi

ai

fi(xi) dxi

=
∫ bk

ak

· · ·
∫ b1

a1

k∏
i=1

fi(xi) dx1 · · · dxk

and so f1(x1) × · · · × fk(xk) is the joint density of (X1, · · · , Xk).
Conversely, if f(x1, · · · , xk) = f1(x1) · · · fk(xk) then it is easy to
verify that [a1 < X1 ≤ b1], · · · , [ak < Xk ≤ bk] are independent for
all choices of the ai’s and bi’s.
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Independence is an important assumption for many statistical
models. Assuming independence essentially allows us to concen-
trate on the marginal distributions of random variables; given these
marginal distributions together with independence, we can deter-
mine the joint distribution of the random variables. If X1, · · · , Xn

are independent random variables with the same marginal distri-
bution, we say that X1, · · · , Xn are independent, identically dis-
tributed (i.i.d.) random variables.

EXAMPLE 2.2: Suppose that X1, · · · , Xn are i.i.d. continuous
random variables with common (marginal) density f(x) and dis-
tribution function F (x). Given X1, · · · , Xn, we can define two new
random variables

U = min(X1, · · · , Xn) and V = max(X1, · · · , Xn),

which are the minimum and maximum of the i.i.d. sample. It is
fairly simple to determine the marginal densities of U and V . We
note that U > x if, and only if, Xi > x for all i and also that V ≤ x
if, and only if, Xi ≤ x for all i. Thus

P (U ≤ x) = 1− P (U > x)
= 1− P (X1 > x, · · · , Xn > x)
= 1− [1− F (x)]n

and

P (V ≤ x) = P (X1 ≤ x, · · · , Xn ≤ n)
= [F (x)]n.

From this it follows that the marginal densities of U and V are

fU (x) = n[1− F (x)]n−1f(x)

and
fV (x) = n[F (x)]n−1f(x).

The joint density of (U, V ) is somewhat more complicated. Define
fU,V (u, v) to be this joint density. Since U ≤ V , it follows that
fU,V (u, v) = 0 for u > v. For u ≤ v, we have

P (U ≤ u, V ≤ v) = P (V ≤ v)− P (U > u, V ≤ v)
= P (V ≤ v)

−P (u < X1 ≤ v, · · · , u < Xn ≤ v)
= [F (v)]n − [F (v)− F (u)]n.
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Now if P (U ≤ u, V ≤ v) is twice-differentiable with respect to u
and v, we can evaluate the joint density of (U, V ) by

fU,V (u, v) =
∂2

∂u∂v
P (U ≤ u, V ≤ v)

= n(n− 1)[F (v)− F (u)]n−2f(u)f(v).

In general, we have

fU,V (u, v) =
{

n(n− 1)[F (v)− F (u)]n−2f(u)f(v) for u ≤ v
0 otherwise

as the joint density of (U, V ). ✸

Transformations

Suppose that X = (X1, · · · , Xk) is a random vector with some
joint distribution. Define new random variables Yi = hi(X) (i =
1, · · · , k) where h1, · · · , hk are real-valued functions. We would like
to determine
• the (marginal) distribution of Yi, and
• the joint distribution of Y = (Y1, · · · , Yk).
The two questions above are, of course, related; if the joint
distribution of Y is known then we can (at least in theory) find
the marginal distribution of a single Yi. On the other hand, it
would seem to be easier to determine the marginal distribution of a
single Yi than the joint distribution of Y ; while this is true in some
cases, in many cases (particularly when the Yi’s are continuous), the
marginal distribution is most easily determined by first determining
the joint distribution.

We will first consider determining the marginal distribution of
a single Yi. Given a random vector X = (X1, · · · , Xk), define
Y = h(X) for some (real-valued) function h. To simplify the
discussion somewhat, we will assume that X has a joint density
or joint frequency function. The following general algorithm can be
used for determining the distribution of Y :
• Find P (Y ≤ y) (or P (Y = y) if this is non-zero) by integrat-

ing (summing) the joint density (frequency) function over the
appropriate region.

• If Y is a continuous random variable, write

P (Y ≤ y) =
∫ y

−∞
fY (t) dt
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to obtain the density function fY (y) of Y ; typically, this can be
done by differentiating P (Y ≤ y).

This algorithm is conceptually simple but not always feasible in
practice unless h is a fairly simple function. In the case where Y is
a sum of two random variables (independent or not), the algorithm
is very simple to apply.

EXAMPLE 2.3: Suppose that X1, X2 are discrete random vari-
ables with joint frequency function fX(x1, x2) and let Y = X1+X2.
Then

fY (y) = P (Y = y) =
∑
x

P (X1 = x,X2 = y − x)

=
∑
x

fX(x, y − x)

is the frequency function of Y . ✸

EXAMPLE 2.4: Suppose that X1, X2 be continuous random
variables with joint density function fX(x1, x2) and let Y = X1 +
X2. We can obtain P (Y ≤ y) by integrating the joint density over
the region {(x1, x2) : x1 + x2 ≤ y}. Thus

P (Y ≤ y) =
∫ ∞

−∞

∫ y−x2

−∞
fX(x1, x2) dx1 dx2

=
∫ ∞

−∞

∫ y

−∞
fX(t− x2, x2) dt dx2

(setting t = x1 + x2)

=
∫ y

−∞

∫ ∞

−∞
fX(t− x2, x2) dx2 dt.

Thus it follows that Y has a density function

fY (y) =
∫ ∞

−∞
fX(y − u, u) du

or equivalently

fY (y) =
∫ ∞

−∞
fX(u, y − u) du.

Note that if both X and Y are nonnegative random variables then
fX(y − u, u) = 0 if u < 0 or if u > y. In this case, the density
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simplifies to
fY (y) =

∫ y

0
fX(y − u, u) du.

Notice that the expression for the density function of Y is similar
to the expression for the frequency function of Y in Example 2.3
with the integral replacing the summation. ✸

We now turn our attention to finding the joint density of
Y = (Y1, · · · , Yk) where Yi = hi(X1, · · · , Xk) (i = 1, · · · , k) and
X = (X1, · · · , Xk) has a joint density fX .

We start by defining a vector-valued function h whose elements
are the functions h1, · · · , hk:

h(x) =


h1(x1, · · · , xk)
h2(x1, · · · , xk)

...
hk(x1, · · · , xk)

 .

We will assume (for now) that h is a one-to-one function with
inverse h−1 (that is, h−1(h(x)) = x). Next we will define the
Jacobian matrix of h to be a k×k whose i-th row and j-th column
element is

∂

∂xj
hi(x1, · · · , xk)

with the Jacobian of h, Jh(x1, · · · , xk), defined to be the determi-
nant of this matrix.

THEOREM 2.3 Suppose that P (X ∈ S) = 1 for some open set
S ⊂ Rk. If
(a) h has continuous partial derivatives on S,
(b) h is one-to-one on S,
(c) Jh(x) �= 0 for x ∈ S
then (Y1, · · · , Yk) has joint density function

fY (y) =
fX(h−1(y))
|Jh(h−1(y))|

= fX(h−1(y))|Jh−1(y)|

for y ∈ h(S). (Jh−1 is the Jacobian of h−1.)

The proof of Theorem 2.3 follows from the standard change-of-
variables formula for integrals in multivariate calculus.
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EXAMPLE 2.5: Suppose that X1, X2 are independent Gamma
random variables with common scale parameters:

X1 ∼ Gamma(α, λ) and X2 ∼ Gamma(β, λ).

Define

Y1 = X1 + X2

Y2 =
X1

X1 + X2

and note that Y1 takes values in the interval (0,∞) while Y2 takes
its values in (0, 1). The functions h and h−1 in this case are

h(x1, x2) =
(

x1 + x2

x1/(x1 + x2)

)
and h−1(y1, y2) =

(
y1y2

y1(1− y2)

)
and the Jacobian of h−1 is Jh−1(y1, y2) = −y1. The joint density of
X1 and X2 can be determined by multiplying the marginal densities
together:

fX(x1, x2) =
λα+βxα−1

1 xβ−1
2 exp[−λ(x1 + x2)]
Γ(α)Γ(β)

for x1, x2 > 0

Now applying Theorem 2.3 and doing some rearranging, we get

fY (y1, y2) = g1(y1)g2(y2)

where

g1(y1) =
λα+βyα+β−1

1 exp(−λy1)
Γ(α + β)

and g2(y2) =
Γ(α + β)
Γ(α)Γ(β)

yα−1
2 (1− y2)β−1

for 0 < y1 <∞ and 0 < y2 < 1.
There are several things to note here. First, Y1 is independent

of Y2; second, Y1 has a Gamma distribution with shape parameter
α+β and scale parameter λ; finally, Y2 has a Beta distribution with
parameters α and β (Y2 ∼ Beta(α, β)). ✸

Theorem 2.3 can be extended to the case where the transforma-
tion h is not one-to-one. Suppose that P [X ∈ S] = 1 for some open
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set and that S is a disjoint union of open sets S1, · · · , Sm where h
is one-to-one on each of the Sj ’s (with inverse h−1

j on Sj). Then
defining (Y1, · · · , Yk) as before, the joint density of (Y1, · · · , Yk) is

fY (y) =
m∑
j=1

fX(h−1
j (y))|Jh−1

j
(y)|I(h−1

j (y ∈ Sj)

where Jh−1
j

is the Jacobian of h−1
j .

EXAMPLE 2.6: Suppose that X1, · · · , Xn are i.i.d. random
variables with density function f(x). Reorder the Xi’s so that
X(1) < X(2) < · · · < X(n); these latter random variables are called
the order statistics of X1, · · · , Xn. Define Yi = X(i) and notice
that the transformation taking X1, · · · , Xn to the order statistics
is not one-to-one; given a particular ordering y1 < y2 < · · · < yn,
(x1, · · · , xn) could be any one of the n! permutations of (y1, · · · , yn).
To determine the joint density of the order statistics, we divide the
range of (X1, · · · , Xn) into the n! disjoint subregions

S1 = {(x1, · · · , xn) : x1 < x2 < · · · < xn}
S2 = {(x1, · · · , xn) : x2 < x1 < x3 < · · · < xn}

...
...

...
Sn! = {(x1, · · · , xn) : xn < xn−1 < · · · < x1}

corresponding to the n! orderings of (x1, · · · , xn). Note that the
transformation h from the Xi’s to the order statistics is one-
to-one on each Sj ; moreover, the Jacobian Jh−1

j
= ±1 for each

j = 1, · · · , n!. Since the joint density of (X1, · · · , Xn) is

fX(x1, · · · , xn) = f(x1)× · · · × f(xn),

it follows that the joint density of the order statistics is

fY (y1, · · · , yn) =
n!∑
j=1

fX(h−1
j (y1, · · · , yn))

= n!
n∏
i=1

f(yi)

for y1 < y2 < · · · < yn. ✸
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Expected values

Suppose that X1, · · · , Xn are random variables defined on some
sample space and let Y = h(X1, · · · , Xk) for some real-valued
function h. In section 1.6, we defined the expected value of Y to be

E(Y ) =
∫ ∞

0
P (Y > y) dy −

∫ 0

−∞
P (Y ≤ y) dy.

This formula implies that we need to first determine the distribution
function of Y (or equivalently its density or frequency function) in
order to evaluate E(Y ). Fortunately, evaluating E(Y ) is typically
not so complicated if X = (X1, · · · , Xk) has a joint density or
frequency function; more precisely, we can define

E[h(X)] =
∑
x

h(x)f(x)

if X has joint frequency function f(x) and

E[h(X)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
h(x)f(x) dx1 · · · dxk

if X has joint density function f(x). (Of course, in order for the
expected value to be finite we require that E[|h(X)|] <∞.)

PROPOSITION 2.4 Suppose that X1, · · · , Xk are random vari-
ables with finite expected values.
(a) If X1, · · · , Xk are defined on the same sample space then

E(X1 + · · ·+ Xk) =
k∑
i=1

E(Xi).

(b) If X1, · · · , Xk are independent random variables then

E

(
k∏
i=1

Xi

)
=

k∏
i=1

E(Xi).

The proofs of parts (a) and (b) of Proposition 2.4 are quite simple
if we assume that (X1, · · · , Xk) has a joint density or frequency
function; this is left as an exercise. More generally, the proofs are a
bit more difficult but can be found in a more advanced probability
text such as Billingsley (1995).

EXAMPLE 2.7: Suppose that X1, · · · , Xn are independent ran-
dom variables with moment generating functions m1(t), · · · ,mn(t)
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respectively. Define S = X1 + · · · + Xn; the moment generating
function of S is

mS(t) = E[exp(tS)]
= E[exp(t(X1 + · · ·+ Xn))]
= E[exp(tX1) exp(tX2)× · · · × exp(tXn)]

=
n∏
i=1

E[exp(tXi)]

=
n∏
i=1

mi(t)

where we use the independence of X1, · · · , Xn. Thus the moment
generating function of a sum of independent random variables is
the product of the individual moment generating functions. ✸

EXAMPLE 2.8: Suppose that X1, · · · , Xn are independent Nor-
mal random variables with E(Xi) = µi and Var(Xi) = σ2

i . Again
define S = X1 + · · · + Xn. The moment generating function of Xi

is
mi(t) = exp

(
µit +

1
2
σ2
i t

2
)

and so the moment generating function of S is

mS(t) =
n∏
i=1

mi(t) = exp

(
t

n∑
i=1

µi +
t2

2

n∑
i=1

σ2
i

)
.

Since moment generating functions characterize distributions, it is
easy to see that S has a Normal distribution with mean

∑n
i=1 µi

and variance
∑n

i=1 σ
2
i . ✸

EXAMPLE 2.9: Suppose that X1, · · · , Xn are i.i.d. random
variables with moment generating function m(t). Define

X̄n =
1
n

n∑
i=1

Xi

and let
mn(t) = E[exp(tX̄n)] = [m(t/n)]n

be its moment generating function. What happens to mn(t) as
n→∞? Note that we can write

m(t) = 1 + tE(X1) +
t2

2
E(X2

1 ) +
t3

6
E(X3

1 ) + · · ·
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and so

m(t/n) = 1 +
t

n
E(X1) +

t2

2n2
E(X2

1 ) +
t3

6n3
E(X3

1 ) + · · ·

= 1 +
t

n

(
E(X1) +

t

2n
E(X2

1 ) +
t2

6n2
E(X3

1 ) + · · ·
)

= 1 +
t

n
an(t)

where an(t) → E(X1) for all t as n→∞. Now using the fact that

lim
n→∞

(
1 +

cn
n

)
= exp(c)

if cn → c, it follows that

lim
n→∞

mn(t) = lim
n→∞

(
1 +

tan(t)
n

)n

= exp(tE(X1)).

Note that exp(tE(X1)) is the moment generating function of a
random variable that takes the single value E(X1). This suggests
that sequence of random variables {X̄n} converges in some sense to
the constant E(X1). We will elaborate on this in Chapter 3. ✸

Covariance and Correlation

DEFINITION. Suppose X and Y are random variables with
E(X2) and E(Y 2) both finite and let µX = E(X) and µY =
E(Y ). The covariance between X and Y is

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E(XY )− µXµY .

The covariance is a measure of linear dependence between two
random variables. Using properties of expected values it is quite
easy to derive the following properties.
1. For any constants a, b, c, and d,

Cov(aX + b, cY + d) = a cCov(X,Y ).

2. If X and Y are independent random variables (with E(X) and
E(Y ) finite) then Cov(X,Y ) = 0.

The converse to 2 is not true. In fact, it is simple to find an example
where Y = g(X) but Cov(X,Y ) = 0.

EXAMPLE 2.10: Suppose that X has a Uniform distribution on
the interval [−1, 1] and let Y = −1 if |X| < 1/2 and Y = 1 if
c© 2000 by Chapman & Hall/CRC



|X| ≥ 1/2. Since E(X) = E(Y ) = 0, Cov(X,Y ) = E(XY ) and

XY =
{ −X if |X| < 1/2

X if |X| ≥ 1/2.

Thus

E(XY ) =
1
2

∫ −1/2

−1
x dx +

1
2

∫ 1/2

−1/2
(−x) dx +

1
2

∫ 1

1/2
x dx = 0

and Cov(X,Y ) = 0 even though Y = g(X). ✸

PROPOSITION 2.5 Suppose that X1, · · · , Xn are random vari-
ables with E(X2

i ) <∞ for all i. Then

Var

(
n∑
i=1

aiXi

)
=

n∑
i=1

a2
iVar(Xi) + 2

n∑
j=2

j−1∑
i=1

aiajCov(Xi, Xj).

Proof. Define µi = E(Xi). Then

Var

(
n∑
i=1

aiXi

)
= E

 n∑
i=1

n∑
j=1

aiaj(Xi − µi)(Xj − µj)


=

n∑
i=1

n∑
j=1

aiajE[(Xi − µi)(Xj − µj)]

=
n∑
i=1

a2
iVar(Xi) + 2

n∑
j=2

j−1∑
i=1

aiajCov(Xi, Xj)

since Cov(Xi, Xj) = Cov(Xj , Xi). ✷

Note that Proposition 2.5 implies that if X1, · · · , Xn are indepen-
dent random variables then the variance of X1 + · · ·+Xn is simply
the sum of the variances of the Xi’s.

EXAMPLE 2.11: Suppose we are sampling without replacement
from a finite population consisting of N items a1, · · · , aN . Let Xi

denote the result of the i-th draw; we then have

P (Xi = ak) =
1
N

and P (Xi = ak, Xj = a�) =
1

N(N − 1)

where 1 ≤ i, j, k, : ≤ N , i �= j and k �= :. Suppose we define

Sn =
n∑
i=1

Xi

c© 2000 by Chapman & Hall/CRC



where n ≤ N ; what are the mean and variance of Sn?
First of all, we define

µa =
1
N

N∑
k=1

ak and σ2
a =

1
N

N∑
k=1

(ak − µa)2,

which are the mean and variance of the population; it is easy to see
that E(Xi) = µa and Var(Xi) = σ2

a. Thus it follows that

E(Sn) =
n∑
i=1

E(Xi) = nµa.

Var(Sn) is somewhat trickier; note that

Var(Sn) = nσ2
a + n(n− 1)Cov(X1, X2)

since Cov(Xi, Xj) will be the same for all i �= j. (Cov(Xi, Xj)
depends on the joint distribution of (Xi, Xj) and this is the same
for all i �= j.) We can determine Cov(X1, X2) using the joint
distribution of X1 and X2; however, an easier approach is to
consider the case n = N . SN =

∑N
k=1 ak, a constant, and so

Var(SN ) = 0. Thus

0 = Nσ2
a + N(N − 1)Cov(X1, X2)

and so
Cov(X1, X2) = − σ2

a

N − 1
.

Substituting into the expression for Var(Sn) above, we get

Var(Sn) = nσ2
a

(
N − n

N − 1

)
.

Note that if we sampled with replacement, the random variables
X1, X2, · · · would be independent and so Var(Sn) = nσ2

a, which is
greater than the variance when the sampling is without replacement
(provided n ≥ 2). The extra factor (N − n)/(N − 1) that appears
in Var(Sn) when the sampling is without replacement is called the
finite population correction. ✸

Given random variables X1, · · · , Xn, it is often convenient to
represent the variances and covariances of the Xi’s via a n × n
matrix. Set X = (X1, · · · , Xn)T (a column vector); then we define
the variance-covariance matrix (or covariance matrix) of X to
be an n × n matrix C = Cov(X) whose diagonal elements are
c© 2000 by Chapman & Hall/CRC



Cii = Var(Xi) (i = 1, · · · , n) and whose off-diagonal elements
are Cij = Cov(Xi, Xj) (i �= j). Variance-covariance matrices
can be manipulated usefully for linear transformations of X: If
Y = BX + a for some m × n matrix B and vector a of length m
then

Cov(Y ) = BCov(X)BT .

Likewise, if we define the mean vector of X to be

E(X) =

 E(X1)
...

E(Xn)


then E(Y ) = BE(X) + a.

While the covariance gives some indication of the linear associa-
tion between two random variables, its value is dependent on the
scale of the two random variables.
DEFINITION. Suppose that X and Y are random variables

where both E(X2) and E(Y 2) are finite. Then the correlation
between X and Y is

Corr(X,Y ) =
Cov(X,Y )

[Var(X)Var(Y )]1/2
.

The advantage of the correlation is the fact that it is essentially
invariant to linear transformations (unlike covariance). That is, if
U = aX + b and V = cY + d then

Corr(U, V ) = Corr(X,Y )

if a and c have the same sign; if a and c have different signs then
Corr(U, V ) = −Corr(X,Y ).
PROPOSITION 2.6 Suppose that X and Y are random vari-
ables where both E(X2) and E(Y 2) are finite. Then
(a) −1 ≤ Corr(X,Y ) ≤ 1;
(b) Corr(X,Y ) = 1 if, and only if, Y = aX + b for some a > 0;
Corr(X,Y ) = −1 if, and only if, Y = aX + b for some a < 0.

We will leave the proof of this result as an exercise. If X and Y
are independent random variables (with E(X2) and E(Y 2) finite)
then Corr(X,Y ) = 0 since Cov(X,Y ) = 0. However, as with
the covariance, a correlation of 0 does not imply independence.
Correlation is merely a measure of linear dependence between
random variables; it essentially measures the degree to which we
may approximate one random variable by a linear function of
another.
c© 2000 by Chapman & Hall/CRC



PROPOSITION 2.7 Suppose that X and Y are random vari-
ables where both E(X2) and E(Y 2) are finite and define

g(a, b) = E[(Y − a− bX)2].

Then g(a, b) is minimized at

b0 =
Cov(X,Y )
Var(X)

= Corr(X,Y )
(

Var(Y )
Var(X)

)1/2

and a0 = E(Y )− b0E(X)

with g(a0, b0) = Var(Y )(1− Corr2(X,Y )).

The proof is left as an exercise. Proposition 2.7 can be interpreted
by considering predicting Y as a linear function h of X and
considering the mean square prediction error E[(Y − h(X))2]. If
we take h(x) to be a constant, then as a function of a, E[(Y − a)2]
is minimized at a = E(Y ) with E[(Y − E(Y ))2] = Var(Y ). Taking
h(x) to be a linear function, the minimum mean square prediction
error (according to Proposition 2.7) is Var(Y )(1 − Corr2(X,Y )).
Thus the reduction in the mean square prediction error when
predicting Y by a linear function of X depends explicitly on the
correlation.

With some imagination, it is possible to derive a more useful
measure of dependence between two random variables. Let X and
Y be random variables and consider

Corr(φ(X), ψ(Y )).

If X and Y are independent then this correlation (when well-
defined) will always be 0 since φ(X) and ψ(Y ) will always be inde-
pendent. Other the other hand, if Y = φ(X) then Corr(φ(X), Y ) =
1 even if Corr(X,Y ) = 0. This suggests that we can define the
maximal correlation between X and Y to be

max-Corr(X,Y ) = sup
φ,ψ

Corr(φ(X), ψ(Y ))

where the supremum is taken over all functions φ and ψ with
Var(φ(X)) = Var(ψ(Y )) = 1. The condition that Var(φ(X)) =
Var(ψ(Y )) = 1 is needed to rule out constant transformations φ and
ψ. Clearly, max-Corr(X,Y ) ≥ 0 with max-Corr(X,Y ) = 0 if, and
only if, X and Y are independent. (Of course, the functions φ and
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Figure 2.1 1000 independent pairs of random variables uniformly distributed on
the unit circle.

ψ maximizing the correlation are not unique since Corr(aφ(X) +
b, cψ(Y ) + d) is the same as Corr(φ(X), ψ(Y )) if a and c have the
same sign.) Unfortunately, the maximal correlation is typically not
easy to compute. The following example is an exception.

EXAMPLE 2.12: Suppose that X and Y are random variables
with joint density function

f(x, y) =
1
π

if x2 + y2 ≤ 1.

Thus (X,Y ) have a Uniform distribution over the region {(x, y) :
x2 + y2 ≤ 1}; it can be shown that Cov(X,Y ) = Corr(X,Y ) = 0.
Buja (1990) shows that Cov(φ(X), ψ(Y )) is maximized when

φ(x) = x2 and ψ(y) = −y2.

The maximal correlation between X and Y is 1/3. Figure 2.1 is
a plot of 1000 independent pairs of observations from the density
f(x, y); Figure 2.2 shows the observations transformed to give the
maximal correlation. ✸
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Figure 2.2 Data in Figure 2.1 transformed to have maximal correlation.

2.3 Conditional distributions and expected values

We are often interested in the probability distribution of a random
variable (or random variables) given knowledge of some event A.

If the conditioning event A has positive probability then we
can define conditional distributions, conditional density functions
(marginal and joint) and conditional frequency functions using the
definition of conditional probability, for example,

P (X1 ≤ x1, · · · , Xk ≤ xk|A) =
P (X1 ≤ x1, · · · , Xk ≤ xk, A)

P (A)
.

In the case of discrete random variables, it is straightforward to
define the conditional frequency function of (say) X1, · · · , Xj given
the event Xj+1 = xj+1, · · · , Xk = xk as

f(x1, · · · , xj |xj+1, · · · , xk)

= P (X1 = x1, · · · , Xj = xj |Xj+1 = xj+1, · · · , Xk = xk)

=
P (X1 = x1, · · · , Xj = xj , Xj+1 = xj+1, · · · , Xk = xk)

P (Xj+1 = xj+1, · · · , Xk = xk)
,
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which is simply the joint frequency function of X1, · · · , Xk divided
by the joint frequency function of Xj+1, · · · , Xk.

In many problems, it is in fact the conditional distributions that
are most naturally specified and from these, the joint distribution
can be obtained. The following example is a non-trivial illustration
of this.

EXAMPLE 2.13: Mark/recapture experiments are used to esti-
mate the size of animal populations. Suppose that the size of the
population is N (unknown). Initially, m0 members of the popula-
tions are captured and tagged for future identification before being
returned to the population. Subsequently, a similar process is re-
peated k times: mi members are captured at stage i and we define
a random variable Xi to be the number of captured members who
were tagged previously; the mi−Xi non-tagged members are tagged
and all mi members are returned to the population.

If we assume that the population size does not change over
the course of the experiment then it is possible to derive the
joint distribution of (X1, · · · , Xk). Given our assumptions, it is
reasonable to assume that X1 has a Hypergeometric distribution;
that is,

P (X1 = x1) =

(
m0

x1

)(
N −m0

m1 − x1

)/(
N

m1

)
.

Similarly, given X1 = x1, X2 has a Hypergeometric distribution

P (X2 = x2|X1 = x1) =

(
n1

x2

)(
N − n1

n1 − x2

)/(
N

n1

)

where n1 = m0 +(m1−x1) is the number of tagged members of the
population prior to the second sampling stage. Similarly, we can find
the conditional distribution of Xj+1 given X1 = x1, · · · , Xj = xj .
Setting nj = m0 + (m1 − x1) + · · ·+ (mj − xj), we have

P (Xj+1 = xj+1|X1 = x1, · · · , Xj = xj)

=

(
nj
xj+1

)(
N − nj

mj+1 − xj+1

)/(
N

mj+1

)
.

The joint frequency function of (X1, · · · , Xk) is now obtained by
multiplying the respective conditional frequency functions:

P (X1 = x1, X2 = x2) = P (X1 = x1)P (X2 = x2|X1 = x1)
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and for k ≥ 3,

P (X1 = x1, · · · , Xk = xk)
= P (X1 = x1, · · · , Xk−1 = xk−1)

×P (Xk = xk|X1 = x1, · · · , Xk−1 = xk−1).

From a statistical point of view, the goal in this problem is to use
the information in (X1, · · · , Xk) to estimate the population size N .
✸

Defining conditional distributions when the conditioning event
has probability 0 is much more difficult but nonetheless an impor-
tant problem. For example, if we have two continuous random vari-
ables X and Y , we might be interested in the conditional distribu-
tion of Y given X = x where (since X is continuous) P (X = x) = 0.
DEFINITION. Suppose that (X1, · · · , Xk) has the joint density

function g(x1, · · · , xk). Then the conditional density function of
X1, · · · , Xj given Xj+1 = xj+1, · · · , Xk = xk is defined to be

f(x1, · · · , xj |xj+1, · · · , xk) =
g(x1, · · · , xj , xj+1, · · · , xk)

h(xj+1, · · · , xk)
provided that h(xj+1, · · · , xk), the joint density of Xj+1, · · · , Xk,
is strictly positive.
This conditional density function (viewed as a function of x1,

· · · , xj for fixed xj+1, · · · , xk) has the same properties as any other
density function; we can use this conditional density function to
evaluate conditional probabilities (given Xj+1 = xj+1, · · · , Xk =
xk) by integration as well as evaluate conditional expected values.
DEFINITION. Given an event A with P (A) > 0 and a random

variable X with E[|X|] <∞, we define

E(X|A) =
∫ ∞

0
P (X > x|A) dx−

∫ 0

−∞
P (X < x|A) dx

to be the conditional expected value of X given A.
The assumption that E[|X|] < ∞ is not always necessary to

ensure that E(X|A) is well-defined; for example, the condition A
may imply that X is bounded on A in which case the integral
defining E(X|A) would be well-defined.

The following result extends Proposition 1.4 (law of total proba-
bility) to conditional expectations.
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THEOREM 2.8 Suppose that A1, A2, · · · are disjoint events with
P (Ak) > 0 for all k and

⋃∞
k=1 Ak = Ω. Then if E[|X|] <∞,

E(X) =
∞∑
k=1

E(X|Ak)P (Ak).

Proof. Assume X ≥ 0 with probability 1. (Otherwise, split X into
its positive and negative parts.) Then

E(X|Ak) =
∫ ∞

0
P (X > x|Ak) dx

and so
∞∑
k=1

E(X|Ak)P (Ak) =
∞∑
k=1

∫ ∞

0
P (Ak)P (X > x|Ak) dx

=
∫ ∞

0

∞∑
k=1

P (Ak)P (X > x|Ak) dx

=
∫ ∞

0
P (X > x) dx

= E(X).

We can interchange the order of summation and integration because
P (Ak)P (X > x|Ak) ≥ 0.

Theorem 2.8 also holds if some of the Ak’s have P (Ak) = 0
provided we take care of the fact that E(X|Ak) is not necessarily
well-defined. This can be done by assigning E(X|Ak) an arbitrary
(but finite) value, which is then annihilated by multiplying by
P (Ak) = 0.

There is an interesting interpretation of Theorem 2.8 that will
be useful in a more general setting. Given E(X|Ak) (k = 1, 2, · · ·),
define a random variable Y such that

Y (ω) = E(X|Ak) if ω ∈ Ak (k = 1, 2, · · ·).
Y is now a discrete random variable whose expected value is

E(Y ) =
∑
y

y P (Y = y)

=
∞∑
k=1

E(X|Ak)P (Ak)

= E(X)
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by Theorem 2.8 (provided that E[|X|] <∞).
More generally, given a continuous random vector X, we would

like to define E(Y |X = x) for a random variable Y with E[|Y |] <
∞. Since the event [X = x] has probability 0, this is somewhat
delicate from a technical point of view, although if Y has a
conditional density function given X = x, f(y|x) then we can
define

E(Y |X = x) =
∫ ∞

−∞
y f(y|x) dy.

We can obtain similar expressions for E[g(Y )|X = x] provided
that we can define the conditional distribution of Y given X = x
in a satisfactory way.

In general, E[g(Y )|X = x] is a function of x. Moreover, if
h(x) = E[g(Y )|X = x] then

E[h(X)] = E[E[E(g(Y )|X]] = E[g(Y )]

as we had in Theorem 2.8. The following result records some of the
key properties of conditional expected values.

PROPOSITION 2.9 Suppose that X and Y are random vectors.
Then
(a) if E[|g1(Y )|] and E[|g2(Y )|] are finite,

E[a g1(Y ) + b g2(Y )|X = x]
= aE[g1(Y )|X = x] + bE[g2(Y )|X = x]

(b) E[g1(X)g2(Y )|X = x] = g1(x)E[g2(Y )|X = x] if E[|g2(Y )|]
is finite;
(c) If h(x) = E[g(Y )|X = x] then E[h(X)] = E[g(Y )] if E[|g(Y )|]
is finite.

A rigorous proof of Proposition 2.9 follows from a more techni-
cally rigorous definition of conditional expectation; see, for example,
Billingsley (1995). In special cases, for example when we assume a
conditional density, the proof is straightforward.

The following result provides a useful decomposition for the
variance of a random variable.

THEOREM 2.10 Suppose that Y is a random variable with finite
variance. Then

Var(Y ) = E[Var(Y |X)] + Var[E(Y |X)]

where Var(Y |X) = E[(Y − E(Y |X))2|X].
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Proof. Define h(X) = E(Y |X) and µ = E(Y ). Then

Var(Y ) = E[(Y − h(X) + h(X)− µ)2]

= E
[
E[(Y − h(X) + h(X)− µ)2|X]

]
= E

[
E[(Y − h(X))2|X]

]
+ E

[
E[(h(X)− µ)2|X]

]
+2E [E[(Y − h(X))(h(X)− µ)|X]] .

Now

E
[
E[(Y − h(X))2|X]

]
= E[Var(Y |X)]

and E
[
E[(h(X)− µ)2|X]

]
= E[(h(X)− µ)2]

= Var[E(Y |X)].

Finally, for the “cross-product” term, we have

E[(Y − h(X))(h(X)− µ)|X = x]
= (h(x)− µ)E[Y − h(X)|X = x]
= (h(x)− µ)[h(x)− h(x)]
= 0.

Thus E [E[(Y − h(X))(h(X)− µ)|X]] = 0,
which completes the proof.

EXAMPLE 2.14: Suppose that X1, X2, · · · are i.i.d. random
variables with mean µ and variance σ2; let N be a Poisson random
variable (with mean λ) that is independent of the Xi’s. Define the
random variable

S =
N∑
i=1

Xi

where S = 0 if N = 0. We would like to determine the mean and
variance of S.

First of all, note that E(S) = E[E(S|N)] and E(S|N = n) = nµ
since N is independent of the Xi’s. Thus

E(S) = µE(N) = λµ.

Likewise, we have Var(S) = Var[E(S|N)] + E[Var(S|N)]. We
already know that E(S|N) = µN and since the Xi’s are i.i.d. and
independent of N , we have Var(S|N = n) = nσ2. Thus

Var(S) = µ2Var(N) + σ2E(N) = λ(µ2 + σ2).
Note that µ2 + σ2 = E(X2

i ).
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The random variable S is said to have a compound Poisson
distribution. Such distributions are often used in actuarial science
to model the monetary value of claims against various types of
insurance policies in a given period of time; the motivation here is
that N represents the number of claims with the Xi’s representing
the monetary value of each claim. ✸

2.4 Distribution theory for Normal samples

In Example 1.15 we introduced the Normal distribution. Recall that
a random variable X has a Normal distribution with mean µ and
variance σ2 if its density is

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

The Normal distribution is very important in probability and
statistics as it is frequently used in statistical models and is often
used to approximate the distribution of certain random variables.

A number of distributions arise naturally in connection with
samples from a Normal distribution. These distributions include
the χ2 (chi-square) distribution, Student’s t distribution and the F
distribution.

The Multivariate Normal Distribution

Suppose that X1, · · · , Xp are i.i.d. Normal random variables with
mean 0 and variance 1. Then the joint density function of X =
(X1, · · · , Xp)T is

fX(x) =
1

(2π)p/2
exp

(
−1

2
(x2

1 + · · ·+ x2
p)

)
=

1
(2π)p/2

exp
(
−1

2
xTx

)
.

The random vector X has a standard multivariate (or p-variate)
Normal distribution.
DEFINITION. Let A be a p× p matrix and µ = (µ1, · · · , µp)T a
vector of length p. Given a standard multivariate Normal random
vector X, define

Y = µ + AX.

We say that Y has a multivariate Normal distribution with mean
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vector µ and variance-covariance matrix C = AAT . (We will
abbreviate this Y ∼ Np(µ, C).)

Note that C = AAT is a symmetric, nonnegative definite matrix
(that is, CT = C and vTCv ≥ 0 for all vectors v).

If A is an invertible matrix then the joint density of Y exists and
is given by

fY (y) =
1

(2π)p/2|det(C)|1/2 exp
(
−1

2
(y − µ)TC−1(y − µ)

)
.

Note that C−1 exists since A−1 exists. On the other hand, if A
is not invertible then the joint density of Y does not exist; Y is
defined on a hyperplane in Rp of dimension r = rank(C) < p.

We will now state some basic properties of the multivariate
Normal distribution. Assume that Y ∼ Np(µ, C) and let Cij be
the element of C in the i-th row and j-th column of C. Then
1. if B is an r × p matrix then

BY ∼ Nr(Bµ, BCBT );

2. any subcollection (Yi1 , · · · , Yik)T of Y has a multivariate Normal
distribution;

3. Yi ∼ N(µi, σ2
i ) where σ2

i = Cii;
4. Cov(Yi, Yj) = Cij .
Properties 2 and 3 follow from property 1 by choosing the matrix
B appropriately. Property 4 follows by writing Y = µ+AX where
X ∼ Np(0, I) and C = AAT ; if the i-th and j-th rows of A are aTi
and aTj then Yi = µi + aTi X and Yj = µj + aTj X, and so it is easy
to verify that

Cov(Yi, Yj) = aTi aj = Cij .

The χ2 distribution and orthogonal transformations

Suppose that X1, · · · , Xp are i.i.d. N(0, 1) random variables so that
X = (X1, · · · , Xp)T ∼ Np(0, I) where I is the identity matrix.
In some statistical applications, we are interested in the squared
“length” of X, ‖X‖2 = XTX.

DEFINITION. Let X ∼ Np(0, I) and define V = ‖X‖2. The
random variable V is said to have a χ2 (chi-square) distribution
with p degrees of freedom. (V ∼ χ2(p).)
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The density of a χ2 distribution is quite easy to determine. We
start with the case where p = 1; in this case, V = X2

1 and so

P (V ≤ x) = P (−
√
x ≤ X1 ≤

√
x)

= Φ(
√
x)− Φ(−

√
x)

where Φ is the N(0, 1) distribution function. Differentiating, we get
the density

fV (x) =
x−1/2

√
2π

exp(−x/2) (x > 0),

which is simply the density of a Gamma(1/2, 1/2) distribution; thus
a χ2(1) distribution is simply a Gamma(1/2, 1/2) distribution. The
general case now is simple since V = X2

1 + · · · + X2
p , a sum of p

independent χ2(1) random variables. It follows (from Example 2.5)
that the density of V ∼ χ2(p) is

fV (x) =
xp/2−1

2p/2Γ(p/2)
exp(−x/2) (x > 0).

Orthogonal transformations are effectively transformations that
preserve the length of vectors; for this reason, they turn out to be a
useful tool in connection with the multivariate Normal distribution.

To define an orthogonal matrix, we start by defining vectors (of
length p) a1,a2, · · · ,ap such that

aTk ak = 1 for k = 1, · · · , p and aTj ak = 0 for j �= k

The vectors a1, · · · ,ap are said to be orthogonal vectors and, in
fact, form an orthonormal basis for Rp; that is, any vector v ∈ Rp,
we have

v =
p∑
i=1

ciai.

Now define a p× p matrix O such that the k-th row of O is aTk :

O =

 aT1
...

aTp


Note that

OOT =

 aT1
...

aTp

 (a1 · · ·ap) = I
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and so O−1 = OT ; thus we also have OTO = I. The matrix O is
called an orthogonal (or orthonormal) matrix.

EXAMPLE 2.15: If p = 2, orthogonal matrices rotate vectors by
some angle θ. To see this, let

O =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
for some θ between 0 and 2π; it is easy to verify that O is an
orthogonal matrix and, in fact, an 2× 2 orthogonal matrix can be
written in this form. Now let v be any vector and write

v =
(

v1

v2

)
=

(
r cos(φ)
r sin(φ)

)
where r2 = vTv = v2

1 + v2
2 and φ is the angle between v and the

vector (1, 0)T . Then

Ov =
(

r cos(θ) cos(φ)− r sin(θ) sin(φ)
r sin(θ) cos(φ) + cos(θ) sin(φ)

)
=

(
r cos(θ + φ)
r sin(θ + φ)

)
.

Thus the orthogonal matrix O rotates the vector v by an angle θ.
✸

Now take X ∼ Np(0, I) and define define Y = OX where O is an
orthogonal matrix. It follows from the properties of the multivariate
Normal distribution that Y ∼ Np(0, I) since OOT = I. Moreover,

p∑
i=1

Y 2
i = Y TY

= XTOTOX

= XTX

=
p∑
i=1

X2
i

and both
∑p

i=1 X
2
i and

∑p
i=1 Y

2
i will have χ2 distributions with p

degrees of freedom.
Consider the following application of this theory. Suppose that

X1, · · · , Xn are i.i.d. Normal random variables with mean µ and
variance σ2 and define

X̄ =
1
n

n∑
i=1

Xi
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and

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2;

X̄ and S2 are called the sample mean and sample variance
respectively. We know already that X̄ ∼ N(µ, σ2/n). The following
results indicates that X̄ is independent of S2 and that the
distribution of S2 is related to a χ2 with n− 1 degrees of freedom.

PROPOSITION 2.11 (n− 1)S2/σ2 ∼ χ2(n− 1) and is indepen-
dent of X̄ ∼ N(µ, σ2).

Proof. First note that

(n− 1)
σ2

S2 =
1
σ2

n∑
i=1

(Xi − X̄)2

=
n∑
i=1

[
(Xi − µ)/σ − (X̄ − µ)/σ

]2
and so we can assume (without loss of generality) that µ = 0 and
σ2 = 1. Define an orthogonal matrix O whose first row consists
of n−1/2 repeated n times; the remaining rows can be determined
by some orthogonalization procedure (such as the Gram-Schmidt
procedure) but do not need to be specified here. Now let Y = OX
where X = (X1, · · · , Xn)T and note that

Y1 =
1√
n

n∑
i=1

Xi

is independent of the remaining elements of Y , Y2, · · · , Yn. We now
have

n∑
i=1

(Xi − X̄)2 =
n∑
i=1

X2
i −

(
1√
n

n∑
i=1

Xi

)2

=
n∑
i=1

Y 2
i − Y 2

1

=
n∑
i=2

Y 2
i

∼ χ2(n− 1).

Moreover,
∑n

i=1(Xi− X̄)2 depends only on Y2, · · · , Yn and hence is
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independent of Y1 =
√
nX̄. Thus in general we have (n − 1)S2/σ2

independent of X̄ (and S2 is independent of X̄).

The t and F distributions

DEFINITION. Let Z ∼ N(0, 1) and V ∼ χ2(n) be independent
random variables. Define T = Z/

√
V/n; the random variable T

is said to have Student’s t distribution with n degrees of freedom.
(T ∼ T (n).)

DEFINITION. Let V ∼ χ2(n) and W ∼ χ2(m) be independent
random variables. Define F = (V/n)/(W/m); the random
variable F is said to have an F distribution with n and m degrees
of freedom. (F ∼ F(n,m).)

Alternatively, we could define the t and F distributions via
their density functions. However, the representation of t and F
random variables as functions of Normal and χ2 random variables
turns out to be convenient in many situations (see Example 2.17
below). Nonetheless, it is fairly easy to find the densities of the t
and F distributions using the representations as well as some the
techniques developed earlier for finding densities of functions of
random variables.

EXAMPLE 2.16: Suppose that Z ∼ N(0, 1) and V ∼ χ2(n)
are independent random variables, and define T = Z/

√
V/n. To

determine the density of T , we will introduce another random
variable S, determine the joint density of (S, T ) and then integrate
out this joint density to determine the marginal density of T .
The choice of S is somewhat arbitrary; we will take S = V so
that (S, T ) = h(V,Z) for some function h that is one-to-one over
the range of the random variables V and Z. The inverse of h is
h−1(s, t) = (s, t

√
s/n) and the Jacobian of h−1 is

√
s/n. Thus the

joint density of (S, T ) is (after substituting the appropriate terms
into the joint density of (V,Z))

g(s, t) =
s(n−1)/2

2(n+1)/2
√
nπΓ(n/2)

exp
[
−s

2
(1 + t2/n)

]
for s > 0 and −∞ < t <∞. Integrating out over s, we get

fT (t) =
∫ ∞

0
g(s, t) ds
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=
Γ((n + 1)/2)√

nπΓ(n/2)

(
1 +

t2

n

)−(n+1)/2

Note that when n = 1, the t distribution is simply the Cauchy
distribution given in Example 1.26. ✸

We can go through a similar procedure to determine the density
of the F distribution but that will be left as an exercise. The density
of an F distribution with n and m degrees of freedom is

f(x) =
nn/2Γ((n + m)/2)
mn/2Γ(m/2)Γ(n/2)

x(n−2)/2 (1 + ns/m)−(n+m)/2

for x > 0.

EXAMPLE 2.17: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance σ2. Define the sample
mean and variance of the Xi’s:

X̄ =
1
n

n∑
i=1

Xi

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Now define T =
√
n(X̄ −µ)/S; it is well-known that T ∼ T (n− 1).

To see this, note that we can rewrite T as

T =
√
n(X̄ − µ)/σ√

S2/σ2

where
√
n(X̄ − µ)/σ ∼ N(0, 1) and independent of (n− 1)S2/σ2 ∼

χ2(n−1) by Proposition 2.11. Thus using the definition of Student’s
t distribution, T ∼ T (n− 1). ✸

Projection matrices

Orthogonal matrices effectively “rotate” vectors without changing
their length. Another class of matrices that has important applica-
tions to probability and statistics is projection matrices.

DEFINITION. Let H be a symmetric p×p matrix with H2 = H.
Then H is called a projection matrix.

As its name suggests, a projection matrix “projects” onto a
subspace S of Rp. More precisely, if v ∈ Rp is a vector then Hv lies
c© 2000 by Chapman & Hall/CRC



in the subspace S. Moreover, Hv is the “closest” vector in S to v
in the sense that Hv minimizes ‖v − u‖2 over all u ∈ S.

EXAMPLE 2.18: Suppose that x1, · · · ,xr be r ≤ p linearly
independent vectors in Rp. (Linear independence means that c1x1+
· · ·+ crxr = 0 implies c1 = · · · = cr = 0.) Define the matrices

B = (x1 · · ·xr)

and
H = B(BTB)−1BT .

Then H is a projection matrix onto the space spanned by the
vectors x1, · · · ,xr. To see this, note that

HT =
(
B(BTB)−1BT

)T
= B(BTB)−1BT = H

and

H2 = B(BTB)−1BTB(BTB)−1BT = B(BTB)−1BT = H.

Moreover, for any vector v, Hv clearly lies in the space spanned by
x1, · · · ,xr since we can write

Hv = B(BTB)−1BTv = Bv&

and Bv& lies in the space spanned by x1, · · · ,xr. ✸

The projection matrix in Example 2.18 turns out to have special
significance in statistics, for example in linear regression analysis
(see Chapter 8).

If H is a projection matrix onto the subspace S and v ∈ S then
Hv = v which implies that 1 is an eigenvalue of H. The following
result shows that 0 and 1 are the only possible eigenvalues of H.

PROPOSITION 2.12 Suppose that H is a projection matrix.
Then 0 and 1 are the only possible eigenvalues of H.

Proof. Let λ be an eigenvalue of H and v be a corresponding
eigenvector; thus Hv = λv. Multiplying both sides by H, we get

H2v = Hλv = λHv = λ2v.

However, H2 = H and so λ2 is an eigenvalue of H with eigenvector
v; thus λ2 = λ and so λ = 0 or 1.

Since H is symmetric , we can find eigenvectors a1, · · · ,ap of H,
which form an orthonormal basis for Rp. Since 0 and 1 are the only
c© 2000 by Chapman & Hall/CRC



possible eigenvalues of H, we have

Hak =
{

ak k = 1, · · · , r
0 k = r + 1, · · · , p

where a1, · · · ,ar are the eigenvectors of H with eigenvalues equal
to 1. (r is the rank of H.)

Now take any vector v ∈ Rp. Since the eigenvectors of H,
a1, · · · ,ap form an orthonormal basis for Rp, we have

v =
p∑

k=1

ckak where ck = vTak.

From this it follows that

Hv =
p∑

k=1

ckHak =
r∑

k=1

ckak.

The space S onto which the matrix H projects is spanned by the
eigenvectors a1, · · · ,ar. The space spanned by the vectors ar+1, · · · ,
ap is called the orthogonal complement of S. If S⊥ is the orthogonal
complement of S, v ∈ S and v⊥ ∈ S⊥ then vTv⊥ = 0; that is, v
and v⊥ are orthogonal vectors.

PROPOSITION 2.13 Suppose that H is a projection matrix that
projects onto the subspace S. Then I − H is a projection matrix
projecting onto the orthogonal complement of S.

Proof. I−H is a projection matrix since (I−H)T = I−HT = HT

and (I −H)2 = I − 2H + H2 = I −H. To see that I −H projects
onto the orthogonal complement of S, write

v =
p∑

k=1

ckak

where a1, · · · ,ap are the eigenvectors of H. Then

(I −H)v =
p∑

k=1

ckak −
r∑

k=1

ckak =
p∑

k=r+1

ckak,

which lies in the orthogonal complement of S.

From this result, we obtain the almost trivial decomposition of a
vector v into a sum of orthogonal vectors:

v = Hv + (I −H)v
= u + u⊥
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where u ∈ S and u⊥ ∈ S⊥.
We will now consider an application of projection matrices using

the multivariate Normal distribution. Suppose that X ∼ Np(0, I)
and define the random variable

V = XTHX

for some projection matrix H. The following result shows that V
has a χ2 distribution.
PROPOSITION 2.14 V has a χ2 distribution with r = rank(H)
degrees of freedom.
Proof. First of all, note that

XTHX = XTH2X = (HX)T (HX) = ‖HX‖2

and

HX =
r∑

k=1

(aTk X)ak

where a1, · · · ,ap are the (orthonormal) eigenvectors of H. Now we
can define the orthogonal matrix

O =

 aT1
...

aTp


and define Y = OX; Y ∼ Np(0, I). If Y = (Y1, · · · , Yp)T then
Yk = aTk X where Y1, · · · , Yp are i.i.d. N(0, 1) random variables.
Thus we have

HX =
r∑

k=1

Ykak

and so

(HX)T (HX) = XTHX

=
r∑

k=1

r∑
j=1

YjYka
T
j ak

=
r∑

k=1

Y 2
k

∼ χ2(r)

since aTk ak = 1 and aTk aj = 0 for j �= k.
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EXAMPLE 2.19: Suppose that X ∼ Nn(0, I). If H is a
projection matrix with rank(H) = r < n then (by Proposition
2.14) ‖HX‖2 ∼ χ2(r) and likewise ‖(I − H)X‖2 ∼ χ2(n − r);
moreover, these two random variables are independent. Thus if we
define

W =
‖HX‖2/r

‖(I −H)X‖2/(n− r)
then W ∼ F(r, n− r). ✸

2.5 Poisson processes

Suppose we are interested in the arrival patterns of customers
entering a grocery store at different times of the day. Let T1, T2, · · ·
be random variables representing the arrival times of the customers
and, for a given time interval A, define

N(A) =
∞∑
i=1

I(Ti ∈ A)

to be the number of arrivals in the interval A. Clearly, N(A) is a
nonnegative integer-valued random variable that gives the number
of arrivals in the interval A. If B is another interval that is disjoint
of A (that is, A ∩B = ∅) then clearly

N(A ∪B) = N(A) + N(B).

We can now specify a model for the “point process” N(·) by
specifying the joint distribution of the random vector (N(A1),
N(A2), · · · , N(Ak)) for any sets A1, · · · , Ak.

DEFINITION. Let S ⊂ Rk and suppose that for any A ⊂ S,
N(A) is a nonnegative integer-valued random variable. Then
N(·) is called a point process (on S) if
(a) N(∅) = 0;
(b) N(A ∪B) = N(A) + N(B) for any disjoint sets A and B.

DEFINITION. A point process N(·) defined on S ⊂ Rk is called
a (homogeneous) Poisson process if
(a) For any A = [a1, b1]× · · · × [ak, bk] ⊂ S, N(A) has a Poisson
distribution with mean

λ
k∏
i=1

(bi − ai)

for some λ > 0;
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(b) For any two disjoint sets A and B, N(A) and N(B) are
independent random variables.
The parameter λ is called the intensity of the Poisson process.

Although the definition gives the distribution of N(A) only for
“rectangular” sets A, it is quite easy to extend this to a general set
A. Any set A can be expressed as a countable union of disjoint
rectangles B1, B2, · · ·. Since N(B1), N(B2), · · · are independent
Poisson random variables, we have that

N(A) =
∞∑
i=1

N(Bi)

is Poisson. The mean of N(A) is λ vol(A) where vol(A) is the
“volume” of the set A.

EXAMPLE 2.20: A Poisson process on the positive real line
can be constructed as follows. Let X1, X2, · · · be independent
Exponential random variables with parameter λ and define

Tk =
k∑
i=1

Xi;

note that Tk has a Gamma distribution with shape parameter k
and scale parameter λ. Then we can define a point process N(·)
such that

N(A) =
∞∑
k=1

I(Tk ∈ A).

To see that N(·) is a Poisson process, note that N(A) and N(B) will
be independent for disjoint A and B because of the independence
of the Xi’s and the “memorylessness” property of the Exponential
distribution. Moreover, it follows from the memorylessness property
that if A = [s, s + t], the distribution of N(A) is the same for all
s ≥ 0. Thus it suffices to show that N(A) has a Poisson distribution
for A = [0, t].

First of all, note that N(A) ≤ k if, and only if, Yk+1 > t. Since
Yk+1 has a Gamma distribution with parameters k + 1 and λ, we
have

P (N(A) ≤ k) =
λk+1

k!

∫ ∞

t
xk exp(−λx) dx
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=
(λt)k exp(−λt)

k!

+
λk

(k − 1)!

∫ ∞

t
xk−1 exp(−λx) dx

after integrating by parts. Repeating this procedure (reducing the
power of x by one at each stage), we get

P (N(A) ≤ k) =
k∑

j=0

(λt)j exp(−λt)
j!

and so N(A) has a Poisson distribution with mean λt for A = [0, t].
Thus the point process N(·) is a Poisson process with intensity λ.
✸

The homogeneous Poisson process assumes a constant intensity
λ. One can also define a non-homogeneous Poisson process N(·) on
S ⊂ Rk whose intensity varies over S. Given a function λ(t) defined
for t ∈ S, N(·) is a non-homogeneous Poisson process with intensity
λ(t) if N(A) and N(B) are independent for disjoint A and B with

N(A) ∼ Pois
(∫

A
λ(t) dt

)
.

An interesting type of non-homogeneous Poisson process is
the marked Poisson process. Let T1, T2, · · · be the points of a
homogeneous Poisson process on S with intensity λ and define i.i.d.
random variables X1, X2, · · · that are also independent of the Ti’s.
Then for A ⊂ S and B ⊂ R, define

N∗(A×B) =
∞∑
i=1

I(Ti ∈ A,Xi ∈ B).

Then N∗(A × B) ∼ Pois(λ vol(A)P (X1 ∈ B)). Moreover, if A1

and A2 are disjoint sets then N∗(A1 × B1) and N∗(A2 × B2) are
independent for any B1 and B2; the same is true if B1 and B2 are
disjoint. N∗ is typically on non-homogeneous Poisson process on
S ×R whose intensity depends on the distribution of the Xi’s.

EXAMPLE 2.21: In forestry, one measure of the density of a
“stand” of trees is the basal area proportion, which is roughly
defined to be the proportion of the forest actually covered by the
bases of trees. (In fact, the basal area of a given tree is typically
c© 2000 by Chapman & Hall/CRC



not measured at a ground level but rather at a certain height above
ground level.) A commonly-used method of estimating the basal
area proportion is the angle-count method, which is due to the
Austrian forester Walter Bitterlich (see Bitterlich, 1956; Holgate,
1967).

Suppose that the forest under consideration is a “Poisson” forest;
that is, we assume that the tree centers form a Poisson process with
intensity λ trees/meter2. Furthermore, we will assume that each
tree is circular in cross section. The angle-count method counts the
number of trees whose diameter subtends an angle greater than θ
from some randomly chosen point O. (θ is specified and typically
quite small.) Thus a tree whose diameter is x will be sampled if its
distance d from the point O satisfies

d <
x

2 sin(θ/2)
;

that is, a tree with diameter x must lie within a circle of radius
r(x) = x/(2 sin(θ/2)) around O. The number of trees in a circle of
radius r(x) is a Poisson random variable with mean λπr2(x).

Suppose that the tree diameters are represented by i.i.d. random
variables X1, X2, · · · with distribution function F . Thus we have
a marked Poisson process. Assume first that F is a discrete
distribution putting probability pk at xk for k = 1, · · · ,m. Define
Nk to be the number of sampled trees with diameter xk and
N = N1 + · · ·+ Nm to be the total number of sampled trees. Now
N1, · · · , Nm are independent Poisson random variables with

E(Nk) = pkλπr
2(xk) = λπpk

x2
k

4 sin2(θ/2)

and so N is a Poisson random variable with mean

E(N) =
λπ

4 sin2(θ/2)

m∑
k=1

pkx
2
k =

λπ

4 sin2(θ/2)
E(X2

i ).

More generally, it can be shown that N (the total number of sam-
pled trees) has a Poisson distribution regardless of the distribution
of the Xi’s. What is interesting here is the proportionality between
E(X2

i ) and E(N), which can be exploited to estimate E(X2
i ).

For our Poisson forest, we can define the “average” basal area
proportion to be B = λπE(X2

i )/4. (Note that πE(X2
i )/4 is the

mean basal area for a tree while λ is the density of trees.) Using
the relationship between E(X2

i ) and E(N), we have that B =
c© 2000 by Chapman & Hall/CRC



E(N) sin2(θ/2). Using this fact, it is possible to estimate B based
on N . The angle count method is, in fact, a special case of biased
sampling (Example 1.27) as we are more likely to sample larger
trees than smaller trees. ✸

EXAMPLE 2.22: Poisson process models are often used to model
the amount of traffic on a network such as a telephone system.
Suppose that telephone calls arrive as a homogeneous Poisson
process (on the entire real line) with intensity λ calls/minute. In
addition, assume that the lengths of each call are i.i.d. continuous
random variables with density function f(x). If S1, S2, · · · represent
the starting times of the calls and X1, X2, · · · the lengths of the
calls then for a < b, we have

∞∑
i=1

I(a < Si ≤ b,Xi ∈ B) ∼ Pois
(
λ(b− a)

∫
B
f(x) dx

)
.

What is of most interest in this example is the number of calls being
made at a given point in time t; we will call this random variable
N(t). A given call represented by (Si, Xi) (its starting time and
length) will be active at time t if both Si ≤ t and Si+Xi ≥ t. Thus

N(t) =
∞∑
i=1

I(Si ≤ t, Si + Xi ≥ t) =
∞∑
i=1

I((Si, Xi) ∈ B(t))

where B(t) = {(s, x) : s ≤ t, s + x ≥ t}, and so N(t) ∼ Pois(µ(t))
where

µ(t) =
∫ ∞

0

∫ t

t−x
λf(x) ds dx

= λ

∫ ∞

0
x f(x) dx

= λE(Xi).

Thus the distribution of N(t) is independent of t. Figure 2.3 shows
a plot of N(t) versus t for simulated data; the calls arrive as a
Poisson process with rate 10 calls/minute while the call lengths
are Exponential random variables with mean 5. Based on the
calculations above the mean of N(t) is 50 while the standard
deviation is

√
50 ≈ 7.1; note that the simulated number of calls

N(t) is, for the most part, within 2 standard deviations of the
mean. ✸
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Figure 2.3 Plot of simulated data over a 500 minute period; the call
arrival rate is 10 calls/minute while the call lengths are Exponential
with mean 5.

2.6 Generating random variables

In complex problems in probability and statistics (as well as in
other disciplines), computer simulation is necessary because exact
analytic properties of certain random processes may be difficult or
even impossible to derive exactly. Some examples of problems where
computer simulation is used are

• evaluation or approximation of the probability distributions;

• examination of sample path properties of random processes (such
as a Poisson process);

• evaluation of integrals.

In order to simulate random processes on a computer, we
must be able to generate (by computer) random variables having
a specified joint distribution. However, for simplicity, we will
consider generating independent random variables with a common
distribution F .
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It is important to note that computer-generated random vari-
ables are not really random as they are typically produced by de-
terministic algorithms (and so cannot be truly random). For this
reason, the “random variables” produced by such algorithms are
referred to as pseudo-random. The key lies in finding an algorithm
which produces (pseudo-) random variables possessing all the ana-
lytic properties of the random variables to an acceptable tolerance.

In general, we produce a stream of random variables via a
recursive algorithm; that is, given xn, we produce xn+1 by

xn+1 = g(xn)

for some function g. For a given distribution function F , we would
like to choose g so that for any a < b

1
N

n∑
k=1

I(a < xk ≤ b) → F (b)− F (a) as N →∞

independently of the starting value x0. In fact, this condition is
quite easy to satisfy. A much more stringent requirement is that
the pseudo-random variables {x1, x2, x3, · · ·} behave like outcomes
of i.i.d. random variables X1, X2, X3, · · · (again independently of
x0). Clearly this is impossible since xn+1 depends explicitly on
xn; nonetheless, if g is chosen appropriately, it may be possible
to achieve “pseudo-independence”.

We will first consider generating independent Uniform random
variables on the interval [0, 1]. A Uniform random variable is a
continuous random variable and so any real number between 0 and 1
is a possible outcome of the random variable. However, real numbers
cannot be represented exactly on a computer but instead are
represented as floating point numbers. Since floating point numbers
are countable, it is impossible to generate random variables having
exactly a Uniform distribution. What is typically done is to generate
a random variable R that is uniformly distributed on the set
{0, 1, 2, · · · , N − 1} and define U = R/N . If N is large then
U will be approximately Uniform (since P (R = k) = 1/N for
k = 0, · · · , N − 1).

There are a number of methods for generating the integer random
variable r1, · · · , rn so that the resulting pseudo-random variables
are approximately independent. Perhaps the most commonly used
generator is the linear congruential generator. We define our
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sequence r1, · · · , rn via the recursive relationship

ri = mod(λri−1 + α,N)

where mod(a, b) is the remainder when a is divided by b (for
example, mod(5, 3) = 2) and λ, α are integers. (The number r0

used to start the generator is sometimes called the seed.) It is easy
to see that the sequence of ri’s will repeat after P ≤ N steps (that
is, ri = ri+P ) with P called the period of the generator. Clearly, we
would like the period of the generator to be as long as possible.

However, if λ and α are chosen appropriately then the period
P = N and the integers r1, r2, · · · , rn will behave more orless like
outcomes of independent random variables R1, · · · , Rn when n is
much smaller than N . (Hence u1, · · · , un (where ui = ri/N) will
behave like outcomes of independent Uniform random variables.)
Finding good linear congruential generators is much more compli-
cated than finding a generator with period P = N (which is quite
easy to achieve); in fact, linear congruential and other Uniform gen-
erators should be subjected to a battery of tests to ensure that the
dependence in U1, · · · , Un is minimal.

EXAMPLE 2.23: One reliable linear congruential generator uses
λ = 25211, α = 0 and N = 215 = 32768. The period of this
generator is N . Using the seed R0 = 29559, we obtain

U1 = 0.06387329
U2 = 0.30953979
U3 = 0.80776978
U4 = 0.68380737
U5 = 0.46768188

and so on.
An example of a bad linear congruential generator is the so-called

“randu” generator that was first introduced by IBM in 1963 and was
widely used in the 1960s and 1970s. This generator uses λ = 65539,
α = 0 and N = 231 = 2147483648. This generator has period N but
produces U1, U2, · · · that are fairly strongly dependent even though
the dependence is not obvious. Figure 2.4 shows a plot of U3i−1

versus U3i−2 +0.1U3i (for i = 1, · · · , 1000); note that the points fall
along diagonal lines, which would not happen if the Ui’s were truly
independent. ✸
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Figure 2.4 Plot of U3i−1 versus U3i−2 + 0.1U3i for the “randu” generator; the
initial seed r0 = 12345.

We now move to the more general problem. Suppose we want
to generate outcomes of independent random variables X1, · · · , Xn

with common distribution function F . Several techniques exist for
generating random variables. These techniques generally exploit
known properties of the distributions. However, generation of
Uniform random variables is inevitably involved (to some degree)
in virtually all methods as these random variables are typically
manipulated to produce X1, · · · , Xn. Thus given a stream of
independent Uniform random variables U1, U2, · · ·, Xi and Xj (i �=
j) will be independent provided they do not depend on the same
Uniform random variables.

Perhaps the most obvious method for generating random vari-
ables with a distribution function F is the inverse method. Given
a random variable U that has a Uniform distribution on [0, 1], we
can transform U to obtain a random variable X with an arbitrary
distribution function F . This can be done by using the inverse dis-
tribution function

F−1(t) = inf{x : F (x) ≥ t}.
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We showed in Chapter 1 that if X = F−1(U) then the distribution
function of X is F . (Since U and 1−U have the same distribution,
F−1(1 − U) will also have distribution function F .) The inverse
method is easy to implement provided the F−1(t) is easily com-
putable as in the following example.

EXAMPLE 2.24: Suppose we want to generate Exponential
random variables with parameter λ; for this distribution, we have
F (x) = λ exp(−λx) for x ≥ 0. Solving the equation F (F−1(t)) = t,
we get

F−1(t) = − 1
λ

ln(1− t).

Thus X = −λ−1 ln(1 − U) has an Exponential distribution.
Alternatively, we could also define X = −λ−1 ln(U). ✸

The inverse method becomes less feasible when F−1 is difficult to
compute. In such cases, there are a variety of other methods that
may be used; some of these will be investigated in the exercises.

2.7 Problems and complements

2.1: Suppose that X and Y are independent Geometric random
variables with frequency function

f(x) = θ(1− θ)x for x = 0, 1, 2, · · ·

(a) Show that Z = X+Y has a Negative Binomial distribution
and identify the parameters of Z.
(b) Extend the result of part (a): If X1, · · · , Xn are i.i.d.
Geometric random variables, show that S = X1 + X2 +
· · · + Xn has a Negative Binomial distribution and identify
the parameters of S. (Hint: Use mathematical induction or,
alternatively, the result of Problem 2.5 below.)

2.2: (a) Suppose that Y is a nonnegative random variable. Show
that X + Y is always stochastically greater than X (for any
random variable X). (Hint: See Problem 1.10; you need to show
that P (X + Y > x) ≥ P (X > x) for all x.)
(b) Suppose that X is stochastically greater than Y and
suppose that X and Y are defined on the same sample space.
Show that X−Y is not necessarily stochastically greater than 0.
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2.3: If f1(x), · · · , fk(x) are density (frequency) functions then

g(x) = p1f1(x) + · · ·+ pkfk(x)

is also a density (frequency) function provided that pi ≥ 0
(i = 1, · · · , k) and p1 + · · ·+ pk = 1. We can think of sampling
from g(x) as first sampling a discrete random variable Y taking
values 1 through k with probabilities p1, · · · , pk and then,
conditional on Y = i, sampling from fi(x). The distribution
whose density or frequency function is g(x) is called a mixture
distribution.
(a) Suppose that X has frequency function g(x). Show that

P (Y = i|X = x) =
pifi(x)
g(x)

provided that g(x) > 0.
(b) Suppose that X has density function g(x). Show that we
can reasonably define

P (Y = i|X = x) =
pifi(x)
g(x)

in the sense that P (Yi = i) = E[P (Y = i|X)].
2.4: Suppose that X1, · · · , X5 are i.i.d. random variables such that

P (Xi = 0) = 0.5
and P (Xi > x) = 0.5 exp(−x) for x ≥ 0.

Define S = X1 + · · ·+ X5.
(a) Find the distribution function of S. (Hint: Note that the
distribution of S can be written as Binomial mixture of Gamma
distributions.)
(b) Evaluate P (Y ≤ 5).

2.5: Mixture distributions can be extended in the following way.
Suppose that f(x; θ) is a density or frequency function where
θ lies in some set Θ ⊂ R. Let p(θ) be a density function on Θ
and define

g(x) =
∫
Θ
f(x; θ)p(θ) dθ.

Then g(x) is itself a density or frequency function. As before,
we can view sampling from g(x) as first sampling from p(θ) and
then given θ, sampling from f(x; θ).
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(a) Suppose that X has the mixture density or frequency
function g(x). Show that

E(X) = E[E(X|θ)]
and

Var(X) = Var[E(X|θ)] + E[Var(X|θ)]
where E(X|θ) and Var(X|θ) are the mean and variance of a
random variable with density or frequency function f(x; θ).
(b) The Negative Binomial distribution introduced in Example
1.12 can be obtained as a Gamma mixture of Poisson distribu-
tions. Let f(x;λ) be a Poisson frequency function with mean
λ and p(λ) be a Gamma distribution with mean µ and vari-
ance µ2/α. Show that the mixture distribution has frequency
function

g(x) =
Γ(x + α)
x!Γ(α)

(
α

α + µ

)α (
µ

α + µ

)x

for x = 0, 1, 2, · · ·. Note that this form of the Negative Binomial
is richer than the form given in Example 1.12.
(c) Suppose that X has a Negative Binomial distribution as
given in part (b). Find the mean and variance of X. (Hint: Use
the approach outlined in part (a).)
(d) Show that the moment generating function of the Negative
Binomial distribution in (b) is

m(t) =
(

α

α + µ(1− exp(t))

)α

for t < ln(1 + α/µ).
2.6: A distribution F is said to be infinitely divisible if for each

n = 1, 2, · · · there exist i.i.d. random variables X1, · · · , Xn such
that X1 + · · · + Xn ∼ F . For example, a Normal distribution
with mean µ and variance σ2 is infinitely divisible; to see this,
we take X1, · · · , Xn to be i.i.d. Normal random variables with
mean µ/n and variance σ2/n.
(a) Suppose that the distribution F has moment generating
function m(t). Show that F is infinitely divisible if, and only if,
[m(t)]1/n is a moment generating function for each n.
(b) Show that all Poisson distributions are infinitely divisible.
(c) Show that all Negative Binomial distributions are infinitely
divisible.
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2.7: Suppose that X1, X2, · · · are i.i.d. random variables with
moment generating function m(t) = E[exp(tXi)]. Let N be
a Poisson random variable (independent of the Xi’s) with
parameter λ and define the compound Poisson random variable

S =
N∑
i=1

Xi

where S = 0 if N = 0.
(a) Show that the moment generating function of S is

E[exp(tS)] = exp[λ(m(t)− 1)].

(b) Suppose that the Xi’s are Exponential with E(Xi) = 1 and
λ = 5. Evaluate P (S > 5). (Hint: First evaluate P (S > 5|N)
using the result of Problem 1.14.)

2.8: Suppose that X1, · · · , Xn are independent nonnegative integer-
valued random variables with probability generating functions
p1(t), · · · , pn(t). Show that the probability generating function
of S = X1 + · · ·+ Xn is p(t) = p1(t)× · · · × pn(t).

2.9: Consider the experiment in Problem 1.3 where a coin is tossed
an infinite number of times where the probability of heads on
the k-th toss is (1/2)k. Define X to be the number of heads
observed in the experiment.
(a) Show that the probability generating function of X is

p(t) =
∞∏
k=1

(
1− 1− t

2k

)
.

(Hint: Think of X as a sum of independent Bernoulli random
variables.)
(b) Use the result of part (a) to evaluate P (X = x) for
x = 0, · · · , 5.

2.10: Consider the following method (known as the rejection me-
thod) for generating random variables with a density f(x).
Suppose that γ(x) be a function such that γ(x) ≥ f(x) for
all x, and ∫ ∞

−∞
γ(x) dx = α <∞.

Then g(x) = γ(x)/α is a probability density function. Suppose
we generate a random variable X by the following algorithm:
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• Generate a random variable T with density function g(x).
• Generate a random variable U ∼ Unif(0, 1), independent of
T . If U ≤ f(T )/γ(T ) then set X = T ; if U > f(T )/γ(T )
then repeat steps I and II.

(a) Show that the generated random variable X has density
f(x). (Hint: you need to evaluate P (T ≤ x|U ≤ f(T )/γ(T )).)
(b) Show that the number of “rejections” before X is generated
has a Geometric distribution. Give an expression for the
parameter of this distribution.
(c) Show that the rejection method also works if we want to
generate from a joint density f(x). (In this case, U ∼ Unif(0, 1)
as before but now T is a random vector with density g(x).)

2.11: Suppose we want to generate random variables with a Cau-
chy distribution. As an alternative to the method described in
Problem 1.24, we can generate independent random variables
V and W where P (V = 1) = P (V = −1) = 1/2 and W has
density

g(x) =
2

π(1 + x2)
for |x| ≤ 1.

(W can be generated by using the rejection method in Problem
2.10) Then we define X = W V ; show that X has a Cauchy
distribution.

2.12: Suppose that X and Y are independent Uniform random
variables on [0, 1].
(a) Find the density function of X + Y .
(b) Find the density function of XY .

2.13: Suppose that X1, · · · , Xn are i.i.d. Uniform random variables
on [0, 1]. Define Sn = (X1 + · · ·+ Xn) mod 1; Sn is simply the
“decimal” part of X1 + · · ·+ Xn.
(a) Show that Sn = (Sn−1 + Xn) mod 1 for all n ≥ 2.
(b) Show that Sn ∼ Unif(0, 1) for all n ≥ 1. (Hint: Prove the
result for n = 2 and apply the result of part (a).)

2.14: Suppose that X and Y are independent Exponential random
variables with parameter λ. Define Z = X − Y .
(a) Show that the density function of Z is

fZ(x) =
λ

2
exp(−λ|x|).
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(Hint: Evaluate P (Z ≤ x) for x < 0 and x > 0.)
(b) Find the moment generating function of Z. (Hint: use the
fact that Z = X − Y for independent Exponential random
variables.

2.15: Suppose that X1, · · · , Xn are independent, nonnegative con-
tinuous random variables where Xi has hazard function λi(x)
(i = 1, · · · , n).
(a) If U = min(X1, · · · , Xn), show that the hazard function of
U is λU (x) = λ1(x) + · · ·+ λn(x).
(b) If V = max(X1, · · · , Xn), show that the hazard function of
V satisfies λV (x) ≤ min(λ1(x), · · · , λn(x)).
(c) Show that the result of (b) holds even if the Xi’s are not
independent.

2.16: Jensen’s inequality (see Problem 1.11) can be extended to
convex functions in higher dimensions. g(x) is a convex function
if

g(tx + (1− t)y) ≤ t g(x) + (1− t)g(y)
for 0 ≤ t ≤ 1.
(a) Let X be a random vector with well-defined expected value
E(X). Show that E[g(X)] ≥ g(E(X)) for any convex function
g. (Hint: Repeat the approach used in Problem 1.11 making
appropriate changes.)
(b) Let g(x) = max(x1, · · · , xk). Show that g is a convex
function and so

E[max(X1, · · · , Xk)] ≥ max(E(X1), · · · , E(Xk))

for any random variables X1, · · · , Xk.
2.17: Suppose that X and Y are random variables such that both

E(X2) and E(Y 2) are finite. Define g(t) = E[(Y + tX)2].
(a) Show that g(t) is minimized at t = −E(XY )/E(X2).
(b) Show that [E(XY )]2 ≤ E(X2)E(Y 2); this is called the
Cauchy-Schwarz inequality. (Hint: Note that g(t) ≥ 0 for all
t.)
(c) Use part (b) to show that |Corr(X,Y )| ≤ 1.

2.18: Suppose that R and U are independent continuous random
variables where U has a Uniform distribution on [0, 1] and R
has the density function

fR(x) = x exp(−x2/2) for x ≥ 0.
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(a) Show that R2 has an Exponential distribution.
(b) Define X = R cos(2πU) and Y = R sin(2πU). Show that X
and Y are independent standard Normal random variables.
(c) Suggest a method for generating Normal random variables
based on the results in part (a) and (b).

2.19: Suppose that X and Y are independent random variables
with X discrete and Y continuous. Define Z = X + Y .
(a) Show that Z is a continuous random variable with

P (Z ≤ z) =
∑
x

P (Y ≤ z − x)P (X = x).

(b) If Y has a density function fY (y), show that the density of
Z is

fZ(z) =
∑
x

fY (z − x)fX(x)

where fX(x) is the frequency function of X.
2.20: Suppose that X and Y are independent Normal random

variables each with mean µ and variance σ2 and let U = Y
and V = X(1 + Y ). Evaluate the following:
(a) E(V |U = u).
(b) Var(V |U = u).
(c) Var(V ).
(d) Cov(U, V ) and Corr(U, V ).
(Hint: You do not need to evaluate any integrals.)

2.21: (a) Show that

Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E(X|Z), E(Y |Z)).

(Hint: Follow the proof for the similar result involving vari-
ances.)
(b) Suppose that X1, X2, · · · be i.i.d. Exponential random
variables with parameter 1 and take N1, N2 to be independent
Poisson random variables with parameters λ1, λ2 that are
independent of the Xi’s. Define compound Poisson random
variables

S1 =
N1∑
i=1

Xi
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S2 =
N2∑
i=1

Xi

and evaluate Cov(S1, S2) and Corr(S1, S2). When is this corre-
lation maximized?

2.22: Suppose that X = (X1, · · · , Xk) is a random vector and
define the (joint) moment generating function of X;

m(t) = E[exp(t1X1 + · · ·+ tkXk)];

we say that this exists if m(t) <∞ for ‖t‖ < b where b > 0.
(a) Show that

E(Xk
i X

�
j ) =

∂k+�

∂tki ∂t
�
j

m(t)
∣∣∣∣
t=0

for k, : = 0, 1, 2, · · ·
(b) Show that

Cov(Xi, Xj) =
∂2

∂ti∂tj
lnm(t)

∣∣∣∣
t=0

.

(c) Suppose that X1, · · · ,Xn are independent random vec-
tors with moment generating functions m1(t), · · · ,mn(t), re-
spectively. Show that the moment generating function of S =
X1 + · · ·+ Xn is

mS(t) = m1(t)× · · · ×mn(t).

2.23: The mean residual life function r(t) of a nonnegative random
variable X is defined to be

r(t) = E(X − t|X ≥ t).

(r(t) would be of interest, for example, to a life insurance
company.)
(a) Suppose that F is the distribution function of X. Show that

r(t) =
1

1− F (t)

∫ ∞

t
(1− F (x)) dx.

(b) Show that r(t) is constant if, and only if, X has an
Exponential distribution.
(c) Show that

E(X2) = 2
∫ ∞

0
r(t)(1− F (t)) dt.
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(Hint: Show that E(X2) can be written as

2
∫ ∞

0

∫ t

0
(1− F (t)) ds dt

and change the order of integration.)
(d) Suppose that X has a density function f(x) that is
differentiable and f(x) > 0 for x > 0. Show that

lim
t→∞

r(t) = lim
t→∞

(
− f(t)
f ′(t)

)
.

(e) Suppose that X has a Gamma distribution:

f(x) =
1

Γ(α)
λαxα−1 exp(−λx) for x > 0.

Evaluate the limit in part (c) for this distribution. Give an
interpretation of this result.

2.24: Suppose that X is a nonnegative random variable with mean
µ > 0 and variance σ2 < ∞. The coefficient of variation of X
is defined to be CV(X) = σ/µ.
(a) Suppose that X and Y are independent nonnegative random
variables with CV(X) and CV(Y ) finite. Show that

CV(X + Y ) ≤ CV(X) + CV(Y ).

(b) Define r(t) = E(X − t|X ≥ t) to be the mean residual life
function of X. Show that CV(X) ≤ 1 if r(t) ≤ r(0) = E(X)
and CV(X) ≥ 1 if r(t) ≥ r(0). (Hint: Note that CV(X) ≤ 1 if,
and only if, E(X2)/[E(X)]2 ≤ 2 and use the result of Problem
2.23(c).)

2.25: Suppose that X1, · · · , Xn are i.i.d. continuous random vari-
ables with distribution function F (x) and density function f(x);
let X(1) < X(2) < · · · < X(n) be the order statistics.
(a) Show that the distribution function of X(k) is

Gk(x) =
n∑

j=k

(
n

j

)
F (x)j(1− F (x))n−j .

(Hint: Let Yi = I(Xi ≤ x) and define S = Y1 + · · ·+ Yn; S has
a Binomial distribution and P (X(k) ≤ x) = P (S ≥ k).)
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(b) Show that the density function of X(k) is

gk(x) =
n!

(n− k)!(k − 1)!
F (x)k−1(1− F (x))n−kf(x).

(Hint: Assume that F ′(x) = f(x) and differentiate Gk(x).)
2.26: Suppose that X1, · · · , Xn are i.i.d. Exponential random

variables with parameter λ. Let X(1) < · · · < X(n) be the order
statistics and define

Y1 = nX(1)

Y2 = (n− 1)(X(2) −X(1))
Y3 = (n− 2)(X(3) −X(2))

...
...

...
Yn = X(n) −X(n−1).

Show that Y1, · · · , Yn are i.i.d. Exponential random variables
with parameter λ. (Note that the “Jacobian” matrix here is
triangular and so the Jacobian itself can be computed as the
product of the diagonal elements.)

2.27: Suppose that X1, · · · , Xn+1 be i.i.d. Exponential random
variables with parameter λ and define

Uk =
1
T

k∑
i=1

Xi for k = 1, · · · , n

where T = X1 + · · ·+ Xn+1.
(a) Find the joint density of (U1, · · · , Un, T ). (Note that 0 <
U1 < U2 < · · · < Un < 1.)
(b) Show that the joint distribution of (U1, · · · , Un) is exactly
the same as the joint distribution of the order statistics of an
i.i.d. sample of n observations from a Uniform distribution on
[0, 1].

2.28: A discrete random vector X is said to have a Multinomial
distribution if its joint frequency function is

f(x) =
n!

x1!× · · · × xk!
θx1
1 × · · · × θxk

k

for nonnegative integers x1, · · · , xk with x1 + · · ·+ xk = n and
nonnegative parameters θ1, · · · , θk with θ1 + · · · + θk = 1. (We
will write X ∼ Mult(n,θ) where θ = (θ1, · · · , θk).)
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(a) Show that the marginal distribution of Xi is Binomial with
parameters n and θi.
(b) Show that E(X) = nθ and

Cov(X) = n


θ1(1− θ1) −θ1θ2 · · · −θ1θk
−θ1θ2 θ2(1− θ2) · · · −θ2θk

...
...

. . .
...

−θ1θk −θ2θk · · · θk(1− θk)

 .

(c) Suppose that X1, · · · ,Xn are independent Multinomial
random vectors with Xi ∼ Mult(ni,θ) (i = 1, · · · , n). Show
that

n∑
i=1

Xi ∼ Mult

(
n∑
i=1

ni,θ

)
.

(Hint: For parts (b) and (c), evaluate the moment generating
function of a Multinomial random vector using the Multinomial
Theorem.)

2.29: Suppose that X and Y are independent Exponential random
variables with parameters λ and µ respectively. Define random
variables

T = min(X,Y ) and ∆ =
{

1 if X < Y
0 otherwise.

Note that T has a continuous distribution while ∆ is discrete.
(This is an example of type I censoring in reliability or survival
analysis.)
(a) Find the density of T and the frequency function of ∆.
(b) Find the joint distribution function of (T,∆).

2.30: Suppose that X has a Beta distribution with parameters α
and β (see Example 2.5).
(a) Show that for r > 0,

E(Xr) =
Γ(α + r)Γ(α + β)
Γ(α)Γ(α + β + r)

.

(b) Use part (a) and properties of Γ(x) to evaluate E(X) and
Var(X).

2.31: Suppose that X has a Beta distribution with parameters α
and β.
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(a) Find the density function of Y = (1−X)−1.
(b) Suppose that α = m/2 and β = n/2 and define Y as in
part (a). Using the definition of the F distribution, show that
nY/m ∼ F(m,n). (Hint: Take U ∼ χ2(m) and V ∼ χ2(n) to
be independent random variables. Show that U/(U + V ) has a
Beta distribution and then apply part (a).)

2.32: Suppose that X ∼ Np(0, C) where C−1 exists. Show that

XTC−1X ∼ χ2(p).

(Hint: Write C = OTΛO where O is an orthogonal matrix and
Λ is a diagonal matrix whose entries are the eigenvalues of C;
then define C1/2 = OTΛ1/2O to be a symmetric root of C.)

2.33: Suppose that X ∼ χ2(n).
(a) Show that E(Xr) = 2−rΓ(r + n/2)/Γ(n/2) if r > −n/2.
(b) Using part (a), show that E(X) = n and Var(X) = 2n.

2.34: Suppose that T ∼ T (n). Show that
(a) E(|T |r) <∞ if, and only if, n > r ≥ 0.
(b) E(T ) = 0 if n > 1; Var(T ) = n/(n− 2) if n > 2.
(Hint: You don’t need to do any integration here. Write T =
Z/

√
V/n where Z ∼ N(0, 1) and V ∼ χ2(n) are independent.)

2.35: Suppose that W ∼ F(m,n). Show that

E(W r) =
(
n

m

)r Γ(r + m/2)Γ(−r + n/2)
Γ(m/2)Γ(n/2)

if −m/2 < r < n/2.
2.36: Suppose that X is a Normal random variable with mean θ

and variance 1 and define Y = X2.
(a) Show that the density of Y is

fY (y) =
1

2
√

2πy
exp

(
1
2
(y + θ2)

)
(exp(θ

√
y) + exp(−θ

√
y))

for y > 0. (Y is said to have a non-central χ2 distribution with
1 degree of freedom and non-centrality parameter θ2.)
(b) Show that the density of Y can be written as

fY (y) =
∞∑
k=0

exp(−θ2/2)(θ2/2)k

k!
f2k+1(y)
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where f2k+1(y) is the density function of a χ2 random variable
with 2k + 1 degrees of freedom. (Hint: Expand exp(θ

√
y) and

exp(−θ
√
y) as power series; note that the odd terms in the two

expansions will cancel each other out.)
2.37: Suppose that X ∼ Nn(µ, I); the elements of X are indepen-

dent Normal random variables with variances equal to 1.
(a) Suppose that O is an orthogonal matrix whose first row
is µT /‖µ‖ and let Y = OX. Show that E(Y1) = ‖µ‖ and
E(Yk) = 0 for k ≥ 2.
(b) Using part (a), show that the distribution of ‖X‖2 is the
same as that of ‖Y ‖2 and hence depends on µ only through its
norm ‖µ‖.
(c) Let θ2 = ‖µ‖2. Show that the density of V = ‖X‖2 is

fV (x) =
∞∑
k=0

exp(−θ2/2)(θ2/2)k

k!
f2k+n(x)

where f2k+n(x) is the density function of a χ2 random variable
with 2k + n degrees of freedom. (V has a non-central χ2

distribution with n degrees of freedom and non-centrality
parameter θ2.)

2.38: Consider a marked Poisson process similar to that given
in Example 2.22 such that the call starting times arrive as a
homogeneous Poisson process (with rate λ calls/minute) on the
positive real line. Assume that the call lengths are continuous
random variables with density function f(x) and define N(t)
to be the number of calls active at time t for t ≥ 0.
Show that N(t) ∼ Pois(µ(t)) where

µ(t) = λ

∫ t

0
(1− F (s)) ds

and F is the distribution function of the call lengths.
2.39: Consider the marked Poisson process in Example 2.22 where

the call starting times arrive as a homogeneous Poisson process
(with rate λ calls/minute) on the entire real line and the call
lengths are continuous random variables with density function
f(x). In Example 2.22, we showed that the distribution of N(t)
is independent of t.
(a) Show that for any r,

Cov[N(t), N(t + r)]
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= λ

∫ ∞

|r|
x f(x) dx

= λ

[
|r|(1− F (|r|) +

∫ ∞

|r|
(1− F (x)) dx

]

and hence is independent of t and depends only on |r|. (Hint:
Assume that r > 0. Then

N(t) =
∞∑
i=1

I(Si ≤ t, t ≤ Si + Xi < t + r)

+
∞∑
i=1

I(Si ≤ t, Si + Xi ≥ t + r)

N(t + r) =
∞∑
i=1

I(Si ≤ t, Si + Xi ≥ t + r)

+
∞∑
i=1

I(t < Si ≤ t + r, Si + Xi ≥ t + r)

and use the independence of Poisson processes on disjoint sets.)
(b) Suppose that the call lengths are Exponential random
variables with mean µ. Evaluate Cov[N(t), N(t + r)]. (This is
called the autocovariance function of N(t).)
(c) Suppose that the call lengths have a density function

f(x) = αx−α−1 for x ≥ 1.

Show that E(Xi) < ∞ if, and only if, α > 1 and evaluate
Cov[N(t), N(t + r)] in this case.
(d) Compare the autocovariance functions obtained in parts (b)
and (c). For which distribution does Cov[N(t), N(t+ r)] decay
to 0 more slowly as |r| → ∞?
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CHAPTER 3

Convergence of Random
Variables

3.1 Introduction

In probability and statistics, it is often necessary to consider
the distribution of a random variable that is itself a function
of several random variables, for example, Y = g(X1, · · · , Xn); a
simple example is the sample mean of random variables X1, · · · , Xn.
Unfortunately, finding the distribution exactly is often very difficult
or very time-consuming even if the joint distribution of the random
variables is known exactly. In other cases, we may have only partial
information about the joint distribution of X1, · · · , Xn in which
case it is impossible to determine the distribution of Y . However,
when n is large, it may be possible to obtain approximations to
the distribution of Y even when only partial information about
X1, · · · , Xn is available; in many cases, these approximations can
be remarkably accurate.

The standard approach to approximating a distribution function
is to consider the distribution function as part of an infinite
sequence of distribution functions; we then try to find a “limiting”
distribution for the sequence and use that limiting distribution to
approximate the distribution of the random variable in question.
This approach, of course, is very common in mathematics. For
example, if n is large compared to x, one might approximate
(1 + x/n)n by exp(x) since

lim
n→∞

(
1 +

x

n

)n

= exp(x).

(However, this approximation may be very poor if x/n is not close
to 0.) A more interesting example is Stirling’s approximation, which
is used to approximate n! for large values of n:

n! ≈
√

2π exp(−n)nn+1/2 = s(n)

where the approximation holds in the sense that n!/s(n) → 1 as
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Table 3.1 Comparison of n! and its Stirling approximation s(n).

n n! s(n)

1 1 0.92
2 2 1.92
3 6 5.84
4 24 23.51
5 120 118.02
6 720 710.08

n → ∞. In fact, Stirling’s approximation is not too bad even for
small n as Table 3.1 indicates.

In a sense, Stirling’s approximation shows that asymptotic
approximations can be useful in a more general context. In
statistical practice, asymptotic approximations (typically justified
for large sample sizes) are very commonly used even in situations
where the sample size is small. Of course, it is not always clear that
the use of such approximations is warranted but nonetheless there
is a sufficiently rich set of examples where it is warranted to make
the study of convergence of random variables worthwhile.

To motivate the notion of convergence of random variables,
consider the following example. Suppose that X1, · · · , Xn are i.i.d.
random variables with mean µ and variance σ2 and define

X̄n =
1
n

n∑
i=1

Xi

to be their sample mean; we would like to look at the behaviour
of the distribution of X̄n when n is large. First of all, it seems
reasonable that X̄n will be close to µ if n is sufficiently large; that
is, the random variable X̄n−µ should have a distribution that, for
large n, is concentrated around 0 or, more precisely,

P [|X̄n − µ| ≤ ε] ≈ 1

when ε is small. (Note that Var(X̄n) = σ2/n → 0 as n → ∞.)
This latter observation is, however, not terribly informative about
the distribution of X̄n. However, it is also possible to look at the
difference between X̄n and µ on a “magnified” scale; we do this
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by multiplying the difference X̄n − µ by
√
n so that the mean and

variance are constant. Thus define

Zn =
√
n(X̄n − µ)

and note that E(Zn) = 0 and Var(Zn) = σ2. We can now consider
the behaviour of the distribution function of Zn as n increases. If
this sequence of distribution functions has a limit (in some sense)
then we can use the limiting distribution function to approximate
the distribution function of Zn (and hence of X̄n). For example, if
we have

P (Zn ≤ x) = P
(√

n(X̄n − µ) ≤ x
)
≈ F0(x)

then

P (X̄n ≤ y) = P
(√

n(X̄n − µ) ≤
√
n(y − µ)

)
≈ F0

(√
n(y − µ)

)
provided that n is sufficiently large to make the approximation
valid.

3.2 Convergence in probability and distribution

In this section, we will consider two different types of convergence
for sequences of random variables, convergence in probability and
convergence in distribution.
DEFINITION. Let {Xn}, X be random variables. Then {Xn}

converges in probability to X as n → ∞ (Xn →p X) if for each
ε > 0,

lim
n→∞

P (|Xn −X| > ε) = 0.

If Xn →p X then for large n we have that Xn ≈ X with
probability close to 1. Frequently, the limiting random variable X
is a constant; Xn →p θ (a constant) means that for large n there is
almost no variation in the random variable Xn. (A stronger form of
convergence, convergence with probability 1, is discussed in section
3.7.)
DEFINITION. Let {Xn}, X be random variables. Then {Xn}

converges in distribution to X as n→∞ (Xn →d X) if

lim
n→∞

P (Xn ≤ x) = P (X ≤ x) = F (x)

for each continuity point of the distribution function F (x).
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It is important to remember that Xn →d X implies convergence
of distribution functions and not of the random variables them-
selves. For this reason, it is often convenient to replace Xn →d X
by Xn →d F where F is the distribution function of X, that is,
the limiting distribution; for example, Xn →d N(0, σ2) means that
{Xn} converges in distribution to a random variable that has a
Normal distribution (with mean 0 and variance σ2).

If Xn →d X then for sufficiently large n we can approximate
the distribution function of Xn by that of X; thus, convergence in
distribution is potentially useful for approximating the distribution
function of a random variable. However, the statement Xn →d X
does not say how large n must be in order for the approximation
to be practically useful. To answer this question, we typically need
a further result dealing explicitly with the approximation error as
a function of n.

EXAMPLE 3.1: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, 1] and define

Mn = max(X1, · · · , Xn).

Intuitively, Mn should be approximately 1 for large n. We will
first show that Mn →p 1 and then find the limiting distribution
of n(1−Mn). The distribution function of Mn is

Fn(x) = xn for 0 ≤ x ≤ 1.

Thus for 0 < ε < 1,

P (|Mn − 1| > ε) = P (Mn < 1− ε)
= (1− ε)n → 0

as n → ∞ since |1 − ε| < 1. To find the limiting distribution of
n(1−Mn), note that

P (n(1−Mn) ≤ x) = P (Mn ≥ 1− x/n)

= 1−
(

1− x

n

)n

→ 1− exp(−x)

as n → ∞ for x ≥ 0. Thus n(1 −Mn) has a limiting Exponential
distribution with parameter 1. In this example, of course, there is
no real advantage in knowing the limiting distribution of n(1−Mn)
as its exact distribution is known. ✸
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EXAMPLE 3.2: Suppose that X1, · · · , Xn are i.i.d. random
variables with

P (Xi = j) =
1
10

for j = 0, 1, 2, · · · , 9

and define

Un =
n∑

k=1

Xk

10k
.

Un can be thought of as the first n digits of a decimal representation
of a number between 0 and 1 (Un = 0.X1X2X3X4 · · ·Xn). It
turns out that Un tends in distribution to a Uniform on the
interval [0, 1]. To see this, note that each outcome of (X1, · · · , Xn)
produces a unique value of Un; these possible values are j/10n for
j = 0, 1, 2, · · · , 10n − 1, and so it follows that

P (Un = j/10n) =
1

10n
for j = 0, 1, 2, · · · , 10n − 1.

If j/10n ≤ x < (j + 1)/10n then

P (Un ≤ x) =
j + 1
10n

and so
|P (Un ≤ x)− x| ≤ 10−n → 0 as n→∞

and so P (Un ≤ x) → x for each x between 0 and 1. ✸

Some important results

We noted above that convergence in probability deals with conver-
gence of the random variables themselves while convergence in dis-
tribution deals with convergence of the distribution functions. The
following result shows that convergence in probability is stronger
than convergence in distribution unless the limiting random vari-
able is a constant in which case the two are equivalent.
THEOREM 3.1 Let {Xn}, X be random variables.
(a) If Xn →p X then Xn →d X.
(b) If Xn →d θ (a constant) then Xn →p θ.
Proof. (a) Let x be a continuity point of the distribution function
of X. Then for any ε > 0,

P (Xn ≤ x) = P (Xn ≤ x, |Xn −X| ≤ ε)
+P (Xn ≤ x, |Xn −X| > ε)

≤ P (X ≤ x + ε) + P (|Xn −X| > ε)
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where the latter inequality follows since [Xn ≤ x, |Xn − X| ≤ ε]
implies [X ≤ x + ε]. Similarly,

P (X ≤ x− ε) ≤ P (Xn ≤ x) + P (|Xn −X| > ε)

and so

P (Xn ≤ x) ≥ P (X ≤ x− ε)− P (|Xn −X| > ε).

Thus putting the two inequalities for P (Xn ≤ x) together, we have

P (X ≤ x− ε)− P (|Xn −X| > ε)
≤ P (Xn ≤ x)
≤ P (X ≤ x + ε) + P (|Xn −X| > ε).

By hypothesis, P (|Xn − X| > ε) → 0 as n → ∞ for any ε > 0.
Moreover, since x is a continuity point of the distribution function
of X, P (X ≤ x± ε) can be made arbitrarily close to P (X ≤ x) by
taking ε close to 0. Hence,

lim
n→∞

P (Xn ≤ x) = P (X ≤ x).

(b) Define F (x) to be the distribution function of the degenerate
random variable taking the single value θ; thus, F (x) = 0 for x < θ
and F (x) = 1 for x ≥ θ. Note that F is continuous at all but one
point. Then

P (|Xn − θ| > ε) = P (Xn > θ + ε) + P (Xn < θ − ε)
≤ 1− P (Xn ≤ θ + ε) + P (Xn ≤ θ − ε).

However, since Xn →d θ, it follows that P (Xn ≤ θ + ε) → 1 and
P (Xn ≤ θ − ε) → 0 as n→∞ and so P (|Xn − θ| > ε) → 0.

It is often difficult (if not impossible) to verify the convergence
of a sequence of random variables using simply its definition.
Theorems 3.2, 3.3 and 3.4 are sometimes useful for showing
convergence in such cases.

THEOREM 3.2 (Continuous Mapping Theorem) Suppose
that g(x) is a continuous real-valued function.
(a) If Xn →p X then g(Xn) →p g(X).
(b) If Xn →d X then g(Xn) →d g(X).

The proofs will not be given here. The proof of (a) is sketched as
an exercise. The proof of (b) is somewhat more technical; however,
if we further assume g to be strictly increasing or decreasing
(so that g has an inverse function), a simple proof of (b) can
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be given. (Also see Example 3.16 for a simple proof assuming
more technical machinery.) The assumption of continuity can also
be relaxed somewhat. For example, Theorem 3.2 will hold if g
has a finite or countable number of discontinuities provided that
these discontinuity points are continuity points of the distribution
function of X. For example, if Xn →d θ (a constant) and g(x) is
continuous at x = θ then g(Xn) →d g(θ).

THEOREM 3.3 (Slutsky’s Theorem) Suppose that Xn →d X
and Yn →p θ (a constant). Then
(a) Xn + Yn →d X + θ.
(b) XnYn →d θX.

Proof. (a) Without loss of generality, let θ = 0. (If θ �= 0 then
Xn + Yn = (Xn + θ) + (Yn − θ) and Yn − θ →p 0.) Let x be a
continuity point of the distribution function of X. Then

P (Xn + Yn ≤ x) = P (Xn + Yn ≤ x, |Yn| ≤ ε)
+P (Xn + Yn ≤ x, |Yn| > ε)

≤ P (Xn ≤ x + ε) + P (|Yn| > ε).

Also,

P (Xn ≤ x− ε) = P (Xn ≤ x− ε, |Yn| ≤ ε)
+P (Xn ≤ x− ε, |Yn| > ε)

≤ P (Xn + Yn ≤ x) + P (|Yn| > ε)

(since [Xn ≤ x− ε, |Yn| ≤ ε] implies [Xn + Yn ≤ x]). Hence,

P (Xn ≤ x− ε)− P (|Yn| > ε) ≤ P (Xn + Yn ≤ x)
≤ P (Xn ≤ x + ε) + P (|Yn| > ε).

Now take x± ε to be continuity points of the distribution function
of X. Then

lim
n→∞

P (Xn ≤ x± ε) = P (X ≤ x± ε)

and the limit can be made arbitrarily close to P (X ≤ x) by taking
ε to 0. Since P (|Yn| > ε) → 0 as n→∞ the conclusion follows.
(b) Again we will assume that θ = 0. (To see that it suffices to
consider this single case, note that XnYn = Xn(Yn − θ) + θXn.
Since θXn →d θX the conclusion will follow from part (a) if we
show that Xn(Yn − θ) →p 0.) We need to show that XnYn →p 0.
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Taking ε > 0 and M > 0, we have

P (|XnYn| > ε) = P (|XnYn| > ε, |Yn| ≤ 1/M)
+P (|XnYn| > ε, |Yn| > 1/M)

≤ P (|XnYn| > ε, |Yn| ≤ 1/M) + P (|Yn| > 1/M)
≤ P (|Xn| > εM) + P (|Yn| > 1/M).

Since Yn →p 0, P (|Yn| > 1/M) → 0 as n→∞ for any fixed M > 0.
Now take ε and M such that ±εM are continuity points of the
distribution function of X; then P (|Xn| > εM) → P (|X| > εM)
and the limit can be made arbitrarily close to 0 by making M
sufficiently large.

Since Yn →p θ is equivalent to Yn →d θ when θ is a constant, we
could replace “Yn →p θ” by “Yn →d θ” in the statement of Slutsky’s
Theorem. We can also generalize this result as follows. Suppose that
g(x, y) is a continuous function and that Xn →d X and Yn →p θ for
some constant θ. Then it can be shown that g(Xn, Yn) →d g(X, θ).
In fact, this result is sometimes referred to as Slutsky’s Theorem
with Theorem 3.3 a special case for g(x, y) = x+y and g(x, y) = xy.
THEOREM 3.4 (The Delta Method) Suppose that

an(Xn − θ) →d Z

where θ is a constant and {an} is a sequence of constants with
an ↑ ∞. If g(x) is a function with derivative g′(θ) at x = θ then

an(g(Xn)− g(θ)) →d g
′(θ)Z.

Proof. We’ll start by assuming that g is continuously differentiable
at θ. First, note that Xn →p θ. (This follows from Slutsky’s
Theorem.) By a Taylor series expansion of g(x) around x = θ,
we have

g(Xn) = g(θ) + g′(θ∗n)(Xn − θ)
where θ∗n lies between Xn and θ; thus |θ∗n − θ| ≤ |Xn − θ| and
so θ∗n →p θ. Since g′(x) is continuous at x = θ, it follows that
g′(θ∗n) →p g

′(θ). Now,

an(g(Xn)− g(θ)) = g′(θ∗n)an(Xn − θ)
→d g′(θ)Z

by Slutsky’s Theorem. For the more general case (where g is not
necessarily continuously differentiable at θ), note that

g(Xn)− g(θ) = g′(θ)(Xn − θ) + Rn
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where Rn/(Xn − θ) →p 0. Thus

anRn = an(Xn − θ)
Rn

an(Xn − θ)
→p 0

and so the conclusion follows by Slutsky’s Theorem.

A neater proof of the Delta Method is given in Example 3.17. Also
note that if g′(θ) = 0, we would have that an(g(Xn)− g(θ)) →p 0.
In this case, we may have

akn(g(Xn)− g(θ)) →d some V

for some k ≥ 2; see Problem 3.10 for details.
If Xn →d X (or Xn →p X), it is tempting to say that E(Xn) →

E(X); however, this statement is not true in general. For example,
suppose that P (Xn = 0) = 1 − n−1 and P (Xn = n) = n−1. Then
Xn →p 0 but E(Xn) = 1 for all n (and so converges to 1). To ensure
convergence of moments, additional conditions are needed; these
conditions effectively bound the amount of probability mass in the
distribution of Xn concentrated near ±∞ for large n. The following
result deals with the simple case where the random variables {Xn}
are uniformly bounded; that is, there exists a constant M such that
P (|Xn| ≤M) = 1 for all n.

THEOREM 3.5 If Xn →d X and |Xn| ≤ M (finite) then E(X)
exists and E(Xn) → E(X).

Proof. For simplicity, assume that Xn is nonnegative for all n; the
general result will follow by considering the positive and negative
parts of Xn. From Chapter 1, we have that

|E(Xn)− E(X)| =
∣∣∣∣∫ ∞

0
(P (Xn > x)− P (X > x)) dx

∣∣∣∣
=

∣∣∣∣∣
∫ M

0
(P (Xn > x)− P (X > x)) dx

∣∣∣∣∣
(since P (Xn > M) = P (X > M) = 0)

≤
∫ M

0
|P (Xn > x)− P (X > x)| dx

→ 0

since P (Xn > x) → P (X > x) for all but a countable number of
x’s and the interval of integration is bounded.
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3.3 Weak Law of Large Numbers

An important result in probability theory is the Weak Law of Large
Numbers (WLLN), which deals with the convergence of the sample
mean to the population mean as the sample size increases. We start
by considering the simple case where X1, · · · , Xn are i.i.d. Bernoulli
random variables with P (Xi = 1) = θ and P (Xi = 0) = 1 − θ
so that E(Xi) = θ. Define Sn = X1 + · · · + Xn, which has a
Binomial distribution with parameters n and θ. We now consider
the behaviour of Sn/n as n→∞; Sn/n represents the proportion of
1’s in the n Bernoulli trials. Our intuition tells us that for large n,
this proportion should be approximately equal to θ, the probability
that any Xi = 1. Indeed, since the distribution of Sn/n is known,
it is possible to show the following law of large numbers:

Sn
n

→p θ

as n→∞.
In general, the WLLN applies to any sequence of independent,

identical distributed random variables whose mean exists. The
result can be stated as follows:

THEOREM 3.6 (Weak Law of Large Numbers) Suppose
that X1, X2, · · · are i.i.d. random variables with E(Xi) = µ (where
E(|Xi|) <∞). Then

X̄n =
1
n

n∑
i=1

Xi →p µ

as n→∞.

While this result certainly agrees with intuition, a rigorous proof
of the result is certainly not obvious. However, before proving the
WLLN, we will give a non-trivial application of it by proving that
the sample median of i.i.d. random variables X1, · · · , Xn converges
in probability to the population median.

EXAMPLE 3.3: Suppose that X1, · · · , Xn are i.i.d. random
variables with a distribution function F (x). Assume that the Xi’s
have a unique median µ (F (µ) = 1/2); in particular, this implies
that for any ε > 0, F (µ + ε) > 1/2 and F (µ− ε) < 1/2.

Let X(1), · · · , X(n) be the order statistics of the Xi’s and define
Zn = X(mn) where {mn} is a sequence of positive integers with
mn/n→ 1/2 as n→∞. For example, we could take mn = n/2 if n
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is even and mn = (n+1)/2 if n is odd; in this case, Zn is essentially
the sample median of the Xi’s. We will show that Zn →p µ as
n→∞.

Take ε > 0. Then we have

P (Zn > µ + ε) = P

(
1
n

n∑
i=1

I(Xi > µ + ε) ≥ mn

n

)

and

P (Zn < µ− ε) = P

(
1
n

n∑
i=1

I(Xi ≥ µ− ε) ≤ n−mn

n

)
.

By the WLLN, we have

1
n

n∑
i=1

I(Xi > µ + ε) →p 1− F (µ + ε) < 1/2

and
1
n

n∑
i=1

I(Xi > µ− ε) →p 1− F (µ− ε) > 1/2.

Since mn/n →p 1/2, it follows that P (Zn > µ + ε) → 0 and
P (Zn < µ− ε) → 0 as n→∞ and so Zn →p µ. ✸

Proving the WLLN

The key to proving the WLLN lies in finding a good bound for
P [|X̄n − µ| > ε]; one such bound is Chebyshev’s inequality.
THEOREM 3.7 (Chebyshev’s inequality) Suppose that X is
a random variable with E(X2) <∞. Then for any ε > 0,

P [|X| > ε] ≤ E(X2)
ε2

.

Proof. The key is to write X2 = X2I(|X| ≤ ε) + X2I(|X| > ε).
Then

E(X2) = E[X2I(|X| ≤ ε)] + E[X2I(|X| > ε)]
≥ E[X2I(|X| > ε)]
≥ ε2P (|X| > ε)

where the last inequality holds since X2 ≥ ε2 when |X| > ε and
E[I(|X| > ε)] = P (|X| > ε).
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From the proof, it is quite easy to see that Chebyshev’s inequality
remains valid if P [|X| > ε] is replaced by P [|X| ≥ ε].

Chebyshev’s inequality is primarily used as a tool for proving
various convergence results for sequences of random variables; for
example, if {Xn} is a sequence of random variables with E(X2

n) → 0
then Chebyshev’s inequality implies that Xn →p 0. However,
Chebyshev’s inequality can also be used to give probability bounds
for random variables. For example, let X be a random variable with
mean µ and variance σ2. Then by Chebyshev’s inequality, we have

P [|X − µ| ≤ kσ] ≥ 1− E[(X − µ)2]
k2σ2

= 1− 1
k2

.

However, the bounds given by Chebyshev’s inequality are typically
very crude and are seldom of any practical use. Chebyshev’s
inequality can be also generalized in a number of ways; these
generalizations are examined in Problem 3.8.

We will now sketch the proof of the WLLN. First of all, we will
assume that E(X2

i ) < ∞. In this case, the WLLN follows trivially
since (by Chebyshev’s inequality)

P [|X̄n − µ| > ε] ≤ Var(X̄n)
ε2

=
Var(X1)

nε2

and the latter quantity tends to 0 as n→∞ for each ε > 0.
How can the weak law of large numbers be proved if we assume

only that E(|Xi|) <∞? The answer is to write

Xk = Unk + Vnk

where Unk = Xk if |Xk| ≤ δn (for some 0 < δ < 1) and Unk = 0
otherwise; it follows that Vnk = Xk if |Xk| > δn and 0 otherwise.
Then

X̄n =
1
n

n∑
i=1

Uni +
1
n

n∑
i=1

Vni = Ūn + V̄n

and so it suffices to show that Ūn →p µ and V̄n →p 0. First, we
have

E[(Ūn − µ)2] =
Var(Un1)

n
+ (E(Un1)− µ)2

≤ E(U2
n1)

n
+ (E(Un1)− µ)2

≤ E[|Un1|]δ + E2(Un1 −X1)
≤ E[|X1|]δ + E2[|X1|I(|X1| > δn)]
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and so by Chebyshev’s inequality

P [|Ūn − µ| > ε] ≤ E[|X1|]δ + E2[|X1|I(|X1| > δn)]
ε2

,

which can be made close to 0 by taking n → ∞ and then δ to 0.
Second,

P [|V̄n| > ε] ≤ P

(
n⋃
i=1

[Vni �= 0]

)

≤
n∑
i=1

P [Vni �= 0]

= nP [X1 > δn]

and the latter can be shown to tend to 0 as n→∞ (for any δ > 0).
The details of the proof are left as exercises.

The WLLN can be strengthened to a strong law of large numbers
(SLLN) by introducing another type of convergence known as
convergence with probability 1 (or “almost sure” convergence). This
is discussed in section 3.7.

The WLLN for Bernoulli random variables was proved by Jacob
Bernoulli in 1713 and strengthened to random variables with finite
variance by Chebyshev in 1867 using the inequality that bears his
name. Chebyshev’s result was extended by Khinchin in 1928 to
sums of i.i.d. random variables with finite first moment.

3.4 Proving convergence in distribution

Recall that a sequence of random variables {Xn} converges in dis-
tribution to a random variable X if the corresponding sequence of
distribution functions {Fn(x)} converges to F (x), the distribution
function of X, at each continuity point of F . It is often difficult
to verify this condition directly for a number of reasons. For ex-
ample, it is often difficult to work with the distribution functions
{Fn}. Also, in many cases, the distribution function Fn may not be
specified exactly but may belong to a wider class; we may know,
for example, the mean and variance corresponding to Fn but little
else about Fn. (From a practical point of view, the cases where Fn
is not known exactly are most interesting; if Fn is known exactly,
there is really no reason to worry about a limiting distribution F
unless Fn is difficult to work with computationally.)

For these reasons, we would like to have alternative methods for
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establishing convergence in distribution. Fortunately, there are
several other sufficient conditions for convergence in distribution
that are useful in practice for verifying that a sequence of random
variables converges in distribution and determining the distribution
of the limiting random variable (the limiting distribution).
• Suppose that Xn has density function fn (for n ≥ 1) and
X has density function f . Then fn(x) → f(x) (for all but a
countable number of x) implies that Xn →d X. Similarly, if Xn

has frequency function fn and X has frequency function f then
fn(x) → f(x) (for all x) implies that Xn →d X. (This result
is known as Scheffé’s Theorem.) The converse of this result is
not true; in fact, a sequence of discrete random variables can
converge in distribution to a continuous variable (see Example
3.2) and a sequence of continuous random variables can converge
in distribution to a discrete random variable.

• If Xn has moment generating function mn(t) and X has moment
generating function m(t) then mn(t) → m(t) (for all |t| ≤ some
b > 0) implies Xn →d X. Convergence of moment generating
functions is actually quite strong (in fact, it implies that
E(Xk

n) → E(Xk) for integers k ≥ 1); convergence in distribution
does not require convergence of moment generating functions.
It is also possible to substitute other generating functions
for the moment generating function to prove convergence in
distribution. For example, if Xn has characteristic function
ϕn(t) = E[exp(i tX)] and X has characteristic function ϕ(t) then
ϕn(t) → ϕ(t) (for all t) implies Xn →d X; in fact, Xn →d X if,
and only if, ϕn(t) → ϕ(t) for all t.

In addition to the methods described above, we can also use some
of the results given earlier (for example, Slutsky’s Theorem and the
Delta Method) to help establish convergence in distribution.

EXAMPLE 3.4: Suppose that {Xn} is a sequence of random
variables where Xn has Student’s t distribution with n degrees of
freedom. The density function of Xn is

fn(x) =
Γ((n + 1)/2)√

πnΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

.

Stirling’s approximation, which may be stated as

lim
y→∞

√
yΓ(y)√

2π exp(−y)yy
= 1
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allows us to approximate Γ((n + 1)/2) and Γ(n/2) for large n. We
then get

lim
n→∞

Γ((n + 1)/2)√
πnΓ(n/2)

=
1√
2π

.

Also

lim
n→∞

(
1 +

x2

n

)−(n+1)/2

= exp

(
−x2

2

)
and so

lim
n→∞

fn(x) =
1√
2π

exp

(
−x2

2

)
where the limit is a standard Normal density function. Thus
Xn →d Z where Z has a standard Normal distribution.

An alternative (and much simpler) approach is to note that
the t distributed random variable Xn has the same distribution
as Z/

√
Vn/n where Z and Vn are independent random variables

with Z ∼ N(0, 1) distribution and Vn ∼ χ2(n). Since Vn can be
thought of as a sum of n i.i.d. χ2 random variables with 1 degree of
freedom, it follows from the WLLN and the Continuous Mapping
Theorem that

√
Vn/n →p 1 and hence from Slutsky’s Theorem

that Z/
√
Vn/n →d N(0, 1). The conclusion follows since Xn has

the same distribution as Z/
√
Vn/n. ✸

EXAMPLE 3.5: Suppose that U1, · · · , Un are i.i.d. Uniform
random variables on the interval [0, 1] and let U(1), · · · , U(n) be their
order statistics. Define Zn = U(mn) where mn ≈ n/2 in the sense
that

√
n(mn/n − 1/2) → 0 as n → ∞; note that we are requiring

that mn/n converge to 1/2 at a faster rate than in Example 3.3.
(Note that taking mn = n/2 for n even and mn = (n + 1)/2 for
n odd will satisfy this condition.) We will consider the asymptotic
distribution of the sequence of random variables {√n(Zn − 1/2)}
by computing its limiting density. The density of

√
n(Zn − 1/2) is

fn(x) =
n!

(mn − 1)!(n−mn)!
√
n

(
1
2

+
x√
n

)mn−1 (
1
2
− x√

n

)n−mn

for −√n/2 ≤ x ≤ √
n/2. We will show that fn(x) converges to a

Normal density with mean 0 and variance 1/4. First using Stirling’s
approximation (as in Example 3.4, noting that n! = nΓ(n)), we
obtain

n!√
n(mn − 1)!(n−mn)!

≈ 2n√
2π
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in the sense that the ratio of the right-hand to left-hand side tends
to 1 as n→∞. We also have(

1
2

+
x√
n

)mn−1 (
1
2
− x√

n

)n−mn

=
1

2n−1

(
1− 4x2

n

)mn−1 (
1− 2x√

n

)n−2mn+1

.

We now obtain (
1− 4x2

n

)mn−1

→ exp(−2x2)

and (
1− 2x√

n

)n−2mn+1

→ 1

where, in both cases, we use the fact that (1+ t/an)cn → exp(kt) if
an → ∞ and cn/an → k. Putting the pieces from above together,
we get

fn(x) → 2√
2π

exp(−2x2)

for any x. Thus
√
n(Zn − 1/2) →d N(0, 1/4). ✸

EXAMPLE 3.6: We can easily extend Example 3.5 to the case
where X1, · · · , Xn are i.i.d. random variables with distribution
function F and unique median µ where F (x) is differentiable at
x = µ with F ′(µ) > 0; if F has a density f then F ′(µ) = f(µ)
typically. Defining F−1(t) = inf{x : F (x) ≥ t} to be the inverse of
F , we note that the order statistic X(k) has the same distribution
as F−1(U(k)) where U(k) is an order statistic from an i.i.d. sample
of Uniform random variables on [0, 1] and also that F−1(1/2) = µ.
Thus

√
n(X(mn) − µ) =d

√
n(F−1(U(mn))− F−1(1/2))

and so by the Delta Method, we have
√
n(X(mn) − µ) →d N(0, (F ′(µ))−2/4)

if
√
n(mn/n−1/2) → 0. The limiting variance follows from the fact

that F−1(t) is differentiable at t = 1/2 with derivative 1/F ′(µ).
Note that existence of a density is not sufficient to imply existence
of the derivative of F (x) at x = µ; however, if F is continuous but
c© 2000 by Chapman & Hall/CRC
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Figure 3.1 Density of X(n/2) for n = 10 Exponential random variables; the
dotted line is the approximating Normal density.

not differentiable at x = µ then
√
n(X(mn) − µ) may still converge

in distribution but the limiting distribution will be different.
As an illustration of the convergence of the distribution of the

sample median to a Normal distribution, we will consider the
density of the order statistic X(n/2) for i.i.d. Exponential random
variables X1, · · · , Xn with density

f(x) = exp(−x) for x ≥ 0.

Figures 3.1, 3.2, and 3.3 give the densities of X(n/2) for n = 10, 50,
and 100 respectively; the corresponding approximating Normal
density is indicated with dotted lines. ✸

EXAMPLE 3.7: Suppose that {Xn} is a sequence of Binomial
random variables with Xn having parameters n and θn where
nθn → λ > 0 as n → ∞. The moment generating function of
Xn is

mn(t) = (1 + θn(exp(t)− 1))n

=
(

1 +
nθn(exp(t)− 1)

n

)n

.
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Figure 3.2 Density of X(n/2) for n = 50 Exponential random variables; the
dotted line is the approximating Normal density.

Since nθn → λ, it follows that

lim
n→∞

mn(t) = exp[λ(exp(t)− 1)]

where the limiting moment generating function is that of a Poisson
distribution with parameter λ. Thus Xn →d X where X has a
Poisson distribution with parameter λ. This result can be used to
compute Binomial probabilities when n is large and θ is small so
that nθ ≈ nθ(1− θ). For example, suppose that X has a Binomial
distribution with n = 100 and θ = 0.05. Then using the Poisson
approximation

P [a ≤ X ≤ b] ≈
∑

a≤x≤b

exp(−nθ)(nθ)x

x!

we get, for example, P [4 ≤ X ≤ 6] ≈ 0.497 compared to the exact
probability P [4 ≤ X ≤ 6] = 0.508. ✸
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Figure 3.3 Density of X(n/2) for n = 100 Exponential random variables; the
dotted line is the approximating Normal density.

EXAMPLE 3.8: As in Example 3.2, define Un by

Un =
n∑

k=1

Xk

10k

where X1, Xn, · · · are i.i.d. discrete random variables uniformly
distributed on the integers 0, 1, · · · , 9. We showed in Example 3.2
that Un →d Unif(0, 1) by showing convergence of the distribution
functions. In this example, we will do the same using moment
generating functions. The moment generating function of each Xk

is

m(t) =
1
10

(1 + exp(t) + · · ·+ exp(9t)) =
exp(10t)− 1

10(exp(t)− 1)

and so the moment generating function of Un is

φn(t) =
n∏

k=1

m(t/10k)

=
n∏

k=1

(
exp(t/10k−1)− 1
10(exp(t/10k)− 1

)
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=
exp(t)− 1

10n(exp(t/10n)− 1)
.

Using the expansion exp(x) = 1 + x + x2/2 + · · ·, it follows that

lim
n→∞

10n(exp(t/10n)− 1) = t

and so
lim
n→∞

φn(t) =
1
t
(exp(t)− 1) =

∫ 1

0
exp(tx) dx,

which is the moment generating function of the Uniform distri-
bution on [0, 1]. Thus we have shown (using moment generating
functions) that Un →d Unif(0, 1). ✸

3.5 Central Limit Theorems

In probability theory, central limit theorems (CLTs) establish
conditions under which the distribution of a sum of random
variables may be approximated by a Normal distribution. (We have
seen already in Examples 3.4, 3.5, and 3.6 cases where the limiting
distribution is Normal.) A wide variety of CLTs have been proved;
however, we will consider CLTs only for sums and weighted sums
of i.i.d. random variables.

THEOREM 3.8 (CLT for i.i.d. random variables) Suppose
that X1, X2, · · · are i.i.d. random variables with mean µ and vari-
ance σ2 <∞ and define

Sn =
1

σ
√
n

n∑
i=1

(Xi − µ) =
√
n(X̄n − µ)

σ
.

Then Sn →d Z ∼ N(0, 1) as n→∞.

(In practical terms, the CLT implies that for “large” n, the
distribution of X̄n is approximately Normal with mean µ and
variance σ2/n.)

Before discussing the proof of this CLT, we will give a little
of the history behind the result. The French-born mathematician
de Moivre is usually credited with proving the first CLT (in the
18th century); this CLT dealt with the special case that the
Xi’s were Bernoulli random variables (that is, P [Xi = 1] = θ
and P [Xi = 0] = 1 − θ). His work (de Moivre, 1738) was not
significantly improved until Laplace (1810) extended de Moivre’s
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work to sums of independent bounded random variables. The
Russian mathematician Chebyshev extended Laplace’s work to
sums of random variables with finite moments E(|Xi|k) for all
k ≥ 1. However, it was not until the early twentieth century that
Markov and Lyapunov (who were students of Chebyshev) removed
nearly all unnecessary moment restrictions. Finally, Lindeberg
(1922) proved the CLT assuming only finite variances. It should
be noted that most of the work subsequent to Laplace dealt with
sums of independent (but not necessarily identically distributed)
random variables; it turns out that this added generality does not
pose any great technical complications.

Proving the CLT

We will consider two proofs of the CLT for i.i.d. random variables.
In the first proof, we will assume the existence of moment gener-
ating function of the Xi’s and show that the moment generating
function of Sn converges to the moment generating function of Z.
Of course, assuming the existence of moment generating functions
implies that E(Xk

i ) exists for all integers k ≥ 1. The second proof
will require only that E(X2

i ) is finite and will show directly that
P [Sn ≤ x] → P [Z ≤ x].

We can assume (without loss of generality) that E(Xi) = 0 and
Var(Xi) = 1. Let m(t) = E[exp(tXi)] be the moment generating
function of the Xi’s. Then

m(t) = 1 +
t2

2
+

t3E(X3
i )

6
+ · · ·

(since E(Xi) = 0 and E(X2
i ) = 1) and the moment generating

function of Sn is

mn(t) = [mn(t/
√
n)]n

=

[
1 +

t2

2n
+

t3E(X3
i )

6n3/2
+ · · ·

]n

=

[
1 +

t2

2n

(
1 +

tE(X3
i )

3n1/2
+

t2E(X4
i )

12n
+ · · ·

)]n

=

[
1 +

t2

2n
rn(t)

]n
where |rn(t)| < ∞ and rn(t) → 1 as n → ∞ for each |t| ≤ some
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b > 0. Thus

lim
n→∞

mn(t) = exp

(
t2

2

)
and the limit is the moment generating function of a standard
Normal random variable. It should be noted that a completely
rigorous proof of Theorem 3.8 can be obtained by replacing moment
generating functions by characteristic functions in the proof above.

The second proof we give shows directly that

P [Sn ≤ x] →
∫ x

−∞

1√
2π

exp

(
− t2

2

)
dt;

we will first assume that E(|Xi|3) is finite and then indicate
what modifications are necessary if we assume only that E(X2

i ) is
finite. The method used in this proof may seem at first somewhat
complicated but, in fact, is extremely elegant and is actually the
method used by Lindeberg to prove his 1922 CLT.

The key to the proof directly lies in approximating P [Sn ≤ x]
by E[f+

δ (Sn)] and E[f−
δ (Sn)] where f+

δ and f−
δ are two bounded,

continuous functions. In particular, we define f+
δ (y) = 1 for y ≤ x,

f+
δ (y) = 0 for y ≥ x + δ and 0 ≤ f+

δ (y) ≤ 1 for x < y < x + δ; we
define f−

δ (y) = f+
δ (y + δ). If

g(y) = I(y ≤ x),

it is easy to see that

f−
δ (y) ≤ g(y) ≤ f+

δ (y)

and
P [Sn ≤ x] = E[g(Sn)].

Then if Z is a standard Normal random variable, we have

P [Sn ≤ x] ≤ E[f+
δ (Sn)]

≤ E[f+
δ (Sn)]− E[f+

δ (Z)] + E[f+
δ (Z)]

≤ |E[f+
δ (Sn)]− E[f+

δ (Z)]|+ P [Z ≤ x + δ]

and similarly,

P [Sn ≤ x] ≥ P [Z ≤ x− δ]− |E[f−
δ (Sn)]− E[f−

δ (Z)]|.
Thus we have

|E[f+
δ (Sn)]− E[f+

δ (Z)]|+ P [Z ≤ x + δ]
≥ P [Sn ≤ x]
≥ P [Z ≤ x− δ]− |E[f−

δ (Sn)]− E[f−
δ (Z)]|;
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since P [Z ≤ x ± δ] can be made arbitrarily close to P (Z ≤ x)
(because Z has a continuous distribution function), it suffices to
show that E[f+

δ (Sn)] → E[f+
δ (Z)] and E[f−

δ (Sn)] → E[f−
δ (Z)] for

suitable choices of f+
δ and f−

δ . In particular, we will assume that
f+
δ (and hence f−

δ ) has three bounded continuous derivatives.
Let f be a bounded function (such as f+

δ or f−
δ ) with three

bounded continuous derivatives and let Z1, Z2, Z3, · · · be a sequence
of i.i.d. standard Normal random variables that are also indepen-
dent of X1, X2, · · ·; note that n−1/2(Z1 + · · ·+Zn) is also standard
Normal. Now define random variables Tn1, · · · , Tnn where

Tnk =
1√
n

k−1∑
j=1

Zj +
1√
n

n∑
j=k+1

Xj

(where the sum is taken to be 0 if the upper limit is less than the
lower limit). Then

E[f(Sn)]− E[f(Z)]

=
n∑

k=1

E[f(Tnk + n−1/2Xk)− f(Tnk + n−1/2Zk)].

Expanding f(Tnk +n−1/2Xk) in a Taylor series around Tnk, we get

f(Tnk + n−1/2Xk) = f(Tnk) +
Xk√
n
f ′(Tnk) +

X2
k

2n
f ′′(Tnk) + RX

k

where RX
k is a remainder term (whose value will depend on the

third derivative of f); similarly,

f(Tnk + n−1/2Zk) = f(Tnk) +
Zk√
n
f ′(Tnk) +

Z2
k

2n
f ′′(Tnk) + RZ

k .

Taking expected values (and noting that Tnk is independent of both
Xk and Zk), we get

E[f(Sn)]− E[f(Z)] =
n∑

k=1

[E(RX
k )− E(RZ

k )].

We now try to find bounds for RX
k and RZ

k ; it follows that

|RX
k | ≤

K

6
|Xk|3
n3/2

and |RZ
k | ≤

K

6
|Zk|3
n3/2

where K is an upper bound on |f ′′′(y)|, which (by assumption) is
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finite. Thus

|E[f(Sn)]− E[f(Z)]| ≤
n∑

k=1

|E(RX
k )− E(RZ

k )|

≤
n∑

k=1

[E(|RX
k |) + E(|RZ

k |)]

≤ K

6
√
n

(
E[|X1|3] + E[|Z1|3]

)
→ 0

as n→∞ since both E[|X1|3] and E[|Z1|3] are finite.
Applying the previous result to f+

δ and f−
δ having three bounded

continuous derivatives, it follows that E[f+
δ (Sn)] → E[f+

δ (Z)] and
E[f−

δ (Sn)] → E[f−
δ (Z)]. Now since

P [Z ≤ x± δ] → P [Z ≤ x]

as δ → 0, it follows from above that for each x,

P [Sn ≤ x] → P [Z ≤ x].

We have, of course, assumed that E[|Xi|3] is finite; to extend the
result to the case where we assume only that E(X2

i ) is finite, it is
necessary to find a more accurate bound on |RX

k |. Such a bound is
given by

|RX
k | ≤ K ′

(
|Xk|3
6n3/2

I(|Xk| ≤ ε
√
n) +

X2
k

n
I(|Xk| > ε

√
n)

)

where K ′ is an upper bound on both |f ′′(y)| and |f ′′′(y)|. It then
can be shown that n∑

k=1

E[|RX
k |] → 0

and so E[f(Sn)] → E[f(Z)].

Using the CLT as an approximation theorem

In mathematics, a distinction is often made between limit theorems
and approximation theorems; the former simply specifies the limit
of a sequence while the latter provides an estimate or bound on
the difference between an element of the sequence and its limit.
For example, it is well-known that ln(1 + x) can be approximated
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by x when x is small; a crude bound on the absolute difference
| ln(1 + x)− x| is x2/2 when x ≥ 0 and x2/[2(1 + x)2] when x < 0.
For practical purposes, approximation theorems are more useful as
they allow some estimate of the error made in approximating by
the limit.

The CLT as stated here is not an approximation theorem. That
is, it does not tell us how large n should be in order for a Normal
distribution to approximate the distribution of Sn. Nonetheless,
with additional assumptions, the CLT can be restated as an
approximation theorem. Let Fn be the distribution function of Sn
and Φ be the standard Normal distribution function. To gain some
insight into the factors affecting the speed of convergence of Fn to Φ,
we will use Edgeworth expansions. Assume that Fn is a continuous
distribution function and that E(X4

i ) <∞ and define

γ =
E[(Xi − µ)3]

σ3
and κ =

E[(Xi − µ)4]
σ4

− 3;

γ and κ are, respectively, the skewness and kurtosis of the
distribution of Xi both of which are 0 when Xi is normally
distributed. It is now possible to show that

Fn(x) = Φ(x)−φ(x)

(
γ

6
√
n
p1(x) +

κ

24n
p2(x) +

γ2

72n
p3(x)

)
+ rn(x)

where φ(x) is the standard Normal density function and p1(x),
p2(x), p3(x) are the polynomials

p1(x) = x2 − 1
p2(x) = x3 − 3x
p3(x) = x5 − 10x3 + 15x;

the remainder term rn(x) satisfies nrn(x) → 0. From this expansion,
it seems clear that the approximation error |Fn(x)−Φ(x)| depends
on the skewness and kurtosis (that is, γ and κ) of the Xi’s. The
skewness and kurtosis are simple measures of how a particular
distribution differs from normality; skewness is a measure of the
asymmetry of a distribution (γ = 0 if the distribution is symmetric
around its mean) while kurtosis is a measure of the thickness of
the tails of a distribution (κ > 0 indicates heavier tails than
a Normal distribution while κ < 0 indicates lighter tails). For
example, a Uniform distribution has γ = 0 and κ = −1.2 while
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Figure 3.4 Density of the sum of 10 Uniform random variables; the dotted curve
is the approximating Normal density.

an Exponential distribution has γ = 2 and κ = 6. Thus we should
expect convergence to occur more quickly for sums of Uniform
random variables than for sums of Exponential random variables.
Indeed, this is true; in fact, the distribution of a sum of as few
as ten Uniform random variables is sufficiently close to a Normal
distribution to allow generation of Normal random variables on a
computer by summing Uniform random variables. To illustrate the
difference in the accuracy of the Normal approximation, we consider
the distribution of X1 + · · ·+ X10 when the Xi’s are Uniform and
Exponential; Figures 3.4 and 3.5 give the exact densities and their
Normal approximations in these two cases.

The speed of convergence of the CLT (and hence the goodness of
approximation) can often be improved by applying transformations
to reduce the skewness and kurtosis of X̄n. Recall that if

√
n(X̄n−

µ) →d Z then
√
n(g(X̄n)− g(µ)) →d g

′(µ)Z.

If g is chosen so that the distribution of g(X̄n) is more symmetric
and has lighter tails than that of X̄n then the CLT should provide
a more accurate approximation for the distribution of

√
n(g(X̄n)−

g(µ)) than it does for the distribution of
√
n(X̄n − µ).
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Figure 3.5 Density of the sum of 10 Exponential random variables; the dotted
curve is the approximating Normal density.

Although the Edgeworth expansion above does not always hold
when the Xi’s are discrete, the preceding comments regarding
speed of convergence and accuracy of the Normal approximation
are still generally true. However, when the Xi’s are discrete,
there is a simple technique that can improve the accuracy of
the Normal approximation. We will illustrate this technique for
the Binomial distribution. Suppose that X is a Binomial random
variable with parameters n and θ; X can be thought of as a sum
of n i.i.d. Bernoulli random variables so the distribution of X can
be approximated by a Normal distribution if n is sufficiently large.
More specifically, the distribution of

X − nθ√
nθ(1− θ)

is approximately standard Normal for large n. Suppose we want to
evaluate P [a ≤ X ≤ b] for some integers a and b. Ignoring the fact
that X is a discrete random variable and the Normal distribution
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Figure 3.6 Binomial distribution (n = 40, θ = 0.3) and approximating Normal
density

is a continuous distribution, a naive application of the CLT gives

P [a ≤ X ≤ b]

= P

[
a− nθ√
nθ(1− θ)

≤ X − nθ√
nθ(1− θ)

≤ b− nθ√
nθ(1− θ)

]

≈ Φ

(
b− nθ√
nθ(1− θ)

)
− Φ

(
a− nθ√
nθ(1− θ)

)
.

How can this approximation be improved? The answer is clear if we
compare the exact distribution of X to its Normal approximation.
The distribution of X can be conveniently represented as a
probability histogram as in Figure 3.6 with the area of each
bar representing the probability that X takes a certain value.
The naive Normal approximation given above merely integrates
the approximating Normal density from a = 8 to b = 17; this
probability is represented by the shaded area in Figure 3.7. It
seems that the naive Normal approximation will underestimate
the true probability and Figures 3.7 and 3.8 suggest that a better
approximation may be obtained by integrating from a − 0.5 = 7.5
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Figure 3.7 Naive Normal approximation of P (8 ≤ X ≤ 17)

to b + 0.5 = 17.5. This corrected Normal approximation is

P [a ≤ X ≤ b] = P [a− 0.5 ≤ X ≤ b + 0.5]

≈ Φ

(
b + 0.5− nθ√

nθ(1− θ)

)
− Φ

(
a− 0.5− nθ√

nθ(1− θ)

)
.

The correction used here is known as a continuity correction and
can be applied generally to improve the accuracy of the Normal
approximation for sums of discrete random variables. (In Figures
3.6, 3.7, and 3.8, X has a Binomial distribution with parameters
n = 40 and θ = 0.3.)

Some other Central Limit Theorems

CLTs can be proved under a variety of conditions; neither the as-
sumption of independence nor that of identical distributions are
necessary. In this section, we will consider two simple modifications
of the CLT for sums of i.i.d. random variables. The first modifi-
cation deals with weighted sums of i.i.d. random variables while
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Figure 3.8 Normal approximation of P (8 ≤ X ≤ 17) with continuity
correction

the second deals with sums of independent but not identically dis-
tributed random variables with finite third moment.

THEOREM 3.9 (CLT for weighted sums) Suppose that X1,
X2, · · · are i.i.d. random variables with E(Xi) = 0 and Var(Xi) = 1
and let {ci} be a sequence of constants. Define

Sn =
1
sn

n∑
i=1

ciXi where s2
n =

n∑
i=1

c2i .

Then Sn →d Z, a standard Normal random variable, provided that

max
1≤i≤n

c2i
s2
n

→ 0

as n→∞.

What is the practical meaning of the “negligibility” condition on
the constants {ci} given above? For each n, it is easy to see that
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Var(Sn) = 1. Now writing

Sn =
n∑
i=1

ci
sn

Xi =
n∑
i=1

Yni

and noting that Var(Yni) = c2i /s
2
n, it follows that this condition

implies that no single component of the sum Sn contributes an
excessive proportion of the variance of Sn. For example, the
condition rules out situations where Sn depends only on a negligible
proportion of the Yni’s. An extreme example of this occurs when
c1 = c2 = · · · = ck = 1 (for some fixed k) and all other ci’s are 0;
in this case,

max
1≤i≤n

c2i
s2
n

=
1
k
,

which does not tend to 0 as n → ∞ since k is fixed. On the other
hand, if ci = i then

s2
n =

n∑
i=1

i2 =
1
6
n(2n2 + 3n + 1)

and
max
1≤i≤n

c2i
s2
n

=
6n2

n(2n2 + 3n + 1)
→ 0

as n→∞ and so the negligibility condition holds. Thus if the Xi’s
are i.i.d. random variables with E(Xi) = 0 and Var(Xi) = 1, it
follows that

1
sn

n∑
i=1

iXi →d Z

where Z has a standard Normal distribution.
When the negligibility condition of Theorem 3.9 fails, it may

still be possible to show that the weighted sum Sn converges in
distribution although the limiting distribution will typically be non-
Normal.

EXAMPLE 3.9: Suppose that X1, X2, · · · are i.i.d. random
variables with common density function

f(x) =
1
2

exp(−|x|)

(called a Laplace distribution) and define

Sn =
1
sn

n∑
k=1

Xk

k
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where s2
n =

∑n
i=1 k

−2. Note that s2
n → ∑∞

k=1 k
−2 = π2/6 as

n → ∞ and the negligibility condition does not hold. However,
it can be shown that Sn →d S. Since sn → π/

√
6, we will

consider the limiting distribution of Vn = snSn; if Vn →d V then
Sn →d

√
6/πV = S. The moment generating function of Xi is

m(t) =
1

1− t2
(for |t| < 1)

and so the moment generating function of Vn is

mn(t) =
n∏

k=1

m(t/k) =
n∏

k=1

(
k2

k2 − t2

)
.

As n→∞, mn(t) → mV (t) where

mV (t) =
∞∏
k=1

(
k2

k2 − t2

)
= Γ(1 + t)Γ(1− t)

for |t| < 1. The limiting moment generating function mV (t) is not
immediately recognizable. However, note that∫ ∞

−∞
exp(tx)

exp(x)
(1 + exp(x))2

dx =
∫ 1

0
ut(1− u)−t du

=
Γ(1 + t)Γ(1− t)

Γ(2)
= Γ(1 + t)Γ(1− t)

and so the density of V is

fV (x) =
exp(x)

(1 + exp(x))2

(this distribution is often called the Logistic distribution). The
density of S is thus

fS(x) =
π√
6

exp(πx/
√

6)
(1 + exp(πx/

√
6))2

.

The limiting density fS(x) is shown in Figure 3.9. ✸

Another useful CLT for sums of independent (but not identically
distributed) random variables is the Lyapunov CLT. Like the CLT
for weighted sums of i.i.d. random variables, this CLT depends on
a condition that can be easily verified.
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Figure 3.9 Density of S; the dotted curve is a Normal density with the same
mean and variance as S.

THEOREM 3.10 (Lyapunov CLT) Suppose that X1, X2, · · ·
are independent random variables with E(Xi) = 0, E(X2

i ) = σ2
i

and E(|Xi|3) = γi and define

Sn =
1
sn

n∑
i=1

Xi

where s2
n =

∑n
i=1 σ

2
i . If

lim
n→∞

1

s
3/2
n

n∑
i=1

γi = 0

then Sn →d Z, a standard Normal random variable.

It is possible to adapt the proof of the CLT for sums of i.i.d.
random variables to the two CLTs given in this section. In the case
of the CLT for weighted sums, the key modification lies in redefining
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Tnk to be

Tnk =
1
sn

k−1∑
j=1

cjZj +
1
sn

n∑
j=k+1

cjXj

where Z1, Z2, · · · are independent standard Normal random vari-
ables independent of the Xi’s. Then letting f be a bounded function
with three bounded derivatives, we have

E[f(Sn)]−E[f(Z)] =
n∑

k=1

E[f(Tnk+ckXk/sn)−f(Tnk+ckZk/sn)].

The remainder of the proof is much the same as before and
is left as an exercise. It is also possible to give a proof using
moment generating functions assuming, of course, that the moment
generating function of Xi exists.

Multivariate Central Limit Theorem

CLTs for sums of random variables can be generalized to deal with
sums of random vectors. For example, suppose that X1,X2, · · · are
i.i.d. random vectors with mean vector µ and variance-covariance
matrix C; define

X̄n =
1
n

n∑
i=1

Xi

to be the (coordinate-wise) sample mean of X1, · · · ,Xn. The logical
extension of the CLT for i.i.d. random variables is to consider the
limiting behaviour of the distributions of

√
n(X̄n − µ).

Before considering any multivariate CLT, we need to extend
the notion of convergence in distribution to sequences of random
vectors. This extension is fairly straightforward and involves the
joint distribution functions of the random vectors; given random
vectors {Xn} and X, we say that Xn →d X if

lim
n→∞

P [Xn ≤ x] = P [X ≤ x] = F (x)

at each continuity point x of the joint distribution function F of
X. (X ≤ x means that each coordinate of X is less than or equal
to the corresponding coordinate of x.) This definition, while simple
enough, is difficult to prove analytically. Fortunately, convergence
in distribution of random vectors can be cast in terms of their one-
dimensional projections.
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THEOREM 3.11 Suppose that {Xn} and X are random vectors.
Then Xn →d X if, and only if,

tTXn →d tTX

for all vectors t.

Theorem 3.11 is called the Cramér-Wold device. The proof of
this result will not be given here. The result is extremely useful for
proving multivariate CLTs since it essentially reduces multivariate
CLTs to special cases of univariate CLTs. We will only consider a
multivariate CLT for sums of i.i.d. random vectors but more general
multivariate CLTs can also be deduced from appropriate univariate
CLTs.

THEOREM 3.12 (Multivariate CLT) Suppose that X1, X2,
X3, · · · are i.i.d. random vectors with mean vector µ and variance-
covariance matrix C and define

Sn =
1√
n

n∑
i=1

(Xi − µ) =
√
n(X̄n − µ).

Then Sn →d Z where Z has a multivariate Normal distribution
with mean 0 and variance-covariance matrix C.

Proof. It suffices to show that tTSn →d tTZ; note that tTZ is
Normally distributed with mean 0 and variance tTCt. Now

tTSn =
1√
n

n∑
i=1

tT (Xi − µ)

=
1√
n

n∑
i=1

Yi

where the Yi’s are i.i.d. with E(Yi) = 0 and Var(Yi) = tTCt. Thus
by the CLT for i.i.d. random variables,

tTSn →d N(0, tTCt)

and the theorem follows.

The definition of convergence in probability can be extended quite
easily to random vectors. We will say that Xn →p X if each
coordinate of Xn converges in probability to the corresponding
coordinate of X. Equivalently, we can say that Xn →p X if

lim
n→∞

P [‖Xn −X‖ > ε] = 0
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where ‖ · ‖ is the Euclidean norm of a vector.
It is possible to generalize many of the results proved above.

For example, suppose that Xn →d X; then if g is a continuous
real-valued function, g(Xn) →d g(X). (The same is true if →d

is replaced by →p.) This multivariate version of the Continuous
Mapping Theorem can be used to obtain a generalization of
Slutsky’s Theorem. Suppose that Xn →d X and Yn →p θ. By using
the Cramér-Wold device (Theorem 3.11) and Slutsky’s Theorem,
it follows that (Xn, Yn) →d (X, θ). Thus if g(x, y) is a continuous
function, we have

g(Xn, Yn) →d g(X, θ).

EXAMPLE 3.10: Suppose that {Xn} is a sequence of random
vectors with Xn →d Z where Z ∼ Np(0, C) and C is non-singular.
Define the function

g(x) = xTC−1x,

which is a continuous function of x. Then we have

g(Xn) = XT
nC

−1Xn →d ZTC−1Z = g(Z).

It follows from Chapter 2 that the random variable ZTC−1Z has
a χ2 distribution with p degrees of freedom. Thus for large n,
XT

nC
−1Xn is approximately χ2 with p degrees of freedom. ✸

It is also possible to extend the Delta Method to the multivariate
case. Let {an} be a sequence of constants tending to infinity and
suppose that

an(Xn − θ) →d Z.

If g(x) = (g1(x), · · · , gk(x)) is a vector-valued function that is
continuously differentiable at x = θ, we have

an(g(Xn)− g(θ)) →d D(θ)Z

where D(θ) is a matrix of partial derivatives of g with respect to
x evaluated at x = θ; more precisely, if x = (x1, · · · , xp),

D(θ) =


∂
∂x1

g1(θ) · · · ∂
∂xp

g1(θ)
∂
∂x1

g2(θ) · · · ∂
∂xp

g2(θ)
. . . . . . . . . . . . . . . . . . . . . . . .
∂
∂x1

gk(θ) · · · ∂
∂xp

gk(θ)

 .
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The proof of this result parallels that of the Delta Method given
earlier and is left as an exercise.

EXAMPLE 3.11: Suppose that (X1, Y1), · · · , (Xn, Yn) are i.i.d.
pairs of random variables with E(Xi) = µX > 0, E(Yi) = µY > 0,
and E(X2

i ) and E(Y 2
i ) both finite. By the multivariate CLT, we

have
√
n

((
X̄n

Ȳn

)
−

(
µX
µY

))
→d Z ∼ N2(0, C)

where C is the variance-covariance matrix of (Xi, Yi). We want to
consider the asymptotic distribution of X̄n/Ȳn. Applying the Delta
Method (with g(x, y) = x/y), we have

√
n

(
X̄n

Ȳn
− µX

µY

)
→d D(µX , µY )Z

∼ N(0, D(µX , µY )CD(µX , µY )T )

where

D(µX , µY ) =

(
1
µY

,−µX
µ2
Y

)
.

Letting Var(Xi) = σ2
X , Var(Yi) = σ2

Y , and Cov(Xi, Yi) = σXY , it
follows that the variance of the limiting Normal distribution is

D(µX , µY )CD(µX , µY )T =
µ2
Y σ

2
X − 2µXµY σXY + µ2

Xσ2
Y

µ4
Y

. ✸

3.6 Some applications

In subsequent chapters, we will use many of the concepts and
results developed in this chapter to characterize the large sample
properties of statistical estimators. In this section, we will give some
applications of the concepts and results given so far in this chapter.

Variance stabilizing transformations

The CLT states that if X1, X2, · · · are i.i.d. random variables with
mean µ and variance σ2 then

√
n(X̄n − µ) →d Z

where Z has a Normal distribution with mean 0 and variance σ2.
For many distributions, the variance σ2 depends only on the mean
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µ (that is, σ2 = V (µ)). In statistics, it is often desirable to find a
function g such that the limit distribution of

√
n(g(X̄n)− g(µ))

does not depend on µ. (We could then use this result to find
an approximate confidence interval for µ; see Chapter 7.) If g is
differentiable, we have

√
n(g(X̄n)− g(µ)) →d g

′(µ)Z

and g′(µ)Z is Normal with mean 0 and variance [g′(µ)]2V (µ); in
order to make the limiting distribution independent of µ, we need
to find g so that this variance is 1 (or some other constant). Thus,
given V (µ), we would like to find g such that

[g′(µ)]2V (µ) = 1

or
g′(µ) = ± 1

V (µ)1/2
.

The function g can be the solution of either of the two differential
equations depending on whether one wants g to be an increasing
or a decreasing function of µ; g is called a variance stabilizing
transformation.

EXAMPLE 3.12: Suppose that X1, · · · , Xn are i.i.d. Bernoulli
random variables with parameter θ. Then

√
n(X̄n − θ) →d Z ∼ N(0, θ(1− θ)).

To find g such that
√
n(g(X̄n)− g(θ)) →d N(0, 1)

we solve the differential equation

g′(θ) =
1√

θ(1− θ)
.

The general form of the solutions to this differential equation is

g(θ) = sin−1(2θ − 1) + c

where c is an arbitrary constant that could be taken to be 0.
(The solutions to the differential equation can also be written
g(θ) = 2 sin−1(

√
θ) + c.) ✸
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Variance stabilizing transformations often improve the speed of
convergence to normality; that is, the distribution of g(X̄n) can be
better approximated by a Normal distribution than that of X̄n if
g is a variance stabilizing transformation. However, there may be
other transformations that result in a better approximation by a
Normal distribution.

A CLT for dependent random variables

Suppose that {Ui} is an infinite sequence of i.i.d. random variables
with mean 0 and variance σ2 and define

Xi =
p∑

j=0

cjUi−j

where c0, · · · , cp are constants. Note that X1, X2, · · · are not
necessarily independent since they can depend on common Ui’s.
(In time series analysis, {Xi} is called a moving average process.)
A natural question to ask is whether a CLT holds for sample means
X̄n based on X1, X2, · · ·

We begin by noting that

1√
n

n∑
i=1

Xi =
1√
n

n∑
i=1

p∑
j=0

cjUi−j

=
1√
n

p∑
j=0

cj

n∑
i=1

Ui−j

=

 p∑
j=0

cj

 1√
n

n∑
i=1

Ui +
p∑

j=1

cjRnj

where

Rnj =
1√
n

(
n∑
i=1

Ui−j −
n∑
i=1

Ui

)

=
1√
n

(U1−j + · · ·+ U0 − Un−j+1 − · · · − Un) .

Now E(Rnj) = 0, Var(Rnj) = E(R2
nj) = 2jσ2/n and so by Cheby-

shev’s inequality Rnj →p 0 as n→∞ for j = 1, · · · , p; thus,
p∑

j=1

cjRnj →p 0.
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Finally,
1√
n

n∑
i=1

Ui →d N(0, σ2)

and so applying Slutsky’s Theorem, we get

1√
n

n∑
i=1

Xi →d Z

where Z has a Normal distribution with mean 0 and variance

σ2

 p∑
j=0

cj

2

.

When
∑p

j=0 cj = 0, the variance of the limiting Normal distribution
is 0; this suggests that

1√
n

n∑
i=1

Xi →p 0

(if
∑p

j=0 cj = 0). This is, in fact, the case. It follows from above
that

1√
n

n∑
i=1

Xi =
p∑

j=1

cjRnj ,

which tends to 0 in probability. An extension to infinite moving
averages is considered in Problem 3.22.

In general, what conditions are necessary to obtain a CLT for
sums of dependent random variables {Xi}? Loosely speaking, it
may be possible to approximate the distribution of X1 + · · · + Xn

by a Normal distribution (for sufficiently large n) if both
• the dependence between Xi and Xi+k becomes negligible as
k →∞ (for each i), and

• each Xi accounts for a negligible proportion of the variance of
X1 + · · ·+ Xn.

However, the conditions above provide only a very rough guideline
for the possible existence of a CLT; much more specific technical
conditions are typically needed to establish CLTs for sums of
dependent random variables.

c© 2000 by Chapman & Hall/CRC



Monte Carlo integration.

Suppose we want to evaluate the multi-dimensional integral∫
· · ·

∫
g(x) dx

where the function g is sufficiently complicated that the integral
cannot be evaluated analytically. A variety of methods exist for
evaluating integrals numerically. The most well-known of these
involve deterministic approximations of the form∫

· · ·
∫
g(x) dx ≈

m∑
i=1

aig(xi)

where a1, · · · , an, x1, · · · ,xn are fixed points that depend on the
method used; for a given function g, it is usually possible to give
an explicit upper bound on the approximation error∣∣∣∣∣

∫
· · ·

∫
g(x) dx−

m∑
i=1

aig(xi)

∣∣∣∣∣
and so the points {xi} can be chosen to make this error acceptably
small. However, as the dimension of domain of integration B
increases, the number of points m needed to obtain a given accuracy
increases exponentially. An alternative is to use so-called “Monte
Carlo” sampling; that is, we evaluate g at random (as opposed to
fixed) points. The resulting approximation is of the form

m∑
i=1

Aig(Xi)

where the Xi’s and possibly the Ai’s are random. One advantage
of using Monte Carlo integration is the fact that the order of the
approximation error depends only on m and not the dimension of B.
Unfortunately, Monte Carlo integration does not give a guaranteed
error bound; hence, for a given value of m, we can never be
absolutely certain that the approximation error is sufficiently small.

Why does Monte Carlo integration work? Monte Carlo integra-
tion exploits the fact that any integral can be expressed as the
expected value of some real-valued function of a random variable
or random vector. Since the WLLN says that sample means ap-
proximate population means (with high probability) if the sample
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size is sufficiently large, we can use the appropriate sample mean
to approximate any given integral. To illustrate, we will consider
evaluating the integral

I =
∫ 1

0
g(x) dx.

Suppose that a random variable U has a Uniform distribution on
[0, 1]. Then

E[g(U)] =
∫ 1

0
g(x) dx.

If U1, U2, · · · are i.i.d. Uniform random variables on [0, 1], the WLLN
says that

1
n

n∑
i=1

g(Ui) →p E[g(U)] =
∫ 1

0
g(x) dx as n→∞,

which suggests that
∫ 1
0 g(x) dx may be approximated by the Monte

Carlo estimate
Î =

1
n

n∑
i=1

g(Ui)

if n is sufficiently large. (In practice, U1, · · · , Un are pseudo-random
variables and so are not truly independent.)

Generally, it is not possible to obtain a useful absolute bound on
the approximation error∣∣∣∣∣ 1n

n∑
i=1

g(Ui)−
∫ 1

0
g(x) dx

∣∣∣∣∣
since this error is random. However, if

∫ 1
0 g2(x) dx < ∞, it is

possible to use the CLT to make a probability statement about
the approximation error. Defining

σ2
g = Var[g(Ui)] =

∫ 1

0
g2(x) dx−

(∫ 1

0
g(x) dx

)2

,

it follows that

P

(∣∣∣∣∣ 1n
n∑
i=1

g(Ui)−
∫ 1

0
g(x) dx

∣∣∣∣∣ < aσg√
n

)
≈ Φ(a)− Φ(−a)

where Φ(x) is the standard Normal distribution function.
The simple Monte Carlo estimate of

∫ 1
0 g(x) dx can be improved in
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a number of ways. We will mention two such methods: importance
sampling and antithetic sampling.

Importance sampling exploits the fact that∫ 1

0
g(x) dx =

∫ 1

0

g(x)
f(x)

f(x) dx = E

(
g(X)
f(X)

)
where the random variable X has density f on [0, 1]. Thus if
X1, · · · , Xn are i.i.d. random variables with density f , we can
approximate

∫ 1
0 g(x) dx by

Ĩ =
1
n

n∑
i=1

g(Xi)
f(Xi)

.

How do Î and Ĩ compare as estimates of I =
∫ 1
0 g(x) dx? In simple

terms, the estimates can be assessed by comparing their variances
or, equivalently, Var[g(Ui)] and Var[g(Xi)/f(Xi)]. It can be shown
that Var[g(Xi)/f(Xi)] is minimized by sampling the Xi’s from the
density

f(x) =
|g(x)|∫ 1

0 |g(x)| dx
;

in practice, however, it may be difficult to generate random
variables with this density. However, a significant reduction in
variance can be obtained if the Xi’s are sampled from a density
f that is approximately proportional to |g|. (More generally, we
could approximate the integral

∫ ∞
−∞ g(x) dx by

1
n

n∑
i=1

g(Xi)
f(Xi)

where X1, · · · , Xn are i.i.d. random variables with density f .)
Antithetic sampling exploits the fact that∫ 1

0
g(x) dx =

1
2

∫ 1

0
(g(x) + g(1− x)) dx.

Hence if U1, U2, · · · are i.i.d. Uniform random variables on [0, 1], we
can approximate

∫ 1
0 g(x) dx by

1
2n

n∑
i=1

(g(Ui) + g(1− Ui)).

Antithetic sampling is effective when g is a monotone function
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(either increasing or decreasing); in this case, it can be shown that
Cov[g(Ui), g(1− Ui)] ≤ 0. Now comparing the variances of

Îs =
1
2n

2n∑
i=1

g(Ui) and Îa =
1
2n

n∑
i=1

(g(Ui) + g(1− Ui)),

we obtain
Var(Îs) =

Var[g(U1)]
2n

and

Var(Îa) =
Var[g(U1) + g(1− U1)]

4n

=
Var[g(U1)] + Cov[g(U1), g(1− U1)]

2n
.

Since Cov[g(U1), g(1−U1)] ≤ 0 when g is monotone, it follows that
Var(Îa) ≤ Var(Îs).

EXAMPLE 3.13: Consider evaluating the integral∫ 1

0
exp(−x) cos(πx/2) dx;

the integrand is shown in Figure 3.10. This integral can be evaluated
in closed-form as

2
4 + π2

(2 + π exp(−1)) ≈ 0.4551.

We will evaluate this integral using four Monte Carlo approaches.
Let U1, · · · , U1000 be i.i.d. Uniform random variables on the interval
[0, 1] and define the following four Monte Carlo estimates of the
integral:

Î1 =
1

1000

1000∑
i=1

exp(−Ui) cos(πUi/2)

Î2 =
1

1000

500∑
i=1

exp(−Ui) cos(πUi/2)

+
1

1000

500∑
i=1

exp(Ui − 1) cos(π(1− Ui)/2)

Î3 =
1

1000

1000∑
i=1

exp(−Vi) cos(πVi/2)
2(1− Vi)
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Figure 3.10 Graph of the function g(x) = exp(−x) cos(πx/2).

Î4 =
1

1000

1000∑
i=1

exp(−Wi) cos(πWi/2)
2Wi

where Vi = 1 − (1 − Ui)1/2 and Wi = U
1/2
i . Î2 is an antithetic

sampling estimate of the integral while Î3 and Î4 are both
importance sampling estimates; note that the density of Vi is
fV (x) = 2(1 − x) while the density of Wi is fW (x) = 2x (for
0 ≤ x ≤ 1 in both cases). Each of the four estimates was evaluated
for 10 samples of U1, · · · , U1000 and the results presented in Table
3.2.

A glance at Table 3.2 reveals that the estimates Î2 and Î3 are
the best while Î4 is the clear loser; Î2 comes the closet to the
true value 4 times while Î3 comes the closest the other 6 times.
It is not surprising that Î3 does so well; from Figure 3.10, we can
see that the integrand g(x) = exp(−x) cos(πx/2) is approximately
1 − x so that g(x)/fV (x) ≈ 2 and so Î3 should be close to the
optimal importance sampling estimate. The fact that g(x) ≈ 1− x

also explains the success of the antithetic sampling estimate Î2:
g(Ui)+g(1−Ui) ≈ 1, which suggests that Var(g(Ui)+g(1−Ui)) ≈ 0.
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Table 3.2 Monte Carlo estimates of
∫ 1

0
exp(−x) cos(πx/2) dx.

Î1 Î2 Î3 Î4

0.4596 0.4522 0.4555 0.4433
0.4706 0.4561 0.4563 0.5882
0.4653 0.4549 0.4560 0.6569
0.4600 0.4559 0.4559 0.4259
0.4496 0.4551 0.4546 0.4907
0.4412 0.4570 0.4527 0.4206
0.4601 0.4546 0.4552 0.4289
0.4563 0.4555 0.4549 0.4282
0.4541 0.4538 0.4555 0.4344
0.4565 0.4534 0.4556 0.4849

(In fact, Var(Î2) = 0.97 × 10−6 while Var(Î3) = 2.25 × 10−6 and
Var(Î1) = 90.95× 10−6; the variance of Î4 is infinite.) ✸

3.7 Convergence with probability 1

Earlier in this chapter, we mentioned the existence of another
type of convergence for sequences of random variables, namely
convergence with probability 1. In the interest of completeness, we
will discuss this type of convergence although we will not make use
of it subsequently in the text; therefore, this section can be skipped
without loss of continuity.

DEFINITION. A sequence of random variables {Xn} converges
with probability 1 (or almost surely) to a random variable X
(Xn →wp1 X) if

P
([
ω : lim

n→∞
Xn(ω) = X(ω)

])
= 1.

What exactly does convergence with probability 1 mean? By
the definition above, if Xn →wp1 X then Xn(ω) → X(ω) for all
outcomes ω ∈ A with P (A) = 1. For a given ω ∈ A and ε > 0,
there exists a number nε(ω) such that |Xn(ω) −X(ω)| ≤ ε for all
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n ≥ nε(ω). Now consider the sequence of sets {Bn(ε)} with

Bn(ε) =
∞⋃
k=n

[|Xk −X| > ε];

{Bn(ε)} is a decreasing sequence of sets (that is, Bn+1(ε) ⊂ Bn(ε))
and its limit will contain all ω’s lying in infinitely many of the
Bn(ε)’s. If ω ∈ A then for n sufficiently large |Xk(ω)−X(ω)| ≤ ε for
k ≥ n and so ω �∈ Bn(ε) (for n sufficiently large). Thus Bn(ε)∩A ↓ ∅
as n → ∞. Likewise, if ω �∈ A then ω will lie in infinitely many of
the Bn’s and so Bn ∩Ac ↓ Ac. Thus

P (Bn(ε)) = P (Bn(ε) ∩A) + P (Bn(ε) ∩Ac)
→ lim

n→∞
P (Bn(ε) ∩A) + lim

n→∞
P (Bn(ε) ∩Ac)

= 0

Thus Xn →wp1 X implies that P (Bn(ε)) → 0 as n → ∞ for all
ε > 0. Conversely, if P (Bn(ε)) → 0 then using the argument given
above, it follows that Xn →wp1 X. Thus Xn →wp1 X is equivalent
to

lim
n→∞

P

( ∞⋃
k=n

[|Xk −X| > ε]

)
= 0

for all ε > 0.
Using the condition given above, it is easy to see that if Xn →wp1

X then Xn →p X; this follows since

[|Xn −X| > ε] ⊂
∞⋃
k=n

[|Xk −X| > ε]

and so

P (|Xn −X| > ε) ≤ P

( ∞⋃
k=n

[|Xk −X| > ε]

)
→ 0.

Note that if [|Xn+1 −X| > ε] ⊂ [|Xn −X| > ε] for all n then

P

( ∞⋃
k=n

[|Xk −X| > ε]

)
= P (|Xn −X| > ε)

in which case Xn →p X implies that Xn →wp1 X.
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EXAMPLE 3.14: Suppose that X1, X2, · · · are i.i.d. Uniform
random variables on the interval [0, 1] and define

Mn = max(X1, · · · , Xn).

In Example 3.1, we showed that Mn →p 1. However, note that
1 ≥Mn+1(ω) ≥Mn(ω) for all ω and so

[|Mn+1 − 1| > ε] = [Mn+1 < 1− ε]
⊂ [Mn < 1− ε]
= [|Mn − 1| > ε].

Thus

P

( ∞⋃
k=n

[|Mk − 1| > ε]

)
= P (|Mn − 1| > ε) → 0 as n→∞

as shown in Example 3.1. Thus Mn →wp1 1. ✸

Example 3.14 notwithstanding, it is, in general, much more
difficult to prove convergence with probability 1 than it is to prove
convergence in probability. However, assuming convergence with
probability 1 rather than convergence in probability in theorems
(for example, in Theorems 3.2 and 3.3) can sometimes greatly
facilitate the proofs of these results.

EXAMPLE 3.15: Suppose that Xn →wp1 X and g(x) is a
continuous function. Then g(Xn) →wp1 g(X). To see this, let A
be the set of ω’s for which Xn(ω) → X(ω). Since g is a continuous
function Xn(ω) → X(ω) implies that g(Xn(ω)) → g(X(ω)); this
occurs for all ω’s in the set A with P (A) = 1 and so g(Xn) →wp1

g(X). ✸

We can also extend the WLLN to the so-called Strong Law of
Large Numbers (SLLN).

THEOREM 3.13 (Strong Law of Large Numbers) Suppose that
X1, X2, · · · are i.i.d. random variables with E(|Xi|) < ∞ and
E(Xi) = µ. Then

X̄n =
1
n

n∑
i=1

Xi →wp1 µ

as n→∞.

c© 2000 by Chapman & Hall/CRC



The SLLN was proved by Kolmogorov (1930). Its proof is more
difficult than that of the WLLN but similar in spirit; see, for
example, Billingsley (1995) for details.

There is a very interesting connection between convergence with
probability 1 and convergence in distribution. It follows that
convergence with probability 1 implies convergence in distribution;
the converse is not true (since Xn →d X means that the distribution
functions converge and so all the Xn’s can be defined on different
sample spaces). However, there is a partial converse that is quite
useful technically.

Suppose that Xn →d X; thus Fn(x) → F (x) for all continuity
points of F . Then it is possible to define random variables {X∗

n}
and X∗ with X∗

n ∼ Fn and X∗ ∼ F such that X∗
n →wp1 X∗.

Constructing these random variables is remarkably simple. Let U
be a Uniform random variable on the interval [0, 1] and define

X∗
n = F−1

n (U) and X∗ = F−1(U)

where F−1
n and F−1 are the inverses of the distribution functions of

Xn and X respectively. It follows now that X∗
n ∼ Fn and X∗ ∼ F .

Moreover, X∗
n →wp1 X∗; the proof of this fact is left as an exercise

but seems reasonable given that Fn(x) → F (x) for all but (at most)
a countable number of x’s. This representation is due to Skorokhod
(1956).

As mentioned above, the ability to construct these random
variables {X∗

n} and X∗ is extremely useful from a technical point
of view. In the following examples, we give elementary proofs of
the Continuous Mapping Theorem (Theorem 3.2) and the Delta
Method (Theorem 3.4).

EXAMPLE 3.16: Suppose that Xn →d X and g(x) is a
continuous function. We can then construct random variables {X∗

n}
and X∗ such that X∗

n =d Xn and X∗ =d X and X∗
n →wp1 X∗. Since

g is continuous, we have

g(X∗
n) →wp1 g(X∗).

However, g(X∗
n) =d g(Xn) and g(X∗) =d g(X) and so it follows

that
g(Xn) →d g(X)

since g(X∗
n) →d g(X∗). ✸
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EXAMPLE 3.17: Suppose that Zn = an(Xn − θ) →d Z where
an ↑ ∞. Let g(x) be a function that is differentiable at x = θ.
We construct the random variables {Z∗

n} and Z∗ having the same
distributions as {Zn} and Z with Z∗

n →wp1 Z∗. We can also define
X∗
n = a−1

n Z∗
n + θ which will have the same distribution as Xn;

clearly, X∗
n →wp1 θ. Thus

an(g(X∗
n)− g(θ)) =

(
g(X∗

n)− g(θ)
X∗
n − θ

)
an(X∗

n − θ)

→wp1 g′(θ)Z∗

since
g(X∗

n)− g(θ)
X∗
n − θ

→wp1 g′(θ).

Now since an(g(X∗
n) − g(θ)) and an(g(Xn) − g(θ)) have the same

distribution as do g′(θ)Z∗ and g′(θ)Z, it follows that

an(g(Xn)− g(θ)) →d g
′(θ)Z.

Note that we have required only existence (and not continuity) of
the derivative of g(x) at x = θ. ✸

3.8 Problems and complements

3.1: (a) Suppose that {X(1)
n }, · · · , {X(k)

n } are sequences of random
variables with X

(i)
n →p 0 as n→∞ for each i = 1, · · · , k. Show

that
max
1≤i≤k

|X(i)
n | →p 0

as n→∞.
(b) Find an example to show that the conclusion of (a) is not
necessarily true if the number of sequences k = kn →∞.

3.2: Suppose that X1, · · · , Xn are i.i.d. random variables with a
distribution function F (x) satisfying

lim
x→∞

xα(1− F (x)) = λ > 0

for some α > 0. Let Mn = max(X1, · · · , Xn). We want to show
that n−1/αMn has a non-degenerate limiting distribution.
(a) Show that n[1−F (n1/αx)] → λx−α as n→∞ for any x > 0.
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(b) Show that

P
(
n−1/αMn ≤ x

)
= [F (n1/α)]n

= [1− (1− F (n1/α))]n

→ 1− exp
(
−λx−α

)
as n→∞ for any x > 0.
(c) Show that P (n−1/αMn ≤ 0) → 0 as n→∞.
(d) Suppose that the Xi’s have a Cauchy distribution with
density function

f(x) =
1

π(1 + x2)
.

Find the value of α such that n−1/αMn has a non-degenerate
limiting distribution and give the limiting distribution function.

3.3: Suppose that X1, · · · , Xn are i.i.d. Exponential random vari-
ables with parameter λ and let Mn = max(X1, · · · , Xn). Show
that Mn − ln(n)/λ→d V where

P (V ≤ x) = exp[− exp(−λx)]

for all x.
3.4: Suppose that X1, · · · , Xn are i.i.d. nonnegative random vari-

ables with distribution function F . Define

Un = min(X1, · · · , Xn).

(a) Suppose that F (x)/x → λ as x → 0. Show that nUn →d

Exp(λ).
(b) Suppose that F (x)/xα → λ as x→ 0 for some α > 0. Find
the limiting distribution of n1/αUn.

3.5: Suppose that XN has a Hypergeometric distribution (see
Example 1.13) with the following frequency function

fN (x) =

(
MN

x

)(
N −MN

rN − x

)/(
N

rN

)

for x = max(0, rN + MN − N), · · · ,min(MN , rN ). When the
population size N is large, it becomes somewhat difficult to
compute probabilities using fN (x) so that it is desirable to find
approximations to the distribution of XN as N →∞.
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(a) Suppose that rN → r (finite) and MN/N → θ for 0 < θ < 1.
Show that XN →d Bin(r, θ) as N →∞
(b) Suppose that rN →∞ with rNMN/N → λ > 0. Show that
XN →d Pois(λ) as N →∞.

3.6: Suppose that {Xn} and {Yn} are two sequences of random
variables such that

an(Xn − Yn) →d Z

for a sequence of numbers {an} with an →∞ (as n→∞).
(a) Suppose that Xn →p θ. Show that Yn →p θ.
(b) Suppose that Xn →p θ and g(x) is a function continuously
differentiable at x = θ. Show that

an(g(Xn)− g(Yn)) →d g
′(θ)Z.

3.7: (a) Let {Xn} be a sequence of random variables. Suppose that
E(Xn) → θ (where θ is finite) and Var(Xn) → 0. Show that
Xn →p θ.
(b) A sequence of random variables {Xn} converges in proba-
bility to infinity (Xn →p ∞) if for each M > 0,

lim
n→∞

P (Xn ≤M) = 0.

Suppose that E(Xn) → ∞ and Var(Xn) ≤ kE(Xn) for
some k < ∞. Show that Xn →p ∞. (Hint: Use Chebyshev’s
inequality to show that

P [|Xn − E(Xn)| > εE(Xn)] → 0

for each ε > 0.)
3.8: (a) Let g be a nonnegative even function (g(x) = g(−x)) that

is increasing on [0,∞) and suppose that E[g(X)] < ∞. Show
that

P [|X| > ε] ≤ E[g(X)]
g(ε)

for any ε > 0. (Hint: Follow the proof of Chebyshev’s inequality
making the appropriate changes.)
(b) Suppose that E[|Xn|r] → 0 as n→∞. Show that Xn →p 0.

3.9: Suppose that X1, · · · , Xn are i.i.d. Poisson random variables
with mean λ. By the CLT,

√
n(X̄n − λ) →d N(0, λ).
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(a) Find the limiting distribution of
√
n(ln(X̄n)− ln(λ)).

(b) Find a function g such that
√
n(g(X̄n)− g(λ)) →d N(0, 1).

3.10: Let {an} be a sequence of constants with an → ∞ and
suppose that

an(Xn − θ) →d Z

where θ is a constant.
(a) Let g be a function that is twice differentiable at θ and
suppose that g′(θ) = 0. Show that

a2
n(g(Xn)− g(θ)) →d

1
2
Z2.

(b) Now suppose that g is k times differentiable at θ with
g′(θ) = · · · = g(k−1)(θ) = 0. Find the limiting distribution
of akn(g(Xn) − g(θ)). (Hint: Expand g(Xn) in a Taylor series
around θ.)

3.11: The sample median of i.i.d. random variables is asymptoti-
cally Normal provided that the distribution function F has a
positive derivative at the median; when this condition fails, an
asymptotic distribution may still exist but will be non-Normal.
To illustrate this, let X1, · · · , Xn be i.i.d. random variables with
density

f(x) =
1
6
|x|−2/3 for |x| ≤ 1.

(Notice that this density has a singularity at 0.)
(a) Evaluate the distribution function of Xi and its inverse (the
quantile function).
(b) Let Mn be the sample median of X1, · · · , Xn. Find the
limiting distribution of n3/2Mn. (Hint: use the extension of
the Delta Method in Problem 3.10 by applying the inverse
transformation from part (a) to the median of n i.i.d. Uniform
random variables on [0, 1].)

3.12: Suppose that X1, · · · , Xn are i.i.d. random variables with
common density

f(x) = αx−α−1 for x ≥ 1
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where α > 0. Define

Sn =

(
n∏
i=1

Xi

)1/n

.

(a) Show that ln(Xi) has an Exponential distribution.
(b) Show that Sn →p exp(1/α). (Hint: Consider ln(Sn).)
(c) Suppose α = 10 and n = 100. Evaluate P (Sn > 1.12) using
an appropriate approximation.

3.13: Suppose that X1, · · · , Xn be i.i.d. discrete random variables
with frequency function

f(x) =
x

21
for x = 1, 2, · · · , 6.

(a) Let Sn =
∑n

k=1 kXk. Show that

(Sn − E(Sn))√
Var(Sn)

→d N(0, 1).

(b) Suppose n = 20. Use a Normal approximation to evaluate
P (S20 ≥ 1000).
(c) Suppose n = 5. Compute the exact distribution of Sn using
the probability generating function of Sn (see Problems 1.18
and 2.8).

3.14: Suppose that Xn1, Xn2, · · · , Xnn are independent random
variables with

P (Xni = 0) = 1− pn and P (Xni ≤ x|Xni �= 0) = F (x).

Suppose that γ(t) =
∫ ∞
−∞ exp(tx) dF (x) < ∞ for t in a

neighbourhood of 0.
(a) Show that the moment generating function of Xni is

mn(t) = pnγ(t) + (1− pn)

(b) Let Sn =
∑n

i=1 Xni and suppose that npn → λ > 0 as
n → ∞. Show that Sn converges in distribution to a random
variable S that has a compound Poisson distribution. (Hint: See
Problem 2.7 for the moment generating function of a compound
Poisson distribution.)

3.15: Suppose that Xn1, Xn2, · · · , Xnn are independent Bernoulli
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random variables with parameters θn1, · · · , θnn respectively.
Define Sn = Xn1 + Xn2 + · · ·+ Xnn.
(a) Show that the moment generating function of Sn is

mn(t) =
n∏
i=1

(1− θni + θni exp(t)) .

(b) Suppose that
n∑
i=1

θni → λ > 0 and

max
1≤i≤n

θni → 0

as n→∞. Show that

lnmn(t) = λ[exp(t)− 1] + rn(t)

where for each t, rn(t) → 0 as n→∞. (Hint: Use the fact that
ln(1 + x) = x− x2/2 + x3/3 + · · · for |x| < 1.)
(c) Deduce from part (b) that Sn →d Pois(λ).

3.16: Suppose that {Xn} is a sequence of nonnegative continuous
random variables and suppose that Xn has hazard function
λn(x). Suppose that for each x, λn(x) → λ0(x) as n → ∞
where

∫ ∞
0 λ0(x) dx = ∞. Show that Xn →d X where

P (X > x) = exp
(
−

∫ x

0
λ0(t) dt

)
3.17: Suppose that X1, · · · , Xn are independent nonnegative ran-

dom variables with hazard functions λ1(x), · · · , λn(x) respec-
tively. Define Un = min(X1, · · · , Xn).
(a) Suppose that for some α > 0,

lim
n→∞

1
nα

n∑
i=1

λi(t/nα) = λ0(t)

for all t > 0 where
∫ ∞
0 λ0(t) dt = ∞. Show that nαUn →d V

where
P (V > x) = exp

(
−

∫ x

0
λ0(t) dt

)
.

(b) Suppose that X1, · · · , Xn are i.i.d. Weibull random variables
(see Example 1.19) with density function

f(x) = λβxβ−1 exp
(
−λxβ

)
(x > 0)
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where λ, α > 0. Let Un = min(X1, · · · , Xn) and find α such
that nαUn →d V .

3.18: Suppose that Xn ∼ χ2(n).
(a) Show that

√
Xn −

√
n →d N(0, 1/2) as n → ∞. (Hint:

Recall that Xn can be represented as a sum of n i.i.d. random
variables.)
(b) Suppose that n = 100. Use the result in part (a) to
approximate P (Xn > 110).

3.19: Suppose that {Xn} is a sequence of random variables such
that Xn →d X where E(X) is finite. We would like to
investigate sufficient conditions under which E(Xn) → E(X)
(assuming that E(Xn) is well-defined). Note that in Theorem
3.5, we indicated that this convergence holds if the Xn’s are
uniformly bounded.
(a) Let δ > 0. Show that

E(|Xn|1+δ) = (1 + δ)
∫ ∞

0
xδP (|Xn| > x) dx.

(b) Show that for any M > 0 and δ > 0,∫ M

0
P (|Xn| > x) dx ≤ E(|Xn|)

≤
∫ M

0
P (|Xn| > x) dx

+
1

M δ

∫ ∞

M
xδP (|Xn| > x) dx.

(c) Again let δ > 0 and suppose that E(|Xn|1+δ) ≤ K < ∞
for all n. Assuming that Xn →d X, use the results of parts (a)
and (b) to show that E(|Xn|) → E(|X|) and E(Xn) → E(X)
as n→∞. (Hint: Use the fact that∫ M

0
|P (|Xn| > x)− P (|X| > x)| dx→ 0

as n→∞ for each finite M .)
3.20: A sequence of random variables {Xn} is said to be bounded

in probability if for every ε > 0, there exists Mε <∞ such that
P (|Xn| > Mε) < ε for all n.
(a) If Xn →d X, show that {Xn} is bounded in probability.
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(b) If E(|Xn|r) ≤ M < ∞ for some r > 0, show that {Xn} is
bounded in probability.
(c) Suppose that Yn →p 0 and {Xn} is bounded in probability.
Show that XnYn →p 0.

3.21: If {Xn} is bounded in probability, we often write Xn =
Op(1). Likewise, if Xn →p 0 then Xn = op(1). This useful
shorthand notation generalizes the big-oh and little-oh notation
that is commonly used for sequences of numbers to sequences
of random variables. If Xn = Op(Yn) (Xn = op(Yn)) then
Xn/Yn = Op(1) (Xn/Yn = op(1)).
(a) Suppose that Xn = Op(1) and Yn = op(1). Show that
Xn + Yn = Op(1).
(b) Let {an} and {bn} be sequences of constants where an/bn →
0 as n → ∞ (that is, an = o(bn)) and suppose that Xn =
Op(an). Show that Xn = op(bn).

3.22: Suppose that {Ui} is an infinite sequence of i.i.d. random
variables with mean 0 and variance 1, and define {Xi} by

Xi =
∞∑
j=0

cjUi−j

where we assume that
∑∞

j=0 |cj | < ∞ to guarantee that the
infinite summation is well-defined.
(a) Define c̃j =

∑∞
k=j+1 ck and define

Zi =
∞∑
j=0

c̃jUi−j

and assume that
∑∞

j=0 c̃
2
j <∞ (so that Zi is well-defined). Show

that

Xi =

 ∞∑
j=0

cj

Ui + Zi − Zi−1.

This decomposition is due to Beveridge and Nelson (1981).
(b) Using the decomposition in part (a), show that

1√
n

n∑
i=1

Xi →d N(0, σ2)
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where

σ2 =

 ∞∑
j=0

cj

2

.

3.23: Suppose that A1, A2, · · · is a sequence of events. We are some-
times interested in determining the probability that infinitely
many of the Ak’s occur. Define the event

B =
∞⋂
n=1

∞⋃
k=n

Ak.

It is possible to show that an outcome lies in B if, and only
if, it belongs to infinitely many of the Ak’s. (To see this, first
suppose that an outcome ω lies in infinitely many of the Ak’s.
Then it belongs to Bn =

⋃∞
k=nAk for each n ≥ 1 and hence

in B =
⋂∞
n=1 Bn. On the other hand, suppose that ω lies in B;

then it belongs to Bn for all n ≥ 1. If ω were in only a finite
number of Ak’s, there would exist a number m such that Ak

did not contain ω for k ≥ m. Hence, ω would not lie in Bn for
n ≥ m and so ω would not lie in B. This is a contradiction, so
ω must lie in infinitely many of the Ak’s.)
(a) Prove the first Borel-Cantelli Lemma: If

∑∞
k=1 P (Ak) < ∞

then
P (Ak infinitely often) = P (B) = 0.

(Hint: note that B ⊂ Bn for any n and so P (B) ≤ P (Bn).)
(b) When the Ak’s are mutually independent, we can streng-
then the first Borel-Cantelli Lemma. Suppose that

∞∑
k=1

P (Ak) = ∞

for mutually independent events {Ak}. Show that

P (Ak infinitely often) = P (B) = 1;

this result is called the second Borel-Cantelli Lemma. (Hint:
Note that

Bc =
∞⋃
n=1

∞⋂
k=n

Ac
k
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and so

P (Bc) ≤ P

( ∞⋂
k=n

Ac
k

)
=

∞∏
k=n

(1− P (Ak)).

Now use the fact that ln(1− P (Ak)) ≤ −P (Ak).)
3.24: Suppose that {Xk} is an infinite sequence of identically

distributed random variables with E(|Xk|) <∞.
(a) Show that for ε > 0,

P

(∣∣∣∣Xk

k

∣∣∣∣ > ε infinitely often
)

= 0.

(From this, it follows that Xn/n → 0 with probability 1 as
n→∞.)
(b) Suppose that the Xk’s are i.i.d. Show that Xn/n→ 0 with
probability 1 if, and only if, E(|Xk|) <∞.

3.25: Suppose that X1, X2, · · · are i.i.d. random variables with
E(Xi) = 0 and E(X4

i ) <∞. Define

X̄n =
1
n

n∑
i=1

Xi.

(a) Show that E[|X̄n|4] ≤ k/n2 for some constant k. (Hint: To
evaluate

n∑
i=1

n∑
j=1

n∑
k=1

n∑
�=1

E [XiXjXkX�]

note that most of the n4 terms in the fourfold summation are
exactly 0.)
(b) Using the first Borel-Cantelli Lemma, show that

X̄n →wp1 0.

(This gives a reasonably straightforward proof of the SLLN
albeit under much stronger than necessary conditions.)
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CHAPTER 4

Principles of Point Estimation

4.1 Introduction

To this point, we have assumed (implicitly or explicitly) that all
the parameters necessary to make probability calculations for a
particular probability model are available to us. Thus, for example,
we are able to calculate the probability that a given event occurs
either exactly or approximately (with the help of limit theorems).
In statistics, however, the roles of parameters (of the probability
model) and outcomes (of the experiment) are somewhat reversed;
the outcome of the experiment is observed by the experimenter
while the true value of the parameter (or more generally, the
true probability distribution) is unknown to the experimenter. In
very broad terms, the goal of statistics is to use the outcome of
the experiment (that is, the data from the experiment) to make
inference about the values of the unknown parameters of the
assumed underlying probability distribution.

The previous paragraph suggests that no ambiguity exists re-
garding the probability model for a given experiment. However,
in “real life” statistical problems, there may be considerable uncer-
tainty as to the choice of the appropriate probability model and the
model is only chosen after the data have been observed. Moreover,
in many (perhaps almost all) problems, it must be recognized that
any model is, at best, an approximation to reality; it is important
for a statistician to verify that any assumed model is more or less
close to reality and to be aware of the consequences of misspecifying
a model.

A widely recognized philosophy in statistics (and in science more
generally) is that a model should be as simple as possible. This
philosophy is often expressed by the maxim known as Occam’s
razor (due to the philosopher William of Occam): “explanations
should not be multiplied beyond necessity”. In terms of statistical
modeling, Occam’s razor typically means that we should prefer a
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model with few parameters to one with many parameters if the
data are explained equally well by both.

There are several philosophies of statistical inference; we will
crudely classify these into two schools, the Frequentist school
and the Bayesian school. The Frequentist approach to inference
is perhaps the most commonly used in practice but is, by no
means, superior (or inferior) to the Bayesian approach. Frequentist
methods assume (implicitly) that any experiment is infinitely
repeatable and that we must consider all possible (but unobserved)
outcomes of the experiment in order to carry out statistical
inference. In other words, the uncertainty in the outcome of the
experiment is used to describe the uncertainty about the parameters
of the model. In contrast, Bayesian methods depend only on the
observed data; uncertainty about the parameters is described via
probability distributions that depend on these data. However, there
are Frequentist methods that have a Bayesian flavour and vice
versa. In this book, we will concentrate on Frequentist methods
although some exposure will be given to Bayesian methods.

4.2 Statistical models

Let X1, · · · , Xn be random variables (or random vectors) and
suppose that we observe x1, · · · , xn, which can be thought of
as outcomes of the random variables X1, · · · , Xn. Suppose that
the joint distribution of X = (X1, · · · , Xn) is unknown but
belongs to some particular family of distributions. Such a family
of distributions is called a statistical model. Although we usually
assume that X is observed, it is also possible to talk about a model
for X even if some or all of the Xi’s are not observable.

It is convenient to index the distributions belonging to a statisti-
cal model by a parameter θ; θ typically represents the unknown or
unspecified part of the model. We can then write

X = (X1, · · · , Xn) ∼ Fθ for θ ∈ Θ

where Fθ is the joint distribution function of X and Θ is the set
of possible values for the parameter θ; we will call the set Θ the
parameter space. In general, θ can be either a single real-valued
parameter or a vector of parameters; in this latter case, we will often
write θ to denote a vector of parameters (θ1, · · · , θp) to emphasize
that we have a vector-valued parameter.

Whenever it is not notationally cumbersome to do so, we
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will write (for example) Pθ(A), Eθ(X), and Varθ(X) to denote
(respectively) probability, expected value, and variance with respect
to a distribution with unknown parameter θ. The reasons for
doing this are purely stylistic and mainly serve to emphasize the
dependence of these quantities on the parameter θ.

We usually assume that Θ is a subset of some Euclidean space so
that the parameter θ is either real- or vector-valued (in the vector
case, we will write θ = (θ1, · · · , θk)); such a model is often called a
parametric model in the sense that the distributions belonging to
the model can be indexed by a finite dimensional parameter. Models
whose distributions cannot be indexed by a finite dimensional
parameter are often (somewhat misleadingly) called non-parametric
models; the parameter space for such models is typically infinite
dimensional. However, for some non-parametric models, we can
express the parameter space Θ = Θ1 × Θ2 where Θ1 is a subset
of a Euclidean space. (Such models are sometimes called semi-
parametric models.)

For a given statistical model, a given parameter θ corresponds to a
single distribution Fθ. However, this does not rule out the possibility
that there may exist distinct parameter values θ1 and θ2 such that
Fθ1 = Fθ2 . To rule out this possibility, we often require that a
given model, or more precisely, its parametrization be identifiable;
a model is said to have an identifiable parametrization (or to be
an identifiable model) if Fθ1 = Fθ2 implies that θ1 = θ2. A non-
identifiable parametrization can lead to problems in estimation of
the parameters in the model; for this reason, the parameters of
an identifiable model are often called estimable. Henceforth unless
stated otherwise, we will assume implicitly that any statistical
model with which we deal is identifiable.

EXAMPLE 4.1: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ. The joint frequency function of
X = (X1, · · · , Xn) is

f(x;λ) =
n∏
i=1

exp(−λ)λxi

xi!

for x1, · · · , xn = 0, 1, 2, · · ·. The parameter space for this parametric
model is {λ : λ > 0}. ✸

EXAMPLE 4.2: Suppose that X1, · · · , Xn are i.i.d. random vari-
ables with a continuous distribution function F that is unknown.
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The parameter space for this model consists of all possible continu-
ous distributions. These distributions cannot be indexed by a finite
dimensional parameter and so this model is non-parametric. We
may also assume that F (x) has a density f(x − θ) where θ is an
unknown parameter and f is an unknown density function satisfy-
ing f(x) = f(−x). This model is also non-parametric but depends
on the real-valued parameter θ. (This might be considered a semi-
parametric model because of the presence of θ.) ✸

EXAMPLE 4.3: Suppose that X1, · · · , Xn are independent Nor-
mal random variables with E(Xi) = β0 +β1ti +β2si (where t1, · · · ,
tn and s1, · · · , sn are known constants) and Var(Xi) = σ2; the pa-
rameter space is

{(β0, β1, β2, σ) : −∞ < β0, β1, β2 <∞, σ > 0}.

We will see that the parametrization for this model is identifiable
if, and only if, the vectors

z0 =

 1
...
1

 ,z1 =

 t1
...
tn

 , and z2 =

 s1
...
sn


are linearly independent, that is, a0z0 + a1z1 + a2z2 = 0 implies
that a0 = a1 = a2 = 0. To see why this is true, let

µ =

 E(X1)
...

E(Xn)


and note that the parametrization is identifiable if there is a one-
to-one correspondence between the possible values of µ and the
parameters β0, β1, β2. Suppose that z0, z1, and z2 are linearly
dependent; then a0z0 + a1z1 + a2z2 = 0 where at least one of
a0, a1, or a2 is non-zero. In this case, we would have

µ = β0z0 + β1z1 + β2z2

= (β0 + a0)z0 + (β1 + a1)z1 + (β2 + a2)z2

and thus there is not a one-to-one correspondence between µ and
(β0, β1, β2). However, when z0, z1, and z2 are linearly dependent, it
is possible to obtain an identifiable parametrization by restricting
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the parameter space; this is usually achieved by putting constraints
on the parameters β0, β1, and β2. ✸

Exponential families

One important class of statistical models is exponential family
models. Suppose that X1, · · · , Xn have a joint distribution Fθ where
θ = (θ1, · · · , θp) is an unknown parameter. We say that the family
of distributions {Fθ} is a k-parameter exponential family if the joint
density or joint frequency function of (X1, · · · , Xn) is of the form

f(x;θ) = exp

[
k∑
i=1

ci(θ)Ti(x)− d(θ) + S(x)

]
for x = (x1, · · · , xn) ∈ A where A does not depend on the parameter
θ. It is important to note that k need not equal p, the dimension
of θ, although, in many cases, they are equal.

EXAMPLE 4.4: Suppose that X has a Binomial distribution
with parameters n and θ where θ is unknown. Then the frequency
function of X is

f(x; θ) =

(
n

x

)
θx(1− θ)n−x

= exp

[
ln

(
θ

1− θ

)
x + n ln(1− θ) + ln

(
n

x

)]
for xinA = {0, 1, · · · , n} and so the distribution of X has a one-
parameter exponential family. ✸

EXAMPLE 4.5: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with unknown shape parameter α and unknown
scale parameter λ. Then the joint density function of X =
(X1, · · · , Xn) is

f(x;α, λ)

=
n∏
i=1

[
λαxα−1

i exp(−λxi)
Γ(α)

]

= exp

[
(α− 1)

n∑
i=1

ln(xi)− λ
n∑
i=1

xi + nα ln(λ)− n ln(Γ(α))

]
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(for x1, · · · , xn > 0) and so the distribution of X is a two-parameter
exponential family. ✸

EXAMPLE 4.6: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean θ and variance θ2 where θ > 0. The
joint density function of (X1, · · · , Xn) is

f(x; θ)

=
n∏
i=1

[
1

θ
√

2π
exp

(
− 1

2θ2
(xi − θ)2

)]

= exp

[
− 1

2θ2

n∑
i=1

x2
i +

1
θ

n∑
i=1

xi −
n

2
(1 + ln(θ2) + ln(2π))

]

and so A = Rn. Note that this is a two-parameter exponential
family despite the fact that the parameter space is one-dimensional.
✸

EXAMPLE 4.7: Suppose that X1, · · · , Xn are independent Pois-
son random variables with E(Xi) = exp(α + βti) where t1, · · · , tn
are known constants. Setting X = (X1, · · · , Xn), the joint frequency
function of X is

f(x;α, β)

=
n∏
i=1

[
exp(− exp(α + βti)) exp(αxi + βxiti)

x!

]

= exp

[
α

n∑
i=1

xi + β
n∑
i=1

xiti +
n∑
i=1

exp(α + βti)−
n∑
i=1

ln(xi!)

]
.

This is a two-parameter exponential family model; the set A is
simply {0, 1, 2, 3, · · ·}n. ✸

EXAMPLE 4.8: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, θ]. The joint density function
of X = (X1, · · · , Xn) is

f(x; θ) =
1
θn

for 0 ≤ x1, · · · , xn ≤ θ.

The region on which f(x; θ) is positive clearly depends on θ and so
this model is not an exponential family model. ✸

The following result will prove to be useful in the sequel.
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PROPOSITION 4.1 Suppose that X = (X1, · · · , Xn) has a one-
parameter exponential family distribution with density or frequency
function

f(x; θ) = exp [c(θ)T (x)− d(θ) + S(x)]
for x ∈ A where
(a) the parameter space Θ is open,
(b) c(θ) is a one-to-one function on Θ,
(c) c(θ), d(θ) are twice differentiable functions on Θ.
Then

Eθ[T (X)] =
d′(θ)
c′(θ)

and Varθ[T (X)] =
d′′(θ)c′(θ)− d′(θ)c′′(θ)

[c′(θ)]3
.

Proof. Define φ = c(θ); φ is called the natural parameter of the
exponential family. Let d0(φ) = d(c−1(φ)) where c−1 is well-defined
since c is a one-to-one continuous function on Θ. Then for s
sufficiently small (so that φ+s lies in the natural parameter space),
we have (Problem 4.1)

Eφ[exp(sT (X))] = exp[d0(φ + s)− d0(φ)],

which is the moment generating function of T (X). Differentiating
and setting s = 0, we get

Eφ[T (X)] = d′0(φ) and Varφ[T (X)] = d′′0(φ).

Now note that

d′0(φ) =
d′(θ)
c′(θ)

and d′′0(φ) =
d′′(θ)c′(θ)− d′(θ)c′′(θ)

[c′(θ)]3

and so the conclusion follows.

Proposition 4.1 can be extended to find the means, variances
and covariances of the random variables T1(X), · · · , Tk(X) in k-
parameter exponential family models; see Problem 4.2.

Statistics

Suppose that the model for X = (X1, · · · , Xn) has a parameter
space Θ. Since the true value of the parameter θ (or, equivalently,
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the true distribution of X) is unknown, we would like to summarize
the available information in X without losing too much information
about the unknown parameter θ. At this point, we are not interested
in estimating θ per se but rather in determining how to best use
the information in X.

We will start by attempting to summarize the information in
X. Define a statistic T = T (X) to be a function of X that does
not depend on any unknown parameter; that is, the statistic T
depends only on observable random variables and known constants.
A statistic can be real- or vector-valued.

EXAMPLE 4.9: T (X) = X̄ = n−1 ∑n
i=1 Xi. Since n (the sample

size) is known, T is a statistic. ✸

EXAMPLE 4.10: T (X) = (X(1), · · · , X(n)) where X(1) ≤ X(2) ≤
· · · ≤ X(n) are the order statistics of X. Since T depends only on
the values of X, T is a statistic. ✸

It is important to note that any statistic is itself a random variable
and so has its own probability distribution; this distribution may or
may not depend on the parameter θ. Ideally, a statistic T = T (X)
should contain as much information about θ as X does. However,
this raises several questions. For example, how does one determine
if T and X contain the same information about θ? How do we find
such statistics? Before attempting to answer these questions, we
will define the concept of ancillarity.
DEFINITION. A statistic T is an ancillary statistic (for θ) if its

distribution is independent of θ; that is, for all θ ∈ Θ, T has the
same distribution.

EXAMPLE 4.11: Suppose that X1 and X2 are independent
Normal random variables each with mean µ and variance σ2 (where
σ2 is known). Let T = X1 −X2; then T has a Normal distribution
with mean 0 and variance 2σ2. Thus T is ancillary for the unknown
parameter µ. However, if both µ and σ2 were unknown, T would
not be ancillary for θ = (µ, σ2). (The distribution of T depends on
σ2 so T contains some information about σ2.) ✸

EXAMPLE 4.12: Suppose that X1, · · · , Xn are i.i.d. random
variables with density function

f(x;µ, θ) =
1
2θ

for µ− θ ≤ x ≤ µ + θ.
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Define a statistic R = X(n) − X(1), which is the sample range of
X1, · · · , Xn. The density function of R is

fR(x) =
n(n− 1)xn−2

(2θ)n−1

(
1− x

2θ

)
for 0 ≤ x ≤ 2θ,

which depends on θ but not µ. Thus R is ancillary for µ. ✸

Clearly, if T is ancillary for θ then T contains no information
about θ. In other words, if T is to contain any useful information
about θ, its distribution must depend explicitly on θ. Moreover,
intuition also tells us that the amount of information contained
will increase as the dependence of the distribution on θ increases.

EXAMPLE 4.13: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, θ] where θ > 0 is an unknown
parameter. Define two statistics, S = min(X1, · · · , Xn) and T =
max(X1, · · · , Xn). The density of S is

fS(x; θ) =
n

θ

(
1− x

θ

)n−1

for 0 ≤ x ≤ θ

while the density of T is

fT (x; θ) =
n

θ

(
x

θ

)n−1

for 0 ≤ x ≤ θ.

Note that the densities of both S and T depend on θ and so neither
is ancillary for θ. However, as n increases, it becomes clear that
the density of S is concentrated around 0 for all possible values of
θ while the density of T is concentrated around θ. This seems to
indicate that T provides more information about θ than does S. ✸

Example 4.13 suggests that not all non-ancillary statistics are
created equal. In the next section, we will elaborate on this
observation.

4.3 Sufficiency

The notion of sufficiency was developed by R.A. Fisher in the
early 1920s. The first mention of sufficiency was made by Fisher
(1920) in which he considered the estimation of the variance σ2

of a Normal distribution based on i.i.d. observations X1, · · · , Xn.
(This is formalized in Fisher (1922).) In particular, he considered
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estimating σ2 based on the statistics

T1 =
n∑
i=1

|Xi − X̄| and T2 =
n∑
i=1

(Xi − X̄)2

(where X̄ is the average of X1, · · · , Xn). Fisher showed that the
distribution of T1 conditional on T2 = t does not depend on the
parameter σ while the distribution of T2 conditional on T1 = t does
depend on σ. He concluded that all the information about σ2 in the
sample was contained in the statistic T2 and that any estimate of
σ2 should be based on T2; that is, any estimate of σ2 based on T1

could be improved by using the information in T2 while T2 could
not be improved by using T1.

We will now try to elaborate on Fisher’s argument in a more
general context. Suppose that X = (X1, · · · , Xn) ∼ Fθ for some
θ ∈ Θ and let T = T (X) be a statistic. For each t in the range of
T , define the level sets of T

At = {x : T (x) = t}.
Now look at the distribution of X on the set At, that is, the
conditional distribution of X given T = t. If this conditional
distribution is independent of θ then X contains no information
about θ on the set At; that is, X is an ancillary statistic on At.
If this is true for each t in the range of the statistic T , it follows
that T contains the same information about θ as X does; in this
case, T is called a sufficient statistic for θ. The precise definition of
sufficiency follows.

DEFINITION. A statistic T = T (X) is a sufficient statistic for
a parameter θ if for all sets A, P [X ∈ A|T = t] is independent
of θ for all t in the range of T .

Sufficient statistics are not unique; from the definition of suffi-
ciency, it follows that if g is a one-to-one function over the range
of the statistic T then g(T ) is also sufficient. This emphasizes the
point that it is not the sufficient statistic itself that is important
but rather the partition of the sample space induced by the statistic
(that is, the level sets of the statistic). It also follows that if T is
sufficient for θ then the distribution of any other statistic S = S(X)
conditional on T = t is independent of θ.

How can we check if a given statistic is sufficient? In some cases,
sufficiency can be verified directly from the definition.

EXAMPLE 4.14: Suppose that X1, · · · , Xk are independent
c© 2000 by Chapman & Hall/CRC



random variables where Xi has a Binomial distribution with
parameters ni (known) and θ (unknown). Let T = X1 + · · · + Xk;
T will also have a Binomial distribution with parameters m =
n1 + · · ·+ nk and θ. To show that T is sufficient, we need to show
that

Pθ[X = x|T = t]

is independent of θ (for all x1, · · · , xk and t). First note that if
t �= x1 + · · ·+ xk then this conditional probability is 0 (and hence
independent of θ). If t = x1 + · · ·+ xk then

Pθ[X = x|T = t] =
Pθ[X = x]
Pθ[T = t]

=

∏k
i=1

(ni
xi

)
θxi(1− θ)ni−xi(m

t

)
θt(1− θ)m−t

=

∏k
i=1

(ni
xi

)(m
t

) ,

which is independent of θ. Thus T is a sufficient statistic for θ. ✸

Unfortunately, there are two major problems with using the
definition to verify that a given statistic is sufficient. First, the
condition given in the definition of sufficiency is sometimes very
difficult to verify; this is especially true when X has a continuous
distribution. Second, the definition of sufficiency does not allow us
to identify sufficient statistics easily. Fortunately, there is a simple
criterion due to Jerzy Neyman that gives a necessary and sufficient
condition for T to be a sufficient statistic when X has a joint density
or frequency function.

THEOREM 4.2 (Neyman Factorization Criterion)
Suppose that X = (X1, · · · , Xn) has a joint density or frequency
function f(x; θ) (θ ∈ Θ). Then T = T (X) is sufficient for θ if, and
only if,

f(x; θ) = g(T (x); θ)h(x).

(Both T and θ can be vector-valued.)

A rigorous proof of the Factorization Criterion in its full gener-
ality is quite technical and will not be pursued here; see Billingsley
(1995) or Lehmann (1991) for complete details. However, the proof
when X is discrete is quite simple and will be sketched here.
c© 2000 by Chapman & Hall/CRC



Suppose first that T is sufficient. Then

f(x; θ) = Pθ[X = x]

=
∑
t

Pθ[X = x, T = t]

= Pθ[X = x, T = T (x)]
= Pθ[T = T (x)]P [X = x|T = T (x)].

Since T is sufficient, P [X = x|T = T (x)] is independent of θ and
so f(x; θ) = g(T (x); θ)h(x).

Now suppose that f(x; θ) = g(T (x); θ)h(x). Then if T (x) = t,

Pθ[X = x|T = t] =
Pθ[X = x]
Pθ[T = t]

=
g(T (x); θ)h(x)∑

T (y)=t g(T (y); θ)h(y)

=
h(x)∑

T (y)=t h(y)
,

which does not depend on θ. If T (x) �= t then Pθ[X = x|T = t] = 0.
In both cases, Pθ[X = x|T = t] is independent of θ and so T is
sufficient.

EXAMPLE 4.15: Suppose that X1, · · · , Xn are i.i.d. random
variables with density function

f(x; θ) =
1
θ

for 0 ≤ x ≤ θ

where θ > 0. The joint density function of X = (X1, · · · , Xn) is

f(x; θ) =
1
θn

for 0 ≤ x1, · · · , xn ≤ θ

=
1
θn

I(0 ≤ x1, · · · , xn ≤ θ)

=
1
θn

I

(
max
1≤i≤n

xi ≤ θ

)
I

(
min

1≤i≤n
xi ≥ 0

)
= g(max(x1, · · · , xn); θ)h(x)

and so X(n) = max(X1, · · · , Xn) is sufficient for θ. ✸

EXAMPLE 4.16: Suppose that X = (X1, · · · , Xn) have a
distribution belonging to a k-parameter exponential family with
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joint density or frequency function satisfying

f(x; θ) = exp

[
k∑
i=1

ci(θ)Ti(x)− d(θ) + S(x)

]
I(x ∈ A).

Then (taking h(x) = exp[S(x)]I(x ∈ A)), it follows from the
Factorization Criterion that the statistic

T = (T1(X), · · · , Tk(X))

is sufficient for θ. ✸

From the definition of sufficiency, it is easy to see that the
data X is itself always sufficient. Thus sufficiency would not be a
particularly useful concept unless we could find sufficient statistics
that truly represent a reduction of the data; however, from the
examples given above, we can see that this is indeed possible. Thus,
the real problem lies in determining whether a sufficient statistic
represents the best possible reduction of the data.

There are two notions of what is meant by the “best possible”
reduction of the data. The first of these is minimal sufficiency;
a sufficient statistic T is minimal sufficient if for any other
sufficient statistic S, there exists a function g such that T = g(S).
Thus a minimal sufficient statistic is the sufficient statistic that
represents the maximal reduction of the data that contains as
much information about the unknown parameter as the data itself.
A second (and stronger) notion is completeness which will be
discussed in more depth in Chapter 6. If X ∼ Fθ then a statistic
T = T (X) is complete if Eθ(g(T )) = 0 for all θ ∈ Θ implies that
Pθ(g(T ) = 0) = 1 for all θ ∈ Θ. In particular, if T is complete then
g(T ) is ancillary for θ only if g(T ) is constant; thus a complete
statistic T contains no ancillary information.

It can be shown that if a statistic T is sufficient and complete
then T is also minimal sufficient; however, the converse is not true.
For example, suppose that X1, · · · , Xn are i.i.d. random variables
whose density function is

f(x; θ) =
exp(x− θ)

[1 + exp(x− θ)]2
.

For this model, a one-dimensional sufficient statistic for θ does not
exist and, in fact, the order statistics (X(1), · · · , X(n)) can be shown
to be minimal sufficient. However, the statistic T = X(n) −X(1) is
ancillary and so the order statistics are not complete. Thus despite
c© 2000 by Chapman & Hall/CRC



the fact that (X(1), · · · , X(n)) is a minimal sufficient statistic, it still
contains “redundant” information about θ.

How important is sufficiency in practice? The preceding discus-
sion suggests that any statistical procedure should depend only on
the minimal sufficient statistic. In fact, we will see in succeeding
chapters that optimal statistical procedures (point estimators, hy-
pothesis tests and so on discussed in these chapters) almost invari-
ably depend on minimal sufficient statistics. Nonetheless, statistical
models really serve only as approximations to reality and so pro-
cedures that are nominally optimal can fail miserably in practice.
For example, suppose X1, · · · , Xn are i.i.d. random variables with
mean µ and variance σ2. It is common to assume that the Xi’s
have a Normal distribution in which case (

∑n
i=1 Xi,

∑n
i=1 X

2
i ) is a

minimal sufficient statistic for (µ, σ2). However, optimal procedures
for the Normal distribution can fail miserably if the Xi’s are not
Normal. For this reason, it is important to be flexible in developing
statistical methods.

4.4 Point estimation

A point estimator or estimator is a statistic whose primary purpose
is to estimate the value of a parameter. That is, if X ∼ Fθ for θ ∈ Θ,
then an estimator θ̂ is equal to some statistic T (X).

Assume that θ is a real-valued parameter and that θ̂ is an
estimator of θ. The probability distribution of an estimator θ̂ is
often referred to as the sampling distribution of θ̂. Ideally, we
would like the sampling distribution of θ̂ to be concentrated closely
around the true value of the parameter, θ. There are several simple
measures of the quality of an estimator based on its sampling
distribution.
DEFINITION. The bias of an estimator θ̂ is defined to be

bθ(θ̂) = Eθ(θ̂)− θ.

An estimator is said to be unbiased if bθ(θ̂) = 0, that is,
Eθ(θ̂) = θ.

DEFINITION. The mean absolute error (MAE) of θ̂ is defined
to be

MAEθ(θ̂) = Eθ[|θ̂ − θ|].
DEFINITION. The mean square error (MSE) of θ̂ is defined to

be
MSEθ(θ̂) = Eθ[(θ̂ − θ)2];
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it is easy to show that MSEθ(θ̂) = Varθ(θ̂) + [bθ(θ̂)]2.

The bias of θ̂ gives some indication of whether the sampling
distribution is centered around θ while MAEθ(θ̂) and MSEθ(θ̂) are
measures of the dispersion of the sampling distribution of θ̂ around
θ. MAE and MSE are convenient measures for comparing different
estimators of a parameter θ; since we would like θ̂ to be close
to θ, it is natural to prefer estimators with small MAE or MSE.
Although MAE may seem to be a better measure for assessing the
accuracy of an estimator, MSE is usually preferred to MAE. There
are several reasons for preferring MSE; most of these derive from
the decomposition of MSEθ(θ̂) into variance and bias components:

MSEθ(θ̂) = Varθ(θ̂) + [bθ(θ̂)]2.

This decomposition makes MSE much easier to work with than
MAE. For example, when θ̂ is a linear function of X1, · · · , Xn, the
mean and variance of θ̂ (and hence its MSE) are easily computed;
computation of the MAE is much more difficult. Frequently, the
sampling distribution of an estimator is approximately Normal; for
example, it is often true that the distribution of θ̂ is approximately
Normal with mean θ and variance σ2(θ)/n. In such cases, the
variance σ2(θ)/n is often approximated reasonably well by MSEθ(θ̂)
and so the MSE essentially characterizes the dispersion of the
sampling distribution of θ̂. (Typically, the variance component of
the MSE is much larger than the bias component and so MSEθ(θ̂) ≈
Varθ(θ̂).) However, it is also important to note that the MSE of an
estimator can be infinite even when its sampling distribution is
approximately Normal.

Unbiasedness is a very controversial issue. The use of the word
“biased” to describe an estimator is very loaded; it suggests that
a biased estimator is somehow misleading or prejudiced. Thus,
at first glance, it may seem reasonable to require an estimator
to be unbiased. However, in many estimation problems, unbiased
estimators do not exist; moreover, there are situations where
all unbiased estimators are ridiculous. A further difficulty with
unbiasedness is the fact that unbiasedness is not generally preserved
by transformation; that is, if θ̂ is an unbiased estimator of θ then
g(θ̂) is typically not an unbiased estimator of g(θ) unless g is a
linear function. Thus unbiasedness is not an intrinsically desirable
quality of an estimator; we should not prefer an unbiased estimator
to a biased estimator based only on unbiasedness. However, this is
c© 2000 by Chapman & Hall/CRC



not to say that bias should be ignored. For example, if an estimator
θ̂ systematically over- or under-estimates θ (in the sense that the
sampling distribution of θ̂ lies predominantly to the right or left of
θ), steps should be taken to remove the resulting bias.

EXAMPLE 4.17: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance σ2. An unbiased
estimator of σ2 is

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

However, S =
√
S2 is not an unbiased estimator of σ; using the fact

that
Y =

(n− 1)S2

σ2
∼ χ2(n− 1),

it follows that

Eσ(S) =
σ√
n− 1

E(
√
Y )

=
σ√
n− 1

√
2Γ(n/2)

Γ((n− 1)/2)
�= σ.

However, as n→∞, it can be show that E(S) → σ. ✸

EXAMPLE 4.18: Suppose that X1, · · · , Xn are i.i.d. random
variables with a Uniform distribution on [0, θ]. Let θ̂ = X(n), the
sample maximum; the density of θ̂ is

f(x; θ) =
n

θn
xn−1 for 0 ≤ x ≤ θ.

Note that θ̂ ≤ θ and hence Eθ(θ̂) < θ; in fact, it is easy to show
that

Eθ(θ̂) =
n

n + 1
θ.

The form of Eθ(θ̂) makes it easy to construct an unbiased estimator
of θ. If we define θ̃ = (n + 1)θ̂/n then clearly θ̃ is an unbiased
estimator of θ. ✸

Suppose that θ̂n is an estimator of some parameter θ based
on n random variables X1, · · · , Xn. As n increases, it seems
reasonable to expect that the sampling distribution of θ̂n should
become increasingly concentrated around the true parameter value

c© 2000 by Chapman & Hall/CRC



θ. This property of the sequence of estimators {θ̂n} is known as
consistency.
DEFINITION. A sequence of estimators {θ̂n} is said to be con-

sistent for θ if {θ̂n} converges in probability to θ, that is, if

lim
n→∞

Pθ[|θ̂n − θ| > ε] = 0

for each ε > 0 and each θ.
Although, strictly speaking, consistency refers to a sequence of
estimators, we often say that θ̂n is a consistent estimator of θ if
it is clear that θ̂n belongs to a well-defined sequence of estimators;
an example of this occurs when θ̂n is based on n i.i.d. random
variables.

EXAMPLE 4.19: Suppose that X1, · · · , Xn are i.i.d. random
variables with E(Xi) = µ and Var(Xi) = σ2. Define

S2
n =

1
n− 1

n∑
i=1

(Xi − X̄n)2,

which is an unbiased estimator of σ2. To show that S2
n is a consistent

estimator (or more correctly {S2
n} is a consistent sequence of

estimators), note that

S2
n =

1
n− 1

n∑
i=1

(Xi − µ + µ− X̄n)2

=
1

n− 1

n∑
i=1

(Xi − µ)2 +
n

n− 1
(X̄n − µ)2

=
(

n

n− 1

)
1
n

n∑
i=1

(Xi − µ)2 +
n

n− 1
(X̄n − µ)2.

By the WLLN, we have

1
n

n∑
i=1

(Xi − µ)2 →p σ
2 and X̄n →p µ

and so by Slutsky’s Theorem, it follows that

S2
n →p σ

2.

Note that S2
n will be a consistent estimator of σ2 = Var(Xi) for any

distribution with finite variance. ✸
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EXAMPLE 4.20: Suppose that X1, · · · , Xn are independent
random variables with

Eβ(Xi) = βti and Varβ(Xi) = σ2

where t1, · · · , tn are known constants and β, σ2 unknown parame-
ters. A possible estimator of β is

β̂n =
∑n

i=1 tiXi∑n
i=1 t

2
i

.

It is easy to show that β̂n is an unbiased estimator of β for each
n and hence to show that β̂n is consistent, it suffices to show that
Varβ(β̂n) → 0. Because of the independence of the Xi’s, it follows
that

Varβ(β̂n) =
σ2∑n
i=1 t

2
i

.

Thus β̂n is consistent provided that
∑n

i=1 t
2
i →∞ as n→∞. ✸

4.5 The substitution principle

In statistics, we are frequently interested in estimating parameters
that depend on the underlying distribution function of the data; we
will call such parameters functional parameters (although the term
statistical functional is commonly used in the statistical literature).
For example, the mean of a random variable with distribution
function F may be written as

µ(F ) =
∫ ∞

−∞
x dF (x).

The value of µ(F ) clearly depends on the distribution function F ;
thus we can think of µ(·) as a real-valued function on the space
of distribution functions much in the same way that g(x) = x2

is a real-valued function on the real-line. Some other examples of
functional parameters include
• the variance: σ2(F ) =

∫ ∞
−∞(x− µ(F ))2 dF (x).

• the median: med(F ) = F−1(1/2) = inf{x : F (x) ≥ 1/2}.
• the density at x0: θ(F ) = F ′(x0) (θ(F ) is defined only for those

distributions with a density).
• a measure of location θ(F ) defined by the equation∫ ∞

−∞
ψ(x− θ(F )) dF (x) = 0
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Figure 4.1 Lorenz curves for the Gamma distribution with α = 0.5 (solid curve)
and α = 5 (dotted curve).

(where ψ is typically a non-decreasing, odd function).

The following example introduces a somewhat more complicated
functional parameter that is of interest in economics.

EXAMPLE 4.21: Economists are often interested in the distribu-
tion of personal income in a population. More specifically, they are
interested in measuring the “inequality” of this distribution. One
way to do so is to consider the so-called Lorenz curve that gives the
percentage of income held by the poorest 100t% as a function of t.
Let F be a distribution function (with F (x) = 0 for x < 0) whose
expected value is µ(F ). For t between 0 and 1, we define

qF (t) =
∫ t
0 F

−1(s) ds∫ 1
0 F−1(s) ds

=
∫ t
0 F

−1(s) ds
µ(F )

.

(Note that the denominator in the definition of qF (t) is simply
the expected value of the distribution F .) It is easy to verify
that qF (t) ≤ t with qF (t) = t (for 0 < t < 1) if, and only if,
F is concentrated at a single point (that is, all members of the
c© 2000 by Chapman & Hall/CRC



population have the same income). The Lorenz curves for Gamma
distributions with shape parameters 0.5 and 5 are given in Figure
4.1. (It can be shown that the Lorenz curve will not depend on the
scale parameter.) One measure of inequality based on the Lorenz
curve is the Gini index defined by

θ(F ) = 2
∫ 1

0
(t− qF (t)) dt = 1− 2

∫ 1

0
qF (t) dt.

The Gini index θ(F ) is simply twice the area between the functions
t and qF (t) and so 0 ≤ θ(F ) ≤ 1; when perfect equality exists
(qF (t) = t) then θ(F ) = 0 while as the income gap between
the richest and poorest members of the population widens, θ(F )
increases. (For example, according to the World Bank (1999),
estimated Gini indices for various countries range from 0.195
(Slovakia) to 0.629 (Sierra Leone); the Gini indices reported for
Canada and the United States are 0.315 and 0.401, respectively.)
The Gini index for the Gamma distribution with shape parameter
0.5 is 0.64 while for shape parameter 5, the Gini index is 0.25. (It
can be shown that as the shape parameter tends to infinity, the
Gini index tends to 0.) ✸

The substitution principle

Suppose that X1, · · · , Xn are i.i.d. random variables with distribu-
tion function F ; F may be completely unknown or may depend on
a finite number of parameters. (Hence the model can be paramet-
ric or non-parametric). In this section, we will consider the problem
of estimating a parameter θ that can be expressed as a functional
parameter of F , that is, θ = θ(F ).

The dependence on θ of the distribution function F suggests that
it may be possible to estimate θ by finding a good estimate of F
and then substituting this estimate, F̂ , for F in θ(F ) to get an
estimate of θ, θ̂ = θ(F̂ ). Thus we have changed the problem from
estimating θ to estimating the distribution function F . Substituting
an estimator F̂ for F in θ(F ) is known as the substitution principle.
However, the substitution principle raises two basic questions: first,
how do we estimate F and second, does the substitution principle
always lead to good estimates of the parameter in question?

We will first discuss estimation of F . If F is the distribution
function of X1, · · · , Xn then for a given value x, F (x) is the
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probability that any Xi is no greater than x or (according to the
WLLN) the long-run proportion of Xi’s that are not greater than
x. Thus it seems reasonable to estimate F (x) by

F̂ (x) =
1
n

n∑
i=1

I(Xi ≤ x)

(where I(A) is 1 if condition A is true and 0 otherwise), which
is simply the proportion of Xi’s in the sample less than or equal
to x; this estimator is called the empirical distribution function of
X1, · · · , Xn. From the WLLN, it follows that F̂ (x) = F̂n(x) →p

F (x) for each value of x (as n → ∞) so that F̂n(x) is a consistent
estimator of F (x). (In fact, the consistency of F̂n holds uniformly
over the real line:

sup
−∞<x<∞

|F̂n(x)− F (x)| →p 0.)

Despite these results, it is not obvious that the empirical distribu-
tion function F̂n is necessarily a good estimator of the true distri-
bution function F . For example, F̂n is always a discrete distribution
giving probability 1/n to each of X1, · · · , Xn; thus, if the true distri-
bution is continuous, F̂n will not be able to capture certain features
of F (because of its discontinuities). (In such cases, we could obtain
a “smoother” estimator of F and apply the substitution principle
with this estimator.)

Fortunately, the empirical distribution function F̂ can be used as
described previously to estimate many functional parameters of F .

EXAMPLE 4.22: Suppose that θ(F ) =
∫ ∞
−∞ h(x) dF (x). Substi-

tuting F̂ for F , we get

θ̂ = θ(F̂ ) =
∫ ∞

−∞
h(x) dF̂ (x) =

1
n

n∑
i=1

h(Xi).

Thus, the substitution principle estimator is simply the sample
mean of h(X1), · · · , h(Xn). ✸

EXAMPLE 4.23: Suppose that θ(F ) = Var(X) where X ∼ F .
Then

θ(F ) =
∫ ∞

−∞
x2 dF (x)−

(∫ ∞

−∞
x dF (x)

)2
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and following Example 4.22, we get

θ(F̂ ) =
1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

=
1
n

n∑
i=1

(Xi − X̄)2.

Note that θ(F̂ ) is slightly different from the unbiased estimator S2

given in Example 4.17. ✸

EXAMPLE 4.24: Suppose θ(F ) satisfies the equation∫ ∞

−∞
g(x, θ(F )) dF (x) = 0

for some function g(x, u). The substitution principle estimator
θ̂ = θ(F̂ ) satisfies∫ ∞

−∞
g(x, θ̂) dF̂ (x) =

1
n

n∑
i=1

g(Xi, θ̂) = 0.

In this case, θ̂ is not necessarily explicitly defined. ✸

Does the substitution principle always produce reasonable esti-
mators when the empirical distribution function is used to estimate
F? The answer to this question (unfortunately) is no. For exam-
ple, consider estimating a density function f corresponding to a
continuous distribution function F . The density is defined by the
relation

F (x) =
∫ x

−∞
f(t) dt

and so the “natural” substitution principle estimator satisfies

F̂ (x) =
∫ x

−∞
f̂(t) dt.

However, since the empirical distribution function is a step func-
tion (with jumps at X1, · · · , Xn), no such estimator f̂ exists. For-
tunately, it is still possible to apply the substitution principle by
finding a more suitable (that is, smoother) estimator of F . One ap-
proach is to take a convolution of the empirical distribution func-
tion F̂ with a continuous distribution function G whose probability
is concentrated closely around 0. The “smoothed” estimator of F
becomes

F̃ (x) =
∫ ∞

−∞
G(x− y) dF̂ (y) =

1
n

n∑
i=1

G(x−Xi).
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Note that F̂ and F̃ are “close” in the sense that |F̂ (x) − F̃ (x)| is
small (provided that the probability in G is concentrated around 0)
and F̃ is differentiable since G is differentiable. We can then apply
the substitution principle with F̃ and the resulting substitution
principle estimator of f is

f̃(x) =
1
n

n∑
i=1

g(x−Xi)

where g = G′ is the density function corresponding to G. (More
information on density estimation can be found in the monograph
by Silverman (1986).)

As the example above indicates, we cannot blindly use the substi-
tution principle with the empirical distribution function to estimate
a density function as doing so clearly results in a ridiculous estima-
tor; however, in many other situations, the empirical distribution
function may yield estimators that seem reasonable on the surface
but are, in fact, inconsistent or extremely inefficient. This empha-
sizes the need to examine closely the properties of any estimation
procedure.

Method of moments

How can the substitution principle be applied to the estimation of
parameters in parametric models? That is, if X1, · · · , Xn are i.i.d.
random variables from a distribution with unknown parameters
θ1, · · · , θp, can the substitution principle be used to estimate these
parameters?

The simplest approach is to express θ1, · · · , θp as functional
parameters of the distribution F if possible; estimating these
functional parameters by the substitution principle will then result
in estimators of θ1, · · · , θp. For example, if X1, · · · , Xn are i.i.d.
Poisson random variables with parameter λ then λ =

∫ ∞
0 x dF (x)

and so an estimator of λ can be obtained by estimating
∫ ∞
0 x dF (x)

using the substitution principle; the resulting estimator of λ is the
sample mean.

More generally, to estimate θ = (θ1, · · · , θp), we can find p
functional parameters of F , η1(F ), · · · , ηp(F ), that depend on θ;
that is,

ηk(F ) = gk(θ) (k = 1, · · · , p)
where g1, · · · , gp are known functions. Thus for given η1(F ), · · · ,
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ηp(F ), we have a system of p equations in p unknowns θ1, · · · , θp.
Using the substitution principle, we can estimate η1(F ), · · · , ηp(F )
by η1(F̂ ), · · · , ηp(F̂ ). If for each possible η1(F ), · · · , ηp(F ), there is
a unique solution (which lies in the parameter space), we can then
define θ̂ such that

ηk(F̂ ) = gk(θ̂) for k = 1, · · · , p.
How do we choose η1(F ), · · · , ηp(F )? Obviously, some choices will

be better than others, but at this point, we are not too concerned
about optimality. A common choice for ηk(F ) is

∫ ∞
−∞ xk dF (x) (that

is, the k-th moment of the Xi’s) in which case θ̂ satisfies

1
n

n∑
i=1

Xk
i = gk(θ̂) for k = 1, · · · , p.

For this reason, this method of estimation is known as the method
of moments. However, there is no particular reason (other than
simplicity) to use moments for the ηk(F )’s.

EXAMPLE 4.25: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. For any r > 0, we have

Eλ(Xr
i ) =

Γ(r + 1)
λr

.

Thus for a given r > 0, a method of moments estimator of λ is

λ̂ =

(
1

nΓ(r + 1)

n∑
i=1

Xr
i

)−1/r

.

(If we take r = 1 then λ̂ = 1/X̄.) Since r is more-or-less arbitrary
here, it is natural to ask what value of r gives the best estimator of
λ; a partial answer to this question is given in Example 4.39. ✸

EXAMPLE 4.26: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with unknown parameters α and λ. It is easy
to show that

η1(F ) = E(Xi) =
α

λ
and η2(F ) = Var(Xi) =

α

λ2
.

Thus α̂ and λ̂ satisfy the equations

X̄ =
1
n

n∑
i=1

Xi =
α̂

λ̂
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σ̂2 =
1
n

n∑
i=1

(Xi − X̄)2 =
α̂

λ̂2

and so α̂ = X̄2/σ̂2 and λ̂ = X̄/σ̂2. ✸

EXAMPLE 4.27: Suppose that X1, · · · , Xn are i.i.d. random
variables with a “zero-inflated” Poisson distribution; the frequency
function of Xi is

f(x; θ, λ) =
{

θ + (1− θ) exp(−λ) for x = 0
(1− θ) exp(−λ)λx/x! for x = 1, 2, 3, · · ·

where 0 ≤ θ ≤ 1 and λ > 0. To estimate θ and λ via the method of
moments, we will use

η1(F ) = P (Xi = 0) and η2(F ) = E(Xi);

it is easy to show that

P (Xi = 0) = θ + (1− θ) exp(−λ)
and E(Xi) = (1− θ)λ.

Thus θ̂ and λ̂ satisfy the equations

X̄ = (1− θ̂)λ̂
1
n

n∑
i=1

I(Xi = 0) = θ̂ + (1− θ̂) exp(−λ̂);

however, closed form expressions for θ̂ and λ̂ do not exist although
they may be computed for any given sample. (For this model, the
statistic (

∑n
i=1 Xi,

∑n
i=1 I(Xi = 0)) is sufficient for (θ, λ).) ✸

It is easy to generalize the method of moments to non-i.i.d. set-
tings. Suppose that (X1, · · · , Xn) has a joint distribution depending
on real-valued parameters θ = (θ1, · · · , θp). Suppose that T1, · · · , Tp
are statistics with

Eθ(Tk) = gk(θ) for k = 1, · · · , p.
If, for all possible values of Eθ(T1), · · · , Eθ(Tp), this system of
equations has a unique solution then we can define the estimator θ̂
such that

Tk = gk(θ̂) for k = 1, · · · , p.
However, in the general (that is, non-i.i.d.) setting, greater care
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must be taken in choosing the statistics T1, · · · , Tp; in particular, it
is important that Tk be a reasonable estimator of its mean Eθ(Tk)
(for k = 1, · · · , p).

4.6 Influence curves

Suppose that h is a real-valued function on the real line and that
{xn} is a sequence of real numbers whose limit (as n→∞) is x0. If
h is continuous at x0, then h(xn) → h(x0) as n→∞; thus for large
enough n, h(xn) ≈ h(x0). If we assume that h is differentiable, it
is possible to obtain a more accurate approximation of h(xn) by
making a one term Taylor series expansion:

h(xn) ≈ h(x0) + h′(x0)(xn − x0).

This approximation can be written more precisely as

h(xn) = h(x0) + h′(x0)(xn − x0) + rn

where the remainder term rn goes to 0 with n faster than xn − x0:

lim
n→∞

rn
xn − x0

= 0.

An interesting question to ask is whether notions of continuity
and differentiability can be extended to functional parameters and
whether similar approximations can be made for substitution prin-
ciple estimators of functional parameters. Let θ(F ) be a functional
parameter and F̂n be the empirical distribution function of i.i.d.
random variables X1, · · · , Xn. Since F̂n converges in probability to
F uniformly over the real line, it is tempting to say that θ(F̂n)
converges in probability to θ(F ) given the right kind of continuity
of θ(F ). However, continuity and differentiability of functional pa-
rameters are very difficult and abstract topics from a mathematical
point of view and will not be dealt with here in any depth. In prin-
ciple, defining continuity of the real-valued functional parameter
θ(F ) at F is not difficult; we could say that θ(F ) is continuous at
F if θ(Fn) → θ(F ) whenever a sequence of distribution functions
{Fn} converges to F . However, there are several ways in which con-
vergence of {Fn} to F can be defined and the continuity of θ(F )
may depend on which definition is chosen.

Differentiability of θ(F ) is an even more difficult concept. Even
if we agree on the definition of convergence of {Fn} to F , there
are several different concepts of differentiability. Thus we will not
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touch on differentiability in any depth. We will, however, define a
type of directional derivative for θ(F ) whose properties are quite
useful for heuristic calculations; this derivative is commonly called
the influence curve of θ(F ).

The idea behind defining the influence curve is to look at the
behaviour of θ(F ) for distributions that are close to F in some sense.
More specifically, we look at the difference between θ(F ) evaluated
at F and at (1− t)F + t∆x where ∆x is a degenerate distribution
function putting all its probability at x so that ∆x(y) = 0 for
y < x and ∆x(y) = 1 for y ≥ x; for 0 ≤ t ≤ 1, (1 − t)F + t∆x is
a distribution function and can be thought of as F contaminated
by probability mass at x. Note that as t ↓ 0, we typically have
θ((1− t)F + t∆x) → θ(F ) for any x where this convergence is linear
in t, that is,

θ((1− t)F + t∆x)− θ(F ) ≈ φ(x;F )t

for t close to 0.
DEFINITION. The influence curve of θ(F ) at F is the function

φ(x;F ) = lim
t↓0

θ((1− t)F + t∆x)− θ(F )
t

provided that the limit exists. The influence curve can also be
evaluated as

φ(x;F ) =
d

dt
θ((1− t)F + t∆x)

∣∣∣∣
t=0

whenever this limit exists.
The influence curve allows for a “linear approximation” of the

difference θ(F̂n) − θ(F ) much in the same way that the derivative
of a function h allows for a linear approximation of h(xn)− h(x0);
in particular, it is often possible to write

θ(F̂n)− θ(F ) =
∫ ∞

−∞
φ(x;F )d(F̂n(x)− F (x)) + Rn

where Rn tends in probability to 0 at a faster rate than F̂n converges
to F . This representation provides a useful heuristic method for
determining the limiting distribution of

√
n(θ(F̂n)−θ(F )). In many

cases, it is possible to show that∫ ∞

−∞
φ(x;F ) dF (x) = E[φ(Xi;F )] = 0
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and so

θ(F̂n)− θ(F ) =
1
n

n∑
i=1

φ(Xi;F ) + Rn

where the remainder term Rn satisfies
√
nRn →p 0. Thus by the

Central Limit Theorem and Slutsky’s Theorem, it follows that
√
n(θ(F̂n)− θ(F )) →d N(0, σ2(F ))

where
σ2(F ) =

∫ ∞

−∞
φ2(x;F ) dF (x),

provided that σ2(F ) is finite. This so-called “influence curve
heuristic” turns out to be very useful in practice. However, despite
the fact that this heuristic approach works in many examples, we
actually require a stronger notion of differentiability to make this
approach rigorous; fortunately, the influence curve heuristic can
typically be made rigorous using other approaches.

The influence curve is a key concept in theory of robustness,
which essentially studies the sensitivity (or robustness) of estima-
tion procedures subject to violations of the nominal model assump-
tions. For more information on the theory of robust estimation, see
Hampel et al (1986).

We will now discuss some simple results that are useful for
computing influence curves. To make the notation more compact,
we will set Ft,x = (1− t)F + t∆x.

• (Moments) Define θ(F ) =
∫ ∞
−∞ h(x) dF (x); if X ∼ F then

θ(F ) = E[h(X)]. Then

θ(Ft,x) = (1− t)
∫ ∞

−∞
h(u) dF (u)

+t

∫ ∞

−∞
h(u)d∆x(u)

= (1− t)
∫ ∞

−∞
h(u) dF (u) + th(x)

and so
1
t

(θ(Ft,x)− θ(F )) = h(x)− θ(F ).

Thus the influence curve is φ(x;F ) = h(x)− θ(F ).

• (Sums and integrals) Suppose that θ(F ) = θ1(F ) + θ2(F ) where
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φi(x;F ) is the influence curve of θi(F ) (for i = 1, 2). Then
φ(x;F ), the influence curve of θ(F ), is simply

φ(x;F ) = φ1(x;F ) + φ2(x;F ).

This result can be extend to any finite sum of functional
parameters. Often we need to consider functional parameters of
the form

θ(F ) =
∫
A
g(s)θs(F ) ds

where θs(F ) is a functional parameter for each s ∈ A and g is a
function defined on A. Then we have

1
t

(θ(Ft,x)− θ(F ))

=
∫
A
g(s)

1
t

(θs(Ft,x)− θs(F )) ds.

Thus, if φs(x;F ) is the influence curve of θs(F ) and we can take
the limit as t ↓ 0 inside the integral sign, the influence curve of
θ(F ) is defined by

φ(x;F ) =
∫
A
g(s)φs(x;F ) ds.

(The trimmed mean considered in Example 4.30 is an example
of such a functional parameter.)

• (The chain rule) Suppose that θ(F ) has influence curve φ(x;F ).
What is the influence curve of g(θ(F )) if g is a differentiable
function? First of all, we have

1
t

(g(θ(Ft,x))− g(θ(F )))

=

(
g(θ(Ft,x))− g(θ(F ))

θ(Ft,x)− θ(F )

) (
θ(Ft,x)− θ(F )

t

)
.

As t→ 0, θ(Ft,x) → θ(F ) (for each x) and so

g(θ(Ft,x))− g(θ(F ))
θ(Ft,x)− θ(F )

→ g′(θ(F )) as t→ 0

and by definition
1
t

(θ(Ft,x)− θ(F )) → φ(x;F ).

Therefore the influence curve of g(θ(F )) is g′(θ(F ))φ(x;F ); this
is a natural extension of the chain rule. For a given distribution
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function F , the influence curve of g(θ(F )) is simply a constant
multiple of the influence curve of θ(F ).

• (Implicitly defined functional parameters) Functional parameters
are frequently defined implicitly. For example, θ(F ) may satisfy
the equation

h(F, θ(F )) = 0
where for a fixed number u, h(F, u) has influence curve λ(x;F, u)
and for a fixed distribution function F , h(F, u) has derivative
(with respect to u), h′(u;F ). We then have

0 =
1
t

(h(Ft,x, θ(Ft,x))− h(F, θ(F )))

=
1
t

(h(Ft,x, θ(Ft,x))− h(Ft,x, θ(F )))

+
1
t

(h(Ft,x, θ(F ))− h(F, θ(F )))

→ h′(θ(F );F )φ(x;F ) + λ(x;F, θ(F ))

as t→ 0 where φ(x;F ) is the influence curve of θ(F ). Thus

h′(θ(F );F )φ(x;F ) + λ(x;F, θ(F )) = 0

and so
φ(x;F ) = −λ(x;F, θ(F ))

h′(θ(F );F )
.

EXAMPLE 4.28: One example of an implicitly defined functional
parameter is the median of a continuous distribution F , θ(F ),
defined by the equation

F (θ(F )) =
1
2

or equivalently θ(F ) = F−1(1/2) where F−1 is the inverse of F .
Since

F (u) =
∫ ∞

−∞
I(x ≤ u) dF (x),

it follows that the influence curve of F (u) is

λ(x;F, u) = I(x ≤ u)− F (u).

Thus if F (u) is differentiable at u = θ(F ) with F ′(θ(F )) > 0, it
follows that the influence curve of θ(F ) = F−1(1/2) is

φ(x;F ) = −I(x ≤ θ(F ))− F (θ(F ))
F ′(θ(F ))
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=
sgn(x− θ(F ))

2F ′(θ(F ))

where sgn(u) is the “sign” of u (sgn(u) is 1 if u > 0, −1 if u < 0
and 0 if u = 0). Note that we require F (u) to be differentiable at
u = θ(F ) so φ(x;F ) is not defined for all F (although F does not
have to be a continuous distribution function). Using the heuristic

med(F̂n)− θ(F ) =
1
n

n∑
i=1

φ(Xi;F ) + Rn

it follows that
√
n(θ(F̂n)− θ(F )) →d N(0, [2F ′(θ(F ))]−2)

since Var(sgn(Xi − θ(F ))) = 1. Indeed, the convergence indicated
above can be shown to hold when the distribution function F is
differentiable at its median; see Example 3.6 for a rigorous proof of
the asymptotic normality of the sample median. ✸

EXAMPLE 4.29: Let σ(F ) be the standard deviation of a random
variable X with distribution function F ; that is,

σ(F ) =
(
θ2(F )− θ2

1(F )
)1/2

where θ1(F ) =
∫ ∞
−∞ y dF (y) and θ2(F ) =

∫ ∞
−∞ y2 dF (y). The

influence curve of θ2(F ) is

φ2(x;F ) = x2 − θ2(F )

while the influence curve of θ2
1(F ) is

φ1(x;F ) = 2θ1(F )(x− θ1(F ))

by applying the chain rule for influence curves. Thus the influence
curve of θ2(F )− θ2

1(F ) is

φ3(x;F ) = x2 − θ2(F )− 2θ1(F )(x− θ1(F )).

Since σ(F ) = (θ2(F )−θ2
1(F ))1/2, it follows that the influence curve

of σ(F ) is

φ(x;F ) =
x2 − θ2(F )− 2θ1(F )(x− θ1(F ))

2σ(F )

by applying the chain rule. Note that φ(x;F ) → ∞ as x → ±∞
and that φ(x;F ) = 0 when x = θ1(F )± σ(F ). ✸

EXAMPLE 4.30: A functional parameter that includes the mean
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and median as limiting cases is the α-trimmed mean defined for
continuous distribution functions F by

µα(F ) =
1

1− 2α

∫ 1−α

α
F−1(t) dt

where 0 < α < 0.5. If f(x) = F ′(x) is continuous and strictly
positive over the interval[

F−1(α), F−1(1− α)
]

as well as symmetric around some point µ then µα(F ) = µ and the
influence curve of µα(F ) is

φα(x;F ) =


(F−1(α)− µ)/(1− 2α) for x < F−1(α)
(F−1(1− α)− µ)/(1− 2α) for x > F−1(1− α)
(x− µ)/(1− 2α) otherwise.

To find a substitution principle estimator for µα(F ) based on
i.i.d. observations X1, · · · , Xn, we first find a substitution principle
estimator of F−1(t) for 0 < t < 1 based on the inverse of the
empirical distribution function F̂n:

F̂−1
n (t) = X(i) if (i− 1)/n < t ≤ i/n

(where X(i) is the i-th order statistic) and substitute this into the
definition of µα(F ) yielding

µα(F̂n) =
1

1− 2α

∫ 1−α

α
F̂−1
n (t) dt.

Applying the influence curve heuristic, we have
√
n(µα(F̂n)− µα(F )) →d N(0, σ2(F ))

where

σ2(F ) =
∫ ∞

−∞
φ2
α(x;F ) dF (x)

=
2

(1− 2α)2

[∫ F−1(1−α)

F−1(α)
(x− µ)2 dF (x)

]

+
2α

(1− 2α)2
[
F−1(1− α)− µ

]2
.
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A somewhat simpler alternative that approximates µα(F̂n) is

µ̃n =
1

n− 2gn

n−gn∑
i=gn+1

X(i)

where gn is chosen so that gn/n ≈ α. (If gn/n = α then µ̃n =
µα(F̂n.) The limiting distribution of

√
n(µ̃n − µα(F )) is the same

as that of
√
n(µα(F̂n)− µα(F )). ✸

EXAMPLE 4.31: Consider the Gini index θ(F ) defined in Ex-
ample 4.21. To determine the substitution principle estimator of
θ(F ) based on i.i.d. observations X1, · · · , Xn, we use the substitu-
tion principle estimator of F−1(t) from Example 4.30:∫ 1

0

∫ t

0
F̂−1
n (s) ds dt =

∫ 1

0

∫ 1

s
F̂−1
n (s) dt ds

=
∫ 1

0
(1− s)F̂−1

n (s) ds

=
n∑
i=1

X(i)

∫ i/n

(i−1)/n
(1− s) ds

=
1
n

n∑
i=1

(
1− 2i− 1

2n

)
X(i)

and so

θ(F̂n) =

(
n∑
i=1

Xi

)−1 n∑
i=1

(
2i− 1

n
− 1

)
X(i).

As with the trimmed mean, the influence curve of the Gini index
is complicated to derive. With some work, it can be shown that

φ(x;F ) = 2
[∫ 1

0
qF (t) dt− qF (F (x))

]
+2

x

µ(F )

(∫ 1

0
qF (t) dt− 1− F (x)

)
where

µ(F ) =
∫ ∞

0
x dF (x) =

∫ 1

0
F−1(t) dt

and qF (t) =
1

µ(F )

∫ t

0
F−1(t) dt.
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The influence curve heuristic suggests that
√
n(θ(F̂n)− θ(F )) →d N(0, σ2(F ))

with
σ2(F ) =

∫ ∞

0
φ2(x;F ) dF (x).

Unfortunately, σ2(F ) is difficult to evaluate (at least as a closed-
form expression) for most distributions F . ✸

The influence curve has a nice finite sample interpretation.
Suppose that we estimate θ(F ) based on observations x1, · · · , xn
and set θ̂n = θ(F̂n). Now suppose that we obtain another
observation xn+1 and re-estimate θ(F ) by θ̂n+1 = θ(F̂n+1) where

F̂n+1(x) =
n

n + 1
F̂n(x) +

1
n + 1

∆xn+1(x).

Letting t = 1/(n + 1) and assuming that n is sufficiently large to
make t close to 0, the definition of the influence curve suggests that
we can approximate θ̂n+1 by

θ̂n+1 ≈ θ̂n +
1

n + 1
φ(xn+1; F̂n).

(This approximation assumes that φ(x; F̂n) is well defined; it need
not be. For example, the influence curve of the median is not
defined for discrete distributions such as F̂n.) From this, we can see
that the influence curve gives an approximation for the influence
that a single observation exerts on a given estimator. For example,
consider the influence curve of the standard deviation σ(F ) given
in Example 4.29; based on x1, · · · , xn, the substitution principle
estimate is

σ̂n =

(
1
n

n∑
i=1

(xi − x̄n)2
)1/2

where x̄n is the sample mean. The approximation given above
suggests that if the observation xn+1 lies between x̄n − σ̂n and
x̄n + σ̂n then σ̂n+1 < σ̂n and otherwise σ̂n+1 ≥ σ̂n. Moreover, σ̂n+1

can be made arbitrarily large by taking |xn+1| sufficiently large.
Suppose that X1, · · · , Xn are i.i.d. random variables with dis-

tribution function Fθ where θ is a real-valued parameter and let
G = {φ : φ(Fθ) = θ}; the functional parameters φ in G are called
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Fisher consistent for θ. Many statisticians consider it desirable for
a functional parameter to have a bounded influence curve as this
will limit the effect that a single observation can have on the value
of an estimator. This would lead us to consider only those Fisher
consistent φ’s with bounded influence curves. For example, sup-
pose that X1, · · · , Xn are i.i.d. random variables with a distribu-
tion symmetric around θ; if E[|Xi|] < ∞ then we could estimate
θ by the sample mean with the substitution principle estimator
of µ(F ) =

∫ ∞
−∞ x dF (x). However, the influence curve of µ(F ) is

φ(x;F ) = x−µ(F ), which is unbounded (in x) for any given F . As
an alternative, we might instead estimate θ by the sample median or
some trimmed mean as these are substitution principle estimators
of functional parameters with bounded influence curves.

4.7 Standard errors and their estimation

The standard error of an estimator is defined to be the standard
deviation of the estimator’s sampling distribution. Its purpose is to
convey some information about the uncertainty of the estimator.

Unfortunately, it is often very difficult to calculate the standard
error of an estimator exactly. In fact, there are really only two
situations where the standard error of an estimator θ̂ can be
computed exactly:
• the sampling distribution of θ̂ is known.
• θ̂ is a linear function of random variables X1, · · · , Xn where the

variances and covariances of the Xi’s are known.
However, if the sampling distribution of θ̂ can be approximated

by a distribution whose standard deviation is known, this standard
deviation can be used to give an approximate standard error for θ̂.
The most common example of such an approximation occurs when
the sampling distribution is approximately Normal; for example,
if
√
n(θ̂ − θ) is approximately Normal with mean 0 and variance

σ2 (where σ2 may depend on θ) then σ/
√
n can be viewed as

an approximate standard error of θ̂. In fact, it is not uncommon
in such cases to see σ/

√
n referred to as the standard error of

θ̂ despite the fact that it is merely an approximation. Moreover,
approximate standard errors can be more useful than their exact
counterparts. For example, Varθ(θ̂) can be infinite despite the fact
that the distribution of θ̂ is approximately Normal; in this case,
the approximate standard error is more informative about the
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uncertainty of θ̂. (The variance can be distorted by small amounts
of probability in the tails of the distribution; thus the variance of
the approximating Normal distribution gives a better indication of
the true variability.)

“Delta Method” type arguments are useful for finding approx-
imate standard errors, especially for method of moments estima-
tors. For example, suppose that X1, · · · , Xn are independent ran-
dom variables with E(Xi) = µi and Var(Xi) = σ2

i and

θ̂ = g

(
n∑
i=1

Xi

)

where

θ = g

(
n∑
i=1

µi

)
.

Then a Taylor series expansion gives

θ̂ − θ = g

(
n∑
i=1

Xi

)
− g

(
n∑
i=1

µi

)

≈ g′
(

n∑
i=1

µi

)
n∑
i=1

(Xi − µi)

and taking the variance of the last expression, we obtain the
following approximate standard error:

se(θ̂) ≈
∣∣∣∣∣g′

(
n∑
i=1

µi

)∣∣∣∣∣
(

n∑
i=1

σ2
i

)1/2

.

The accuracy of this approximation depends on the closeness the
distribution of θ̂ to normality. When X1, · · · , Xn are i.i.d. it is
usually possible to prove directly that θ̂ is approximately Normal
(provided n is sufficiently large).

EXAMPLE 4.32: Suppose that X1, · · · , Xn are i.i.d. random
variables with mean µ and variance σ2. The substitution principle
estimator of µ is X̄ whose variance is σ2/n. Thus the standard error
of X̄ is σ/

√
n. ✸

EXAMPLE 4.33: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. Since Eλ(Xi) = 1/λ, a method
of moments estimator of λ is λ̂ = 1/X̄. If n is sufficiently large
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then
√
n(X̄ − λ−1) is approximately Normal with mean 0 and

variance λ−2; applying the Delta Method, we have
√
n(λ̂ − λ)

is approximately Normal with mean 0 and variance λ2. Thus an
approximate standard error of λ̂ is λ/

√
n. ✸

EXAMPLE 4.34: Suppose that X1, · · · , Xn are independent
Poisson random variables with Eβ(Xi) = exp(βti) where β is an
unknown parameter and t1, · · · , tn are known constants. Define β̂
to satisfy the equation

n∑
i=1

Xi =
n∑
i=1

exp(β̂ti) = g(β̂).

To compute an approximate standard error for β̂, we will use a
“Delta Method” type argument. Expanding g in a Taylor series, we
get

g(β̂)− g(β) =
n∑
i=1

(Xi − exp(βti))

≈ g′(β)(β̂ − β)

and so

β̂ − β ≈ g(β̂)− g(β)
g′(β)

=
∑n

i=1(Xi − exp(βti))∑n
i=1 ti exp(βti)

.

Since Varβ(Xi) = Eβ(Xi) = exp(βti), it follows that an approxi-
mate standard error of β̂ is

se(β̂) ≈ (
∑n

i=1 exp(βti))
1/2

|∑n
i=1 ti exp(βti)|

.

This approximation assumes that the distribution of β̂ is approxi-
mately Normal. The standard error of β̂ can be estimated by sub-
stituting β̂ for β in the expression given above. ✸

EXAMPLE 4.35: Suppose that X1, · · · , Xn are i.i.d. random
variables with density f(x − θ) where f(x) = f(−x); that is, the
Xi’s have distribution that is symmetric around 0. Let ψ(x) be
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a non-decreasing odd function (ψ(x) = −ψ(−x)) with derivative
ψ′(x) and define θ̂ to be the solution to the equation

1
n

n∑
i=1

ψ(x− θ̂) = 0.

Note that θ̂ is a substitution principle estimator of the functional
parameter θ(F ) defined by∫ ∞

−∞
ψ(x− θ(F )) dF (x) = 0;

the influence curve of θ(F ) is

φ(x;F ) =
ψ(x− θ(F ))∫ ∞

−∞ ψ′(x− θ(F )) dF (x)
.

Hence for n sufficiently large,
√
n(θ̂ − θ) is approximately Normal

with mean 0 and variance

σ2 =
∫ ∞

−∞
φ2(x;F ) dF (x)

=
∫ ∞
−∞ ψ2(x− θ)f(x− θ) dx(∫ ∞
−∞ ψ′(x− θ)f(x− θ) dx

)2

=
∫ ∞
−∞ ψ2(x)f(x) dx(∫ ∞
−∞ ψ′(x)f(x) dx

)2

and so an approximate standard error of θ̂ is σ/
√
n. ✸

As we noted above, standard errors (and their approximations)
can and typically do depend on unknown parameters. These stan-
dard errors can themselves be estimated by substituting estimates
for the unknown parameters in the expression for the standard er-
ror.

EXAMPLE 4.36: In Example 4.35, we showed that the approxi-
mate standard error of θ̂ is σ/

√
n where

σ2 =
∫ ∞
−∞ ψ2(x− θ)f(x− θ) dx(∫ ∞
−∞ ψ′(x− θ)f(x− θ) dx

)2 .
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Substituting θ̂ for θ, we can obtain the following substitution
principle estimator of σ2:

σ̂2 =

(
1
n

n∑
i=1

ψ′(Xi − θ̂)

)−2 (
1
n

n∑
i=1

ψ(Xi − θ̂)

)
.

The estimated standard error of θ̂ is simply σ̂/
√
n. ✸

Another method of estimating standard errors is given in Section
4.9.

4.8 Asymptotic relative efficiency

Suppose that θ̂n and θ̃n are two possible estimators (based on
X1, · · · , Xn) of a real-valued parameter θ. There are a variety of
approaches to comparing two estimators. For example, we can
compare the MSEs or MAEs (if they are computable) and choose
the estimator whose MSE (or MAE) is smaller (although this choice
may depend on the unknown value of θ). If both estimators are
approximately Normal, we can use a measure called the asymptotic
relative efficiency (ARE).

DEFINITION. Let X1, X2, · · · be a sequence of random variables
and suppose that θ̂n and θ̃n are estimators of θ (based on
X1, · · · , Xn) such that

θ̂n − θ

σ1n(θ)
→d N(0, 1) and

θ̃n − θ

σ2n(θ)
→d N(0, 1)

for some sequences {σ1n(θ)} and {σ2n(θ)}. Then the asymptotic
relative efficiency of θ̂n to θ̃n is defined to be

AREθ(θ̂n, θ̃n) = lim
n→∞

σ2
2n(θ)

σ2
1n(θ)

provided this limit exists.

What is the interpretation of asymptotic relative efficiency? In
many applications (for example, if the Xi’s are i.i.d.), we have

σ1n(θ) =
σ1(θ)√

n
and σ2n(θ) =

σ2(θ)√
n

and so

AREθ(θ̂n, θ̃n) =
σ2

2(θ)
σ2

1(θ)
.
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Suppose we can estimate θ using either θ̂n or θ̃m where n and m are
the sample sizes on which the two estimators are based. Suppose
we want to choose m and n such that

Pθ
(
|θ̂n − θ| < ∆

)
≈ Pθ

(
|θ̃m − θ| < ∆

)
for any ∆. Since for m and n sufficiently large both estimators are
approximately Normal, m and n satisfy

P
(
|Z| < ∆σ1(θ)/

√
n
)
≈ P

(
|Z| < ∆σ2(θ)/

√
m

)
(where Z ∼ N(0, 1)), which implies that

σ1(θ)√
n

≈ σ2(θ)√
m

or
σ2

2(θ)
σ2

1(θ)
≈ m

n
.

Thus the ratio of sample sizes needed to achieve the same precision
is approximately equal to the asymptotic relative efficiency; for
example, if AREθ(θ̂n, θ̃n) = k, we would need m ≈ kn so that
θ̃m has the same precision as θ̂n (when θ is the true value of the
parameter).

In applying ARE to compare two estimators, we should keep
in mind that it is a large sample measure and therefore may be
misleading in small sample situations. If measures such as MSE
and MAE cannot be accurately evaluated, simulation is useful for
comparing estimators.

EXAMPLE 4.37: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance σ2. Let µ̂n be the
sample mean and µ̃n be the sample median of X1, · · · , Xn. Then
we have
√
n(µ̂n − µ) →d N(0, σ2) and

√
n(µ̃n − µ) →d N(0, πσ2/2).

Hence
AREµ(µ̂n, µ̃n) =

π

2
= 1.571.

We say that µ̂n is more efficient than µ̃n. ✸

EXAMPLE 4.38: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ. Suppose we want to estimate
θ = exp(−λ) = Pλ(Xi = 0). Consider the two estimators

θ̂n = exp(−X̄n) and θ̃n =
1
n

n∑
i=1

I(Xi = 0).
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It is easy to show (using the CLT and the Delta Method) that

√
n(θ̂n − θ) →d N(0, λ exp(−2λ))

and
√
n(θ̃n − θ) →d N(0, exp(−λ)− exp(−2λ)).

Hence
AREλ(θ̂n, θ̃n) =

exp(λ)− 1
λ

.

Using the expansion exp(λ) = 1 + λ + λ2/2 + · · ·, it is easy to see
that this ARE is always greater than 1; however, for small values
of λ, the ARE is close to 1 indicating that there is little to choose
between the two estimators when λ is small. ✸

EXAMPLE 4.39: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. In Example 4.25, we gave a
family of method of moments estimators of λ using the fact that
Eλ(Xi) = Γ(r + 1)/λr for r > 0. Define

λ̂(r)
n =

(
1

nΓ(r + 1)

n∑
i=1

Xr
i

)−1/r

.

Using the fact that Varλ(Xr
i ) = (Γ(2r+1)−Γ2(r+1))/λ2r, it follows

from the Central Limit Theorem and the Delta Method that
√
n(λ̂(r)

n − λ) →d N(0, σ2(r))

where
σ2(r) =

λ2

r2

(
Γ(2r + 1)
Γ2(r + 1)

− 1
)
.

The graph of σ2(r)/λ2 is given in Figure 4.2; it is easy to see that
σ2(r) is minimized for r = 1 so that 1/X̄ is the most efficient
(asymptotically) estimator of λ of this form. ✸

EXAMPLE 4.40: Suppose that X1, · · · , Xn are i.i.d. Cauchy
random variables with density function

f(x; θ, σ) =
1
π

σ

σ2 + (x− θ)2
.

This density function is symmetric around θ; however, since E(Xi)
is not defined for this distribution, the sample mean X̄n is not a
good estimator of θ. A possible estimator of θ is the α-trimmed
c© 2000 by Chapman & Hall/CRC



r

sc
al

ed
 v

ar
ia

nc
e

0 1 2 3 4 5

2
4

6
8

10

Figure 4.2 σ2(r)/λ2 in Example 4.39 as a function of r.

mean

θ̂n(α) =
1

n− 2gn

n−gn∑
i=gn+1

X(i)

where the X(i)’s are the order statistics and gn/n → α as n → ∞
where 0 < α < 0.5. It can be shown (for example, by using the
influence curve of the trimmed mean functional parameter given in
Example 4.30) that

√
n(θ̂n(α)− θ) →d N(0, γ2(α))

where

γ2(α)
σ2

=
2π−1 tan (π(0.5− α)) + 2α− 1 + 2α tan2 (π(0.5− α))

(1− 2α)2
.

If θ̃n is the sample median of X1, · · · , Xn, we have

√
n(θ̃n − θ) →d N

(
0, σ2π2/4

)
.
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Figure 4.3 ARE of α-trimmed means (for 0 ≤ α ≤ 0.5) with respect to the
sample median in Example 4.40.

The ARE of θ̂n(α) with respect to θ̃n is thus given by the formula

AREθ(θ̂n(α), θ̃n)

=
π2(1− 2α)2

4 [2π−1 tan (π(0.5− α)) + 2α− 1 + 2α tan2 (π(0.5− α))]

A plot of AREθ(θ̂n(α), θ̃n) for α between 0 and 0.5 is given in
Figure 4.3. The trimmed mean θ̂n(α) is more efficient than θ̃n for
α > 0.269 and the ARE is maximized at α = 0.380. We will see in
Chapter 5 that we can find even more efficient estimators of θ for
this model. ✸

4.9 The jackknife

The jackknife provides a general-purpose approach to estimating
the bias and variance (or standard error) of an estimator. Sup-
pose that θ̂ is an estimator of θ based on i.i.d. random variables
X1, · · · , Xn; θ could be an unknown parameter from some para-
metric model or θ could be functional parameter of the common
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distribution function F of the Xi’s (in which case θ = θ(F )). The
jackknife is particularly useful when standard methods for comput-
ing bias and variance cannot be applied or are difficult to apply.
Two such examples are given below.

EXAMPLE 4.41: Suppose that X1, · · · , Xn are i.i.d. random
variables with density f(x− θ) that is symmetric around θ (f(x) =
f(−x)). One possible estimator of θ is the trimmed mean

θ̂ =
1

n− 2g

n−g∑
i=g+1

X(i),

which averages X(g+1), · · · , X(n−g), the middle n− 2 g order statis-
tics. The trimmed mean is less susceptible to extreme values than
the sample mean of the Xi’s, and is often a useful estimator of θ.
However, unless the density function f is known precisely, it is dif-
ficult to approximate the variance of θ̂. (If f is known, it is possible
to approximate the variance of θ̂ using the influence curve given in
Example 4.30; see also Example 4.40.) ✸

EXAMPLE 4.42: In survey sampling, it is necessary to estimate
the ratio of two means. For example, we may be interested in
estimating the unemployment rate for males aged 18 to 25. If
we take a random sample of households, we can obtain both the
number of males between 18 and 25 and the number of these
males who are unemployed in each of the sampled households. Our
estimate of the unemployment rate for males aged 18 to 25 would
then be

r̂ =
number of unemployed males aged 18 - 25 in sample

number of males aged 18 - 25 in sample
.

The general problem may be expressed as follows. Suppose that
(X1, Y1), · · · , (Xn, Yn) are independent random vectors from the
same joint distribution with E(Xi) = µX and E(Yi) = µY ; we
want to estimate r = µX/µY . A method of moments estimator of
r is

r̂ =
∑n

i=1 Xi∑n
i=1 Yi

=
X̄

Ȳ
.

Unfortunately, there is no easy way to evaluate either E(X̄/Ȳ )
or Var(X̄/Ȳ ) (although the Delta Method provides a reasonable
approximation). ✸
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The name “jackknife” was originally used by Tukey (1958) to
suggest the broad usefulness of the technique as a substitute to more
specialized techniques much in the way that a jackknife can be used
as a substitute for a variety of more specialized tools (although,
in reality, a jackknife is not a particularly versatile tool!). More
complete references on the jackknife are the monographs by Efron
(1982), and Efron and Tibshirani (1993).

The jackknife estimator of bias

The jackknife estimator of bias was developed by Quenouille
(1949) although he did not refer to it as the jackknife. The basic
idea behind the jackknife estimators of bias and variance lies in
recomputing the parameter estimator using all but one of the
observations.

Suppose that θ̂ is an estimator of a parameter θ based on sample
of i.i.d. random variables X1, · · · , Xn: θ̂ = θ̂(X). (For example,
θ̂ = θ(F̂ ) if θ = θ(F ).) Quenouille’s method for estimating the bias
of θ̂ is based on sequentially deleting a single observation Xi and
recomputing θ̂ based on n− 1 observations. Suppose that

Eθ(θ̂) = θ + bθ(θ̂)

where bθ(θ̂) is the bias of θ̂. Let θ̂−i be the estimator of θ evaluated
after deleting Xi from the sample:

θ̂−i = θ̂(X1, · · · , Xi−1, Xi+1, · · · , Xn).

Now define θ̂• to be the average of θ̂−1, · · · , θ̂−n:

θ̂• =
1
n

n∑
i=1

θ̂−i.

The jackknife estimator of bias is then

b̂(θ̂) = (n− 1)(θ̂• − θ̂).

A bias-corrected version of θ̂ can be constructed by subtracting b̂(θ̂)
from θ̂; we will show below that this procedure reduces the bias of θ̂.

The theoretical rationale behind b̂(θ̂) assumes that Eθ(θ̂) can be
expressed as a series involving powers of 1/n; for simplicity, we will
first assume that for any n

Eθ(θ̂) = θ +
a1(θ)
n
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where a1(θ) can depend on θ or the distribution of the Xi’s but not
the sample size n; in this case, bθ(θ̂) = a1(θ)/n. Since θ−i is based
on n− 1 observations (for each i), it follows that

Eθ(θ̂•) =
1
n

n∑
i=1

Eθ(θ̂−i) = θ +
a1(θ)
n− 1

.

Thus
Eθ(θ̂ − θ̂•) =

a1(θ)
n

− a1(θ)
n− 1

=
a1(θ)

n(n− 1)

and so (n− 1)(θ̂ − θ̂•) is an unbiased estimator of bθ(θ̂).
In the general case, we will have

Eθ(θ̂) = θ +
a1(θ)
n

+
a2(θ)
n2

+
a3(θ)
n3

+ · · ·

or
bθ(θ̂) =

a1(θ)
n

+
a2(θ)
n2

+
a3(θ)
n3

+ · · ·

where a1(θ), a2(θ), a3(θ), · · · can depend on θ or the distribution of
the Xi’s but not on n. Again, it follows that

Eθ(θ̂•) =
1
n

n∑
i=1

Eθ(θ̂−i)

= θ +
a1(θ)
n− 1

+
a2(θ)

(n− 1)2
+

a3(θ)
(n− 1)3

+ · · ·

(since each θ̂−i is based on n− 1 observations). Thus the expected
value of the jackknife estimator of bias is

Eθ(b̂(θ̂)) = (n− 1)
(
Eθ(θ̂•)− Eθ(θ̂)

)
=

a1(θ)
n

+
(2n− 1)a2(θ)
n2(n− 1)

+
(3n2 − 3n + 1)a3(θ)

n3(n− 1)2
+ · · · .

We can see from above that b̂(θ̂) is not an unbiased estimator of
bθ(θ̂) as it was in the simple case considered earlier. However, note
that the first term of Eθ(b̂(θ̂)) (namely a1(θ)/n) agrees with that
of bθ(θ̂). Thus if we define

θ̂jack = θ̂ − b̂(θ̂) = nθ̂ − (n− 1)θ̂•
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to be the bias-corrected (or jackknifed) version of θ̂, it follows that

Eθ(θ̂jack) = θ − a2(θ)
n(n− 1)

− (2n− 1)a3(θ)
n2(n− 1)2

+ · · ·

≈ θ − a2(θ)
n2

− 2a3(θ)
n3

+ · · ·

for large n. Since 1/n2, 1/n3, · · · go to 0 faster than 1/n goes to 0
(as n gets large), it follows that the bias of θ̂jack is smaller than the
bias of θ̂ for n sufficiently large. In the case where

Eθ(θ̂) = θ +
a1(θ)
n

(so that a2(θ) = a3(θ) = · · · = 0), θ̂jack will be unbiased.

EXAMPLE 4.43: Suppose that X1, · · · , Xn are i.i.d. random
variables from a distribution with mean µ and variance σ2, both
unknown. The estimator

σ̂2 =
1
n

n∑
i=1

(Xi − X̄)2

is a biased estimator with b(σ̂2) = −σ2/n. Thus the bias in σ̂2

can be removed by using the jackknife. An educated guess for the
resulting unbiased estimator is

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

To find the unbiased estimator using the jackknife, we first note
that

X̄−i =
1

n− 1

∑
j �=i

Xj =
1

n− 1
(nX̄ −Xi)

and so

σ̂2
−i =

1
n− 1

∑
j �=i

(Xj − X̄−i)2

=
1

n− 1

∑
j �=i

(
Xj −

n

n− 1
X̄ +

Xi

n− 1

)

=
1

n− 1

n∑
j=1

(
Xj − X̄ +

1
n− 1

(Xi − X̄)
)
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− n2

(n− 1)3
(Xi − X̄)2

=
1

n− 1

n∑
j=1

(Xj − X̄)2 +
n

(n− 1)3
(Xi − X̄)2

− n2

(n− 1)3
(Xi − X̄)2

=
1

n− 1

n∑
j=1

(Xj − X̄)2 − n

(n− 1)2
(Xi − X̄)2.

Now σ̂2
• is just the average of the σ̂2

−i’s so that

σ̂2
• =

1
n− 1

n∑
i=1

(Xi − X̄)2 − 1
(n− 1)2

n∑
i=1

(Xi − X̄)2

and the unbiased estimator of σ2 is

nσ̂2 − (n− 1)σ̂2
• =

1
n− 1

n∑
i=1

(Xi − X̄)2 = S2

as was guessed above. ✸

EXAMPLE 4.44: Suppose that X1, · · · , Xn are i.i.d. random
variables with probability density function

f(x; θ) =
1
θ

for 0 ≤ x ≤ θ

where θ is an unknown parameter. Since θ is the maximum possible
value of the Xi’s, a natural estimator of θ is

θ̂ = X(n) = max(X1, · · · , Xn).

However, since the Xi’s cannot exceed θ, it follows that their
maximum cannot exceed θ and so θ̂ is biased; in fact,

E(θ̂) =
n

n + 1
θ

= θ
1

1 + 1/n

= θ

(
1− 1

n
+

1
n2

− 1
n3

+ · · ·
)
.

Since
θ̂−i = max(X1, · · · , Xi−1, Xi+1. · · · , Xn),
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it follows that θ̂−i = X(n) for n− 1 values of i and θ̂−i = X(n−1) for
the other value of i. Thus, we obtain

θ̂• =
n− 1
n

X(n) +
1
n
X(n−1)

and so the jackknifed estimator of θ is

θ̂jack = X(n) +
n− 1
n

(X(n) −X(n−1)).

The bias of θ̂jack will be smaller than that of θ̂; nonetheless, we
can easily modify θ̂ to make it unbiased without resorting to the
jackknife by simply multiplying it by (n + 1)/n. ✸

The latter example points out one of the drawbacks in using
any general purpose method (such as the jackknife), namely that
in specific situations, it is often possible to improve upon that
method with one that is tailored specifically to the situation at
hand. Removing the bias in θ̂ = X(n) by multiplying X(n) by
(n + 1)/n relies on the fact that the form of the density is known.
Suppose instead that the range of the Xi’s was still [0, θ] but
that the density f(x) was unknown for 0 ≤ x ≤ θ. Then X(n)

is still a reasonable estimator of θ and still always underestimates
θ. However, (n+1)X(n)/n need not be unbiased and, in fact, may be
more severely biased than X(n). However, the jackknifed estimator

θ̂jack = X(n) +
n− 1
n

(X(n) −X(n−1))

will have a smaller bias than X(n) and may be preferable to X(n)

in this situation.

The jackknife estimator of variance

The jackknife estimator of bias uses the estimators θ̂−1, · · · , θ̂−n
(which use all the observations but one in their computation) to
construct an estimator of bias of an estimator θ̂. Tukey (1958)
suggested a method of estimating Var(θ̂) that uses θ̂−1, · · · , θ̂−n.
Tukey’s jackknife estimator of Var(θ̂) is

V̂ar(θ̂) =
n− 1
n

n∑
i=1

(θ̂−i − θ̂•)2

c© 2000 by Chapman & Hall/CRC



where as before θ̂−i is the estimator evaluated using all the
observations except Xi and

θ̂• =
1
n

n∑
i=1

θ̂−i.

The formula for the jackknife estimator of variance is somewhat
unintuitive. In deriving the formula, Tukey assumed that the
estimator θ̂ can be approximated well by an average of independent
random variables; this assumption is valid for a wide variety of
estimators but is not true for some estimators (for example, sample
maxima or minima). More precisely, Tukey assumed that

θ̂ ≈ 1
n

n∑
i=1

φ(Xi),

which suggests that

Var(θ̂) ≈ Var(φ(X1))
n

.

(In the case where the parameter of interest θ is a functional
parameter of the distribution function F (that is, θ = θ(F )), the
function φ(·)− θ(F ) is typically the influence curve of θ(F ).)

In general, we do not know the function φ(x) so we cannot
use the above formula directly. However, it is possible to find
reasonable surrogates for φ(X1), · · · , φ(Xn). Using the estimators
θ̂−i (i = 1, · · · , n) and θ̂, we define pseudo-values

Φi = θ̂ + (n− 1)(θ̂ − θ̂−i)

(for i = 1, · · · , n) that essentially play the same role as the φ(Xi)’s
above; in the case where θ = θ(F ), (n−1)(θ̂− θ̂−i) is an attempt to
estimate the influence curve of θ(F ) at x = Xi. (In the case where
θ̂ is exactly a sample mean

θ̂ =
1
n

n∑
i=1

φ(Xi),

it easy to show that Φi = φ(Xi) and so the connection between Φi

and φ(Xi) is clear in this simple case.) We can then take the sample
variance of the pseudo-values Φi to be an estimate of the variance
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Table 4.1 Pre-tax incomes for Example 4.45.

3841 7084 7254 15228 18042 19089
22588 23972 25694 27592 27927 31576
32528 32921 33724 36887 37776 37992
39464 40506 44516 46538 51088 51955
54339 57935 75137 82612 83381 84741

of φ(X1) and use it to estimate the variance of θ̂. Note that

1
n

n∑
i=1

Φi = nθ̂ − n− 1
n

n∑
i=1

θ̂−i

= nθ̂ − (n− 1)θ̂•
= θ̂jack

where θ̂jack is the bias-corrected version of θ̂. The sample variance
of the Φi’s is

1
n− 1

n∑
i=1

(Φi − Φ̄)2 =
1

n− 1

n∑
i=1

[(n− 1)(θ̂• − θ̂−i)]2

= (n− 1)
n∑
i=1

(θ̂−i − θ̂•)2.

We now get the jackknife estimator of variance by dividing the
sample variance of the Φi’s by n:

V̂ar(θ̂) =
n− 1
n

n∑
i=1

(θ̂−i − θ̂•)2.

It should be noted that the jackknife estimator of variance does
not work in all situations. One such situation is the sample median;
the problem here seems to be the fact that the influence curve of
the median is defined only for continuous distributions and so is
difficult to approximate adequately from finite samples.

EXAMPLE 4.45: The data in Table 4.1 represent a sample of 30
pre-tax incomes. We will assume that these data are outcomes of
i.i.d. random variables X1, · · · , X30 from a distribution function F ;
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Table 4.2 Values of θ̂−i obtained by leaving out the corresponding entry in
Table 4.1.

0.2912 0.2948 0.2950 0.3028 0.3055 0.3064
0.3092 0.3103 0.3115 0.3127 0.3129 0.3148
0.3153 0.3154 0.3157 0.3166 0.3168 0.3168
0.3170 0.3170 0.3169 0.3167 0.3161 0.3159
0.3152 0.3140 0.3069 0.3033 0.3028 0.3020

we will use the data to estimate the Gini index

θ(F ) = 1− 2
∫ 1

0
qF (t) dt

where

qF (t) =
∫ t
0 F

−1(s) ds∫ 1
0 F−1(s) ds

is the Lorenz curve. The substitution principle estimator of θ(F ) is

θ̂ = θ(F̂ ) =

(
30∑
i=1

Xi

)−1 30∑
i=1

(
2i− 1

30
− 1

)
X(i)

where X(1) ≤ X(2) ≤ · · · ≤ X(30) are the order statistics of
X1, · · · , X30.

For these data, the estimate of θ(F ) is 0.311. The standard error
of this estimate can be estimated using the jackknife. The leave-
out-estimates θ̂−i of θ(F ) are given in Table 4.2.

The jackknife estimate of the standard error of θ̂ is

ŝe(θ̂) =
29
30

30∑
i=1

(θ̂−i − θ̂•)2 = 0.0398

where θ̂• = 0.310 is the average of θ̂−1, · · · , θ̂−30. ✸

Comparing the jackknife and Delta Method estimators

How does the jackknife estimator of variance compare to the Delta
Method estimator? We will consider the simple case of estimating
the variance of g(X̄) where X̄ is the sample mean of i.i.d. random
c© 2000 by Chapman & Hall/CRC



variables X1, · · · , Xn. The Delta Method estimator is

V̂ard(g(X̄)) = [g′(X̄)]2
1

n(n− 1)

n∑
i=1

(Xi − X̄)2

while the jackknife estimator is

V̂arj(g(X̄)) =
n− 1
n

n∑
i=1

(g(X̄−i)− g•)2

where
g• =

1
n

n∑
i=1

g(X̄−i).

Recalling that

X̄−i =
1

n− 1
(nX̄ −Xi)

= X̄ − 1
n− 1

(Xi − X̄),

it follows from a Taylor series expansion that

g(X̄−i) ≈ g(X̄) + (X̄−i − X̄)g′(X̄)

= g(X̄)− 1
n− 1

(Xi − X̄)g′(X̄)

and hence

g• =
1
n

n∑
i=1

g(X̄−i)

≈ g(X̄).

Substituting these approximations into V̂arj(g(X̄)), we get

V̂arj(g(X̄)) ≈ [g′(X̄)]2
1

n(n− 1)

n∑
i=1

(Xi − X̄)2

= V̂ard(g(X̄)).

Thus the jackknife and Delta Method estimators are approximately
equal when θ̂ = g(X̄).

4.10 Problems and complements

4.1: Suppose that X = (X1, · · · , Xn) has a one-parameter expo-
nential family distribution with joint density or frequency func-
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tion
f(x; θ) = exp [θT (x)− d(θ) + S(x)]

where the parameter space Θ is an open subset of R. Show that

Eθ[exp(sT (X))] = d(θ + s)− d(θ)
if s is sufficiently small. (Hint: Since Θ is open, f(x; θ + s) is a
density or frequency function for s sufficiently small and hence
integrates or sums to 1.)

4.2: Suppose that X = (X1, · · · , Xn) has a k-parameter exponen-
tial family distribution with joint density or frequency function

f(x;θ) = exp

[ p∑
i=1

θiTi(x)− d(θ) + S(x)

]

where the parameter space Θ is an open subset of Rk.
(a) Show that

Eθ[Ti(X)] =
∂

∂θi
d(θ)

for i = 1, · · · , k.
(b) Show that

Covθ[Ti(X), Tj(X)] =
∂2

∂θi∂θj
d(θ)

for i, j = 1, · · · , k.
4.3: Suppose that X1, · · · , Xn are i.i.d. random variables with

density

f(x; θ1, θ2) =
{

a(θ1, θ2)h(x) for θ1 ≤ x ≤ θ2

0 otherwise

where h(x) is a known function defined on the real line.
(a) Show that

a(θ1, θ2) =

(∫ θ2

θ1
h(x) dx

)−1

.

(b) Show that (X(1), X(n)) is sufficient for (θ1, θ2).
4.4: Suppose that X = (X1, · · · , Xn) has joint density or frequency

function f(x; θ1, θ2) where θ1 and θ2 vary independently (that
is, Θ = Θ1 ×Θ2) and the set

S = {x : f(x; θ1, θ2) > 0}
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does not depend on (θ1, θ2). Suppose that T1 is sufficient for θ1

when θ2 is known and T2 is sufficient for θ2 when θ1 is known.
Show that (T1, T2) is sufficient for (θ1, θ2) if T1 and T2 do not
depend on θ2 and θ1 respectively. (Hint: Use the Factorization
Criterion.)

4.5: Suppose that the lifetime of an electrical component is known
to depend on some stress variable that varies over time;
specifically, if U is the lifetime of the component, we have

lim
∆↓0

1
∆
P (x ≤ U ≤ x + ∆|U ≥ x) = λ exp(βφ(x))

where φ(x) is the stress at time x. Assuming that we can
measure φ(x) over time, we can conduct an experiment to
estimate λ and β by replacing the component when it fails and
observing the failure times of the components. Because φ(x) is
not constant, the inter-failure times will not be i.i.d. random
variables.
Define nonnegative random variables X1 < · · · < Xn such that
X1 has hazard function

λ1(x) = λ exp(βφ(x))

and conditional on Xi = xi, Xi+1 has hazard function

λi+1(x) =
{

0 if x < xi
λ exp(βφ(x)) if x ≥ xi

where λ, β are unknown parameters and φ(x) is a known
function.
(a) Find the joint density of (X1, · · · , Xn).
(b) Find sufficient statistics for (λ, β).

4.6: Let X1, · · · , Xn be i.i.d. Exponential random variables with
parameter λ. Suppose that we observe only the smallest r values
of X1, · · · , Xn, that is, the order statistics X(1), · · · , X(r). (This
is called type II censoring in reliability.)
(a) Find the joint density of X(1), · · · , X(r).
(b) Show that

V = X(1) + · · ·+ X(r−1) + (n− r + 1)X(r)

is sufficient for λ.
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4.7: Suppose that X1, · · · , Xn are i.i.d. Uniform random variables
on [0, θ]:

f(x; θ) =
1
θ

for 0 ≤ x ≤ θ.

Let X(1) = min(X1, · · · , Xn) and X(n) = max(X1, · · · , Xn).
(a) Define T = X(n)/X(1). Is T ancillary for θ?
(b) Find the joint distribution of T and X(n). Are T and X(n)

independent?
4.8: Suppose that X1, · · · , Xn are i.i.d. random variables with

density function

f(x; θ) = θ(1 + x)−(θ+1) for x ≥ 0

where θ > 0 is an unknown parameter.
(a) Show that T =

∑n
i=1 ln(1 + Xi) is sufficient for θ.

(b) Find the mean and variance of T .
4.9: Consider the Gini index θ(F ) as defined in Example 4.21.

(a) Suppose that X ∼ F and let G be the distribution function
of Y = aX for some a > 0. Show that θ(G) = θ(F ).
(b) Suppose that Fp is a discrete distribution with probability
p at 0 and probability 1− p at x > 0. Show that θ(Fp) → 0 as
p→ 0 and θ(Fp) → 1 as p→ 1.
(c) Suppose that F is a Pareto distribution whose density is

f(x;α) =
α

x0

(
x

x0

)−α−1

for x > x0 > 0

α > 0. (This is sometimes used as a model for incomes
exceeding a threshold x0.) Show that θ(F ) = (2α − 1)−1 for
α > 1. (f(x;α) is a density for α > 0 but for α ≤ 1, the
expected value is infinite.)

4.10: An alternative to the Gini index as a measure of inequality
is the Theil index. Given a distribution function F whose
probability is concentrated on nonnegative values, the Theil
index is defined to be the functional parameter

θ(F ) =
∫ ∞

0

x

µ(F )
ln

(
x

µ(F )

)
dF (x)

where µ(F ) =
∫ ∞
0 x dF (x).

(a) Suppose that X ∼ F and let G be the distribution function
of Y = aX for some a > 0. Show that θ(G) = θ(F ).
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(b) Find the influence curve of θ(F ).
(c) Suppose that X1, · · · , Xn are i.i.d. random variables with
distribution function F . Show that

θ̂n =
1
n

n∑
i=1

Xi

X̄n
ln

(
Xi

X̄n

)
is the substitution principle estimator of θ(F ).

(d) Find the limiting distribution of
√
n(θ̂n − θ(F )).

4.11: The influence curve heuristic can be used to obtain the joint
limiting distribution of a finite number of substitution prin-
ciple estimators. Suppose that θ1(F ), · · · , θk(F ) are functional
parameters with influence curves φ1(x;F ), · · · , φk(x;F ). Then
if X1, · · · , Xn is an i.i.d. sample from F , we typically have

√
n(θ1(F̂n)− θ1(F )) =

1√
n

n∑
i=1

φ1(Xi;F ) + Rn1

...
...

...
√
n(θk(F̂n)− θk(F )) =

1√
n

n∑
i=1

φk(Xi;F ) + Rnk

where Rn1, · · · , Rnk →p 0.
(a) Suppose that X1, · · · , Xn are i.i.d. random variables from
a distribution F with mean µ and median θ; assume that
Var(Xi) = σ2 and F ′(θ) > 0. If µ̂n is the sample mean and
θ̂n is the sample median, use the influence curve heuristic to
show that

√
n

(
µ̂n − µ

θ̂n − θ

)
→d N2(0, C)

and give the elements of the variance-covariance matrix C.
(b) Now assume that the Xi’s are i.i.d. with density

f(x; θ) =
p

2Γ(1/p)
exp(−|x− θ|p)

where θ is the mean and median of the distribution and p > 0
is another parameter (that may be known or unknown). Show
that the matrix C in part (a) is

C =
(

Γ(3/p)/Γ(1/p) Γ(2/p)/p
Γ(2/p)/p [Γ(1/p)/p]2.

)
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(c) Consider estimators of θ of the form θ̃n = sµ̂n + (1− s)θ̂n.
For a given s, find the limiting distribution of

√
n(θ̃n − θ).

(d) For a given value of p > 0, find the value of s that minimizes
the variance of this limiting distribution. For which value(s) of
p is this optimal value equal to 0; for which value(s) is it equal
to 1?

4.12: (a) Suppose that F is a continuous distribution function with
density f = F ′. Find the influence curve of the functional
parameter θp(F ) defined by F (θp(F )) = p for some p ∈ (0, 1).
(θp(F ) is the p-quantile of F .)

(b) Let F̂n(x) be the empirical distribution function of i.i.d.
random variables X1, · · · , Xn (with continuous distribution F
and density f = F ′) and for 0 < t < 1 define

F̂−1
n (t) = inf{x : F̂n(x) ≥ t}.

Define τ̂n = F̂−1
n (0.75)−F̂−1

n (0.25) to be the interquartile range
of X1, · · · , Xn. Find the limiting distribution of

√
n(τ̂n − τ(F ))

where τ(F ) = θ3/4(F )−θ1/4(F ). (Hint: Find the influence curve
of τ(F ); a rigorous derivation of the limiting distribution can
be obtained by mimicking Examples 3.5 and 3.6.)

4.13: Suppose that X1, X2, · · · are i.i.d. nonnegative random vari-
ables with distribution function F and define the functional
parameter

θ(F ) =
(
∫ ∞
0 x dF (x))2∫ ∞
0 x2 dF (x)

.

(Note that θ(F ) = (E(X))2/E(X2) where X ∼ F .)
(a) Find the influence curve of θ(F ).
(b) Using X1, · · · , Xn, find a substitution principle estimator,
θ̂n, of θ(F ) and find the limiting distribution of

√
n(θ̂n − θ).

(You can use either the influence curve or the Delta Method to
do this.)

4.14: Size-biased (or length-biased) sampling occurs when the size
or length of a certain object affects its probability of being
sampled. For example, suppose we are interested in estimating
the mean number of people in a household. We could take
a random sample of households, in which case the natural
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estimate would be the sample mean (which is an unbiased
estimator). Alternatively, we could take a random sample of
individuals and record the number of people in each individual’s
household; in this case, the sample mean is typically not a
good estimator since the sampling scheme is more likely to
include individuals from large households than would be the
case if households were sampled. In many cases, it is possible
to correct for the biased sampling if the nature of the biased
sampling is known. (Another example of biased sampling is
given in Example 2.21.)
(a) Suppose we observe i.i.d. random variables X1, · · · , Xn from
the distribution

G(x) =
(∫ ∞

0
w(t) dF (t)

)−1 ∫ x

0
w(t) dF (t)

where w(t) is a known (nonnegative) function and F is an
unknown distribution function. Define

F̂n(x) =

(
n∑
i=1

[w(Xi)]−1

)−1 n∑
i=1

[w(Xi)]−1I(Xi ≤ x).

Show that for each x, F̂n(x) is a consistent estimator of F (x)
provided that E[1/w(Xi)] <∞.
(b) Using the estimator in part (a), give a substitution principle
estimator of θ(F ) =

∫
g(x) dF (x). What is the estimator of∫

x dF (x) when w(x) = x? Find the limiting distribution of
this estimator when E[1/w2(Xi)] <∞.
(c) Suppose that we have the option of sampling from F or from
the biased version G where w(x) = x. Show that the estimator
of

∫
x dF (x) based on the biased sample is asymptotically more

efficient than that based on the sample from F if(∫
x dF (x)

)3 (∫
x−1 dF (x)

)
<

∫
x2 dF (x).

4.15: Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean 0 and unknown variance σ2.
(a) Show that E(|Xi|) = σ

√
2/π.

(b) Use the result of (a) to construct a method of moments
estimator, σ̂n, of σ. Find the limiting distribution of

√
n(σ̂n−σ).
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(c) Another method of moments estimator of σ is

σ̃n =

(
1
n

n∑
i=1

X2
i

)1/2

.

Find the limiting distribution of
√
n(σ̃n − σ) and compare the

results of parts (b) and (c).
4.16: Suppose that X1, · · · , Xn are i.i.d. random variables with

density function

f(x;µ) = exp[−(x− µ)] for x ≥ µ

(a) Show that Zn = min(X1, · · · , Xn) is a sufficient statistic
for µ.
(b) Show that Zn →p µ as n→∞.

4.17: Let U1, · · · , Un be i.i.d. Uniform random variables on [0, θ].
Suppose that only the smallest r values are actually observed,
that is, the order statistics U(1) < U(2) < · · · < U(r).
(a) Find the joint density of U(1), U(2), · · · , U(r) and and find
a one-dimensional sufficient statistic for θ. (Hint: The joint
density of (U(1), · · · , U(n)) is f(u1, · · · , un) = n!θ−n for 0 < u1 <
· · · < un < 1.)
(b) Find a unbiased estimator of θ based on the sufficient
statistic found in (a).

4.18: Suppose that Λ1, · · · ,Λn are i.i.d. Gamma random variables
with (reparametrized) density function

g(x) =
(α/µ)αxα−1 exp(−αx/µ)

Γ(α)
for x > 0

so that E(Λi) = µ. Given Λi, let Xi and Yi be independent
Poisson random variables with E(Xi|Λi) = Λi and E(Yi|Λi) =
θΛi. We will observe i.i.d. pairs of (dependent) random variables
(X1, Y1), · · · , (Xn, Yn) (that is, the Λi’s are unobservable). (See
Lee (1996) for an application of such a model.)
(a) Show that the joint frequency function of (Xi, Yi) is

f(x, y) =
θy

x!y!
Γ(x + y + α)
Γ(α)(µ/α)α

(
1 + θ +

α

µ

)−(x+y+α)

for x, y = 0, 1, 2, 3, · · ·. (Hint: P (Xi = x, Yi = y) = E[P (Xi =
x, Yi = y|Λi)].)
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(b) Find the expected values and variances of Xi and Yi as well
as Cov(Xi, Yi).

(c) Show that θ̂n = Ȳn/X̄n is a consistent estimator of θ.

(d) Find the asymptotic distribution of
√
n(θ̂n − θ).

4.19: Suppose that X1, · · · , Xn are i.i.d. random variables with
a continuous distribution function F . It can be shown that
g(t) = E(|Xi− t|) (or g(t) = E[|Xi− t| − |Xi|]) is minimized at
t = θ where F (θ) = 1/2 (see Problem 1.25). This suggests that
the median θ can be estimated by choosing θ̂n to minimize

gn(t) =
n∑
i=1

|Xi − t|.

(a) Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics.
Show that if n is even then gn(t) is minimized for X(n/2) ≤
t ≤ X(1+n/2) while if n is odd then gn(t) is minimized at
t = X((n+1)/2). (Hint: Evaluate the derivative of gn(t) for
X(i) < t < X(i+1) (i = 1, · · · , n−1); determine for which values
of t gn(t) is decreasing and for which it is increasing.)

(b) Let F̂n(x) be the empirical distribution function. Show that
F̂−1
n (1/2) = X(n/2) if n is even and F̂−1

n (1/2) = X((n+1)/2) if n
is odd.

4.20: Suppose that X1, X2, · · · are i.i.d. random variables with
distribution function

F (x) = (1− θ)Φ
(
x− µ

σ

)
+ θΦ

(
x− µ

5σ

)
where 0 < θ < 1, µ and σ are unknown parameters. (Φ is
the N(0, 1) distribution function.) Define µ̂n to be the sample
mean and µ̃n to be the sample median of X1, · · · , Xn. (This is
an example of a contaminated Normal model that is sometimes
used to study the robustness of estimators.)
(a) Find the limiting distributions of

√
n(µ̂n−µ) and

√
n(µ̃n−

µ). (These will depend on θ and σ2.)
(b) For which values (if any) of θ is the sample median more
efficient than the sample mean?

4.21: Suppose that X1, · · · , Xn are i.i.d. random variables with dis-
tribution function. The substitution principle can be extended
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to estimating functional parameters of the form

θ(F ) = E[h(X1, · · · , Xk)]

where h is some specified function. (We assume that this
expected value is finite.) If n ≥ k, a substitution principle
estimator of θ(F ) is

θ̂ =

(
n

k

)−1 ∑
i1<···<ik

h(Xi1 , · · · , Xik)

where the summation extends over all combinations of k
integers drawn from the integers 1 through n. The estimator
θ̂ is called a U-statistic.
(a) Show that θ̂ is a unbiased estimator of θ(F ).
(b) Suppose Var(Xi) <∞. Show that

Var(Xi) = E[(X1 −X2)2]/2.

How does the “U-statistic” substitution principle estimator
differ from the the substitution principle estimator in Example
4.23?

4.22: Suppose that (X1, Y1), · · · , (Xn, Yn) are independent pairs
of correlated Bernoulli random variables. The correlation be-
tween Xi and Yi is introduced using a mixing distribution. Take
θ1, · · · , θn to be i.i.d. random variables with a non-degenerate
distribution function G. Then given θi, Xi and Yi are indepen-
dent random variables with

P (Xi = 1|θi) = θi and P (Yi = 1|θi) = h(θi, φ)

where h is such that
h(θi, φ)

1− h(θi, φ)
= φ

θi
1− θi

.

Thus, for example, we have

P (Xi = 1) =
∫ 1

0
θ dG(θ)

and
P (Yi = 1) =

∫ 1

0
h(θ, φ) dG(θ).

We would like to estimate φ, the so-called odds ratio, given
(X1, Y1), · · · , (Xn, Yn). (Both φ and the distribution function
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G are unknown in this problem; however, we will not have to
explicitly estimate G.)
(a) Show that E[Yi(1 −Xi)] = φE[Xi(1 − Yi)]. (Hint: Look at
the conditional expectations given θi.)
(b) Show that the estimator

φ̂n =
∑n

i=1 Yi(1−Xi)∑n
i=1 Xi(1− Yi)

is a consistent estimator of φ. (φ̂n is a special case of the Mantel-
Haenszel estimator of the odds ratio.)
(c) Find the limiting distribution of

√
n(φ̂n−φ) and suggest an

estimator of the standard error of φ̂n.
(d) Find the limiting distribution of

√
n(ln(φ̂n) − ln(φ)) and

suggest an estimator of the standard error of ln(φ̂n).
4.23: Suppose that X1, · · · , Xn are i.i.d. random variables and

define an estimator θ̂ by
n∑
i=1

ψ(Xi − θ̂) = 0

where ψ is an odd function (ψ(x) = −ψ(−x)) with derivative
ψ′.
(a) Let θ̂−j be the estimator computed from all the Xi’s except
Xj . Show that

n∑
i=1

ψ(Xi − θ̂−j) = ψ(Xj − θ̂−j).

(b) Use the approximation

ψ(Xi − θ̂−j) ≈ ψ(Xi − θ̂) + (θ̂ − θ̂−j)ψ′(Xi − θ̂)

to show that

θ̂−j ≈ θ̂ − ψ(Xj − θ̂)∑n
i=1 ψ

′(Xi − θ̂)
.

(c) Show that the jackknife estimator of Var(θ̂) can be approx-
imated by

n− 1
n

∑n
i=1 ψ

2(Xi − θ̂)(∑n
i=1 ψ

′(Xi − θ̂)
)2 .
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4.24: Consider the jackknife estimator of the variance of the sample
median. Suppose that X1, · · · , Xn are i.i.d. random variables
with distribution function F with median θ and F ′(θ) = λ > 0;
for simplicity, we will assume that n is even (n = 2m). Define
θ̂n to be the sample median.
(a) Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics. Show
that the jackknife estimator of θ̂n is

V̂ar(θ̂n) =
n− 1

4
(X(m+1) −X(m))

2.

(b) Ideally, we would like nV̂ar(θ̂n) to have the same limit
as nVar(θ̂n). However, this does not work for the sample
median. To see this, start by assuming that the Xi’s are
i.i.d. Exponential random variables with mean 1. Show that
(see Problem 2.26) m(X(m+1) − X(m)) has an Exponential
distribution with mean 1.
(c) In general, show that for n = 2m,

m(X(m+1) −X(m)) →d
Z

λ

as n→∞ where Z has an Exponential distribution with mean
1. (Hint: Find a function that transforms the Exponential ran-
dom variables in part (b) to Uniform random variables on [0, 1]
and then to random variables with distribution function F .)
(d) Show that

V̂ar(θ̂n) →d
1

4λ2
Z2 �= 1

4λ2
.

Note that the mean of the limiting distribution is 1/(2λ2).
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CHAPTER 5

Likelihood-Based Estimation

5.1 Introduction

We saw in the last chapter that the substitution principle (or the
method of moments) provides an approach for finding reasonable
estimators of parameters in statistical models. However, the sub-
stitution principle does not prescribe any particular estimator and,
in fact, the quality of different substitution principle estimators
can vary greatly. Moreover, the substitution principle is tailored to
i.i.d. data and can be difficult to apply for non-i.i.d. data. These
problems are somewhat unsettling since we would like to find a
general-purpose algorithm for generating good (if not “optimal”)
estimators. We will see in this chapter that one such algorithm is
provided by maximum likelihood estimation. The maximum likeli-
hood estimator is defined to be the maximizing value of a certain
function called the likelihood function. We will see in Chapter 6 that
the maximum likelihood estimator has some very nice optimality
properties.

The likelihood function (defined in the next section) has a much
wider significance in statistical theory. An important principle in
statistics (called the likelihood principle) essentially states that
the likelihood function contains all of the information about an
unknown parameter in the data. The likelihood function also plays
an integral role in Bayesian inference in which we deal with the
uncertainty in the value of parameters via probability distributions
on the parameter space.

5.2 The likelihood function

Suppose that X = (X1, · · · , Xn) are random variables with joint
density or frequency function f(x; θ) where θ ∈ Θ. Given outcomes
X = x, we define the likelihood function

L(θ) = f(x; θ);
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for each possible sample x = (x1, · · · , xn), the likelihood function
L(θ) is a real-valued function defined on the parameter space Θ.
Note that we do not need to assume that X1, · · · , Xn are i.i.d.
random variables.

DEFINITION. Suppose that for a sample x = (x1, · · · , xn), L(θ)
is maximized (over Θ) at θ = S(x):

sup
θ∈Θ

L(θ) = L(S(x))

(with S(x) ∈ Θ). Then the statistic θ̂ = S(X) is called the
maximum likelihood estimator (MLE) of θ. (S(x) is sometimes
called the maximum likelihood estimate based on x.)

For continuous random variables, the likelihood function is not
uniquely defined since the joint density is not uniquely defined.
In practice, we usually choose a form for the likelihood function
that guarantees (if possible) the existence of a MLE for all possible
values of X1, · · · , Xn. For discrete random variables, such difficulties
do not occur since the joint frequency function (and hence the
likelihood function) is uniquely defined.

If T = T (X) is a sufficient statistic for θ then from the
Factorization Criterion, it follows that

L(θ) ∝ g(T (x); θ).

From this, it follows that if the MLE θ̂ is unique then θ̂ is a function
of the sufficient statistic T .

Another attractive property of MLEs is invariance. For example,
if φ = g(θ) where g is a monotone function (or, more generally,
one-to-one) and θ̂ is the MLE of θ then g(θ̂) is the MLE of φ.
It is conventional to extend this invariance property to arbitrary
functions; thus if φ = g(θ) then we typically say that φ̂ = g(θ̂) is
the MLE of φ.

There are essentially two distinct methods for finding MLEs:
• Direct maximization: Examine L(θ) directly to determine which

value of θ maximizes L(θ) for a given sample x1, · · · , xn. This
method is particularly useful when the range (or support) of the
data depends on the parameter.

• Likelihood equations: If the range of the data does not depend on
the data, the parameter space Θ is an open set, and the likelihood
function is differentiable with respect to θ = (θ1, · · · , θp) over Θ,
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then the maximum likelihood estimate θ̂ satisfies the equations

∂

∂θk
lnL(θ̂) = 0 for k = 1, · · · , p.

These equations are called the likelihood equations and lnL(θ)
is called the log-likelihood function.
For the vast majority of statistical models, we can use the

likelihood equations to determine the MLE. We use the log-
likelihood function for convenience. If θ̂ maximizes L(θ), it also
maximizes lnL(θ). In addition, L(θ) is often expressed as a product
so that lnL(θ) becomes a sum, which is easier to differentiate. The
likelihood equations can have multiple solutions, so it is important
to check that a given solution indeed maximizes the likelihood
function. If the parameter space Θ is not an open set then the
likelihood equations can be used provided that we verify that the
maximum does not occur on the boundary of the parameter space.

EXAMPLE 5.1: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, θ] for some θ > 0. The likelihood
function is

L(θ) = θ−nI(0 ≤ x1, · · · , xn ≤ θ) = θ−nI(θ ≥ max(x1, · · · , xn)).

Thus if θ < max(x1, · · · , xn), L(θ) = 0 while L(θ) is a decreasing
function of θ for θ ≥ max(x1, · · · , xn). Hence, L(θ) attains its
maximum at θ = max(x1, · · · , xn) and so

θ̂ = X(n) = max(X1, · · · , Xn)

is the MLE of θ. ✸

Note that in Example 5.1, we could have defined the likelihood
function to be

L(θ) = θ−nI(θ < max(x1, · · · , xn))
(by defining the density of Xi to be f(x; θ) = 1/θ for 0 < x < θ).
In this case, the MLE does not exist. We have

sup
θ>0

L(θ) = [max(x1, · · · , xn)]−n ;

however, there exists no S(x) such that

L(S(x)) = sup
θ>0

L(θ).
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EXAMPLE 5.2: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ > 0. The likelihood function is

L(λ) =
n∏
i=1

{
exp(−λ)λxi

xi!

}
and the log-likelihood is

lnL(λ) = −nλ + ln(λ)
n∑
i=1

xi −
n∑
i=1

ln(xi!).

Assuming that
∑n

i=1 xi > 0 and taking the derivative with respect
to λ, we find that

d

dλ
lnL(λ) = −n +

1
λ

n∑
i=1

xi

and setting the derivative to 0 suggests that λ̂ = x̄. To verify that
this is indeed a maximum, note that

d2

dλ2
lnL(λ) = − 1

λ2

n∑
i=1

xi,

which is always negative. Thus x̄ maximizes the likelihood function
(for a given sample x1, · · · , xn) and the MLE of λ is λ̂ = X̄
provided that

∑n
i=1 Xi > 0. If

∑n
i=1 Xi = 0 then strictly speaking

no MLE exists since the log-likelihood function lnL(λ) = −nλ has
no maximum on the interval (0,∞). ✸

EXAMPLE 5.3: Suppose that the joint density or frequency
function of X = (X1, · · · , Xn) is a one-parameter exponential
family; the log-likelihood function is then

lnL(θ) = c(θ)T (x)− d(θ) + S(x).

Differentiating with respect to θ and setting this derivative to 0, we
get the following equation for the MLE θ̂:

c′(θ̂)
d′(θ̂)

= T (X).

However, since T (X) is the sufficient statistic, we know that

Eθ[T (X)] =
d′(θ)
c′(θ)
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and so it follows that the MLE is simply a method of moments
estimator for one-parameter exponential families. Also note that θ̂
does maximize the likelihood function; the second derivative of the
log-likelihood function is

d2

dθ2
lnL(θ) = c′′(θ)T (x)− d′′(θ)

and substituting θ̂ for θ, we get

d2

dθ2
lnL(θ̂) = c′′(θ̂)

d′(θ̂)
c′(θ̂)

− d′′(θ̂) < 0

since
Varθ[T (X)] = d′′(θ)− c′′(θ)

d′(θ)
c′(θ)

> 0.

A similar result also holds for k-parameter exponential families. ✸

Why does maximum likelihood estimation make sense? For
simplicity, assume that X1, · · · , Xn are i.i.d. random variables with
density or frequency function f0(x) and distribution function F0(x).
For any other density (frequency) function f(x), we can define the
Kullback-Leibler information number

K(f : f0) = E0 [ln (f0(Xi)/f(Xi))]

where the expected value E0 is computed assuming that f0(x)
is the true density (frequency) function of Xi. K(f : f0) can
be interpreted as measuring the distance to the “true” density
(frequency) function f0 of some other density (frequency) function
f ; it is easy to see that

K(f0 : f0) = 0

and since − ln(x) is a convex function, it follows (from Jensen’s
inequality) that

K(f : f0) = E0 [− ln (f(Xi)/f0(Xi))]

≥ − lnE0

[
f(Xi)
f0(Xi)

]
= 0.

Thus over all density (frequency) functions f , K(f : f0) is
minimized (for a given f0) at f = f0. Moreover, unless f(x) = f0(x)
for all x, K(f : f0) > 0. K(f : f0) can also be interpreted as the
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inefficiency in assuming that the density (frequency) function is f
when the true density (frequency) function is f0.

We will now use these facts to rationalize maximum likelihood
estimation in the case of i.i.d. observations. Since

K(f : f0) = −E0 [ln(f(Xi))] + E0 [ln(f0(Xi))] ,

we can also see that for fixed f0,

L(f : f0) = E0 [ln(f(Xi))]

is maximized over all f at f = f0. This suggests the following
method for estimating the density (frequency) function f0 of i.i.d.
observations X1, · · · , Xn:
• For each f in some family F, estimate L(f : f0) using the

substitution principle

L̂(f : f0) =
1
n

n∑
i=1

ln f(Xi);

• Find f to maximize L̂(f : f0).

If F = {f(x; θ) : θ ∈ Θ}, then nL̂(f : f0) is simply the log-likelihood
function. Thus maximum likelihood estimation can be viewed as a
sort of substitution principle estimation.

Maximum likelihood estimation has been described as the origi-
nal jackknife in the sense that it is an estimation procedure that is
applicable in a wide variety of problems. As will be shown in Chap-
ter 6, maximum likelihood estimation has some very attractive opti-
mality properties and for this reason, it is often viewed as the “gold
standard” of estimation procedures. However, as with any method-
ology, maximum likelihood estimation should be viewed with the
appropriate degree of scepticism as there may be estimation proce-
dures that are better behaved in terms of robustness or efficiency
when the model is slightly (or grossly) misspecified.

5.3 The likelihood principle

The likelihood function has a much greater significance in statistical
inference; we will discuss this briefly in this section. Suppose we are
given a choice between two experiments for estimating a parameter
θ. From the first experiment, we obtain data x while x∗ is obtained
from the second experiment. The likelihood principle provides a
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simple criterion for when identical inferences for θ should be drawn
from both x and x∗; it is stated as follows:

Likelihood principle. Let L(θ) be the likelihood function for θ
based on observing X = x and L∗(θ) be the likelihood function
for θ based on observations X∗ = x∗. If L(θ) = kL∗(θ) (for some
k that does not depend on θ) then the same inference for θ should
be drawn from both samples.

In point estimation, the likelihood principle implies that if x
and x∗ are two samples with likelihood functions L(θ) and L∗(θ)
where L(θ) = kL∗(θ) (for all θ) then the two point estimates
T (x) and T ∗(x∗) should be equal. Clearly, maximum likelihood
estimation satisfies this condition but many of the substitution
principle and other estimators discussed in Chapter 4 do not. For
example, the biased-reduced jackknife estimator typically violates
the likelihood principle. However, certain inferential procedures
based on maximum likelihood estimation may violate the likelihood
principle.

It is also worth noting at this point that the likelihood principle
refers only to the information about θ contained in the sample;
we may also have additional information about θ available to us
from outside the sample. For example, we can express our beliefs
about the true value of θ (prior to observing the sample) by
specifying a probability distribution over the parameter space Θ;
this distribution is called a prior distribution. This approach (called
the Bayesian approach) is often cited as the “correct” approach to
implementing the likelihood principle. More details on the Bayesian
approach are given in section 5.7.

Does the likelihood principle make sense? This is a very controver-
sial issue in theoretical statistics and there is really no clear answer.
The likelihood principle can be shown to follow by assuming two
other somewhat less controversial principles, the (weak) sufficiency
principle and the (weak) conditionality principle. The sufficiency
principle states that the sufficient statistic contains as much infor-
mation about the value of a parameter as the data themselves while
the conditionality principle essentially states that no information is
lost by conditioning on an ancillary statistic. For some compelling
arguments in favour of the likelihood principle, see the monograph
by Berger and Wolpert (1988). The book by Lee (1989) also con-
tains some interesting discussion and examples on the likelihood
principle.
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The likelihood principle is not universally accepted; in fact, much
of classical statistical practice violates it. Of course, the likelihood
principle assumes that the true parametric model for the data is
known; we have stated previously that statistical models are almost
inevitably used to approximate reality and are seldom exactly true.
This, of course, does not immediately invalidate the likelihood
principle but rather emphasizes the point that any principle or
philosophy should not be accepted without closely examining its
tenets.

5.4 Asymptotic theory for MLEs

Under what conditions is the MLE a consistent and asymptotically
Normal estimator of a parameter? We will show in this section
that, under fairly mild regularity conditions, it is possible to prove
consistency and asymptotic normality for the MLE of a real-valued
parameter based on i.i.d. observations. However, in many cases,
it is possible to find the asymptotic distribution of a sequence of
MLEs using standard techniques. This is common when the MLE
corresponds to a method of moments estimator.

EXAMPLE 5.4: Suppose that X1, · · · , Xn are i.i.d. Geometric
random variables with frequency function

f(x; θ) = θ(1− θ)x for x = 0, 1, 2, · · ·

The MLE of θ based on X1, · · · , Xn is

θ̂n =
1

X̄n + 1
.

By the Central Limit Theorem, we have that
√
n(X̄n − (θ−1 − 1)) →d N(0, θ−2(1− θ)).

Thus we obtain
√
n(θ̂n − θ) =

√
n(g(X̄n)− g(θ−1 − 1))

→d N(0, θ2(1− θ))

by applying the Delta Method with g(x) = 1/(1 + x) and g′(x) =
−1/(1 + x)2. ✸

EXAMPLE 5.5: Suppose that X1, · · · , Xn are i.i.d. Uniform
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random variables on [0, θ]. The MLE of θ is

θ̂n = X(n) = max(X1, · · · , Xn)

whose distribution function is given by

P (θ̂n ≤ x) =
(
x

θ

)n

for 0 ≤ x ≤ θ.

Thus for ε > 0,

P (|θ̂n − θ| > ε) = P (θ̂n < θ − ε)

=
(
θ − ε

θ

)n

→ 0 as n→∞

since (θ − ε)/θ < 1. We also have that

P
[
n(θ − θ̂n) ≤ x

]
= P

[
θ̂n ≥ θ − x

n

]
= 1−

(
1− x

θn

)n

→ 1− exp(−x/θ) for x ≥ 0

and so n(θ−θ̂n) converges in distribution to an Exponential random
variable. ✸

For the remainder of this section, we will assume that X1, X2,
· · · , Xn are i.i.d. random variables with common density or fre-
quency function f(x; θ) where θ is a real-valued parameter.

Define :(x; θ) = ln f(x; θ) and let :′(x; θ), :′′(x; θ), and :′′′(x; θ)
be the first three partial derivatives of :(x; θ) with respect to θ. We
will make the following assumptions about f(x; θ):

(A1) The parameter space Θ is an open subset of the real-line.
(A2) The set A = {x : f(x; θ) > 0} does not depend on θ.
(A3) f(x; θ) is three times continuously differentiable with respect
to θ for all x in A.
(A4) Eθ[:′(Xi; θ)] = 0 for all θ and Varθ[:′(Xi; θ)] = I(θ) where
0 < I(θ) <∞ for all θ.
(A5) Eθ[:′′(Xi; θ)] = −J(θ) where 0 < J(θ) <∞ for all θ.
(A6) For each θ and δ > 0, |:′′′(x; t)| ≤ M(x) for |θ − t| ≤ δ where
Eθ[M(Xi)] <∞.
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Suppose that f(x; θ) is a density function. If condition (A2) holds
then ∫

A
f(x; θ) dx = 1 for all θ ∈ Θ

and so
d

dθ

∫
A
f(x; θ) dx = 0.

If the derivative can be taken inside the integral we then have

0 =
∫
A

∂

∂θ
f(x; θ) dx

=
∫
A
:′(x; θ)f(x; θ) dx

= Eθ[:′(Xi; θ)]

and so the assumption that Eθ[:′(Xi; θ)] = 0 is, in many cases,
a natural consequence of condition (A2). Moreover, if we can
differentiate

∫
A f(x; θ) dx twice inside the integral sign, we have

0 =
∫
A

∂

∂θ

(
:′(x; θ)f(x; θ)

)
dx

=
∫
A
:′′(x; θ)f(x; θ) dx +

∫
A

(
:′(x; θ)

)2
f(x; θ) dx

= −J(θ) + I(θ)

and so I(θ) = J(θ). (Similar results apply if f(x; θ) is a frequency
function.) I(θ) is called the Fisher information.

EXAMPLE 5.6: Suppose that X1, X2, · · · are i.i.d. random
variables with the one-parameter exponential family density or
frequency function

f(x; θ) = exp[c(θ)T (x)− d(θ) + S(x)] for x ∈ A.

In this case,

:′(x; θ) = c′(θ)T (x)− d′(θ)
and :′′(x; θ) = c′′(θ)T (x)− d′′(θ).

Since we have

Eθ[T (Xi)] =
d′(θ)
c′(θ)

and Varθ[T (Xi)] =
1

[c′(θ)]2

(
d′′(θ)− c′′(θ)

d′(θ)
c′(θ)

)
,
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it follows that

Eθ[:′(Xi; θ)] = c′(θ)Eθ[T (Xi)]− d′(θ)
= 0,

I(θ) = [c′(θ)]2Varθ[T (Xi)]

= d′′(θ)− c′′(θ)
d′(θ)
c′(θ)

and J(θ) = d′′(θ)− c′′(θ)Eθ[T (Xi)]

= d′′(θ)− c′′(θ)
d′(θ)
c′(θ)

and so I(θ) = J(θ). ✸

EXAMPLE 5.7: Suppose that X1, · · · , Xn are i.i.d. random
variables with a Logistic distribution whose density function is

f(x; θ) =
exp(x− θ)

[1 + exp(x− θ)]2
.

The derivatives of :(x; θ) = ln f(x; θ) with respect to θ are

:′(x; θ) =
exp(x− θ)− 1
1 + exp(x− θ)

and
:′′(x; θ) = −2

exp(x− θ)
[1 + exp(x− θ)]2

.

It follows then that

Eθ[:′(Xi; θ)] =
∫ ∞

−∞

exp(2(x− θ))− exp(x− θ)
[1 + exp(x− θ)]3

dx = 0,

I(θ) = Varθ[:′(Xi; θ)]

=
∫ ∞

−∞
(exp(x− θ)− 1)2

exp(x− θ)
[1 + exp(x− θ)]4

dx

=
1
3

and J(θ) = −Eθ[:′′(Xi; θ)]

= 2
∫ ∞

−∞

exp(2(x− θ))
[1 + exp(x− θ)]4

dx

=
1
3
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and so I(θ) = J(θ). ✸

Under conditions (A1) to (A3), if θ̂n maximizes the likelihood,
we have n∑

i=1

:′(Xi; θ̂n) = 0

and expanding this equation in a Taylor series expansion, we get

0 =
n∑
i=1

:′(Xi; θ̂n) =
n∑
i=1

:′(Xi; θ)

+(θ̂n − θ)
n∑
i=1

:′′(Xi; θ)

+
1
2
(θ̂n − θ)2

n∑
i=1

:′′′(Xi; θ∗n)

where θ∗n lies between θ and θ̂n. Dividing both sides by
√
n, we get

0 =
1√
n

n∑
i=1

:′(Xi; θ) +
√
n(θ̂n − θ)

1
n

n∑
i=1

:′′(Xi; θ)

+
1
2
√
n(θ̂n − θ)2

1
n

n∑
i=1

:′′′(Xi; θ∗n),

which suggests that
√
n(θ̂n − θ)

=
−n−1/2 ∑n

i=1 :
′(Xi; θ)

n−1
∑n

i=1 :
′′(Xi; θ) + (θ̂n − θ)(2n)−1

∑n
i=1 :

′′′(Xi; θ∗n)
.

From the Central Limit Theorem (and condition (A4)), it follows
that

1√
n

n∑
i=1

:′(Xi; θ) →d Z ∼ N(0, I(θ))

and from the WLLN (and condition (A5)), we have that

1
n

n∑
i=1

:′′(Xi; θ) →p −J(θ).

Thus it follows from Slutsky’s Theorem that
√
n(θ̂n − θ) →d

Z

J(θ)
∼ N(0, I(θ)/J2(θ))
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provided that

(θ̂n − θ)
1
n

n∑
i=1

ψ′′′(Xi; θ∗n) →p 0;

we will show later that this latter statement holds provided that
condition (A6) holds and θ̂n →p θ.

Proving consistency of the MLE θ̂n is somewhat subtle. Consider
the (random) function

φn(t) =
1
n

n∑
i=1

[ln f(Xi; t)− ln f(Xi; θ)] ,

which is maximized at t = θ̂n. By the WLLN, for each fixed t ∈ Θ,

φn(t) →p φ(t) = Eθ

[
ln

(
f(Xi; t)
f(Xi; θ)

)]
.

Now note that −φ(t) is simply a Kullback-Leibler information
number, which is minimized when t = θ and so φ(t) is maximized
at t = θ (φ(θ) = 0). Moreover, unless f(x; t) = f(x; θ) for all x ∈ A
then φ(t) < 0; since we are assuming (implicitly) identifiability of
the model, it follows that φ(t) is uniquely maximized at t = θ.

Does the fact that φn(t) →p φ(t) for each t (where φ(t) is
maximized at t = θ) imply that θ̂n →p θ? Unfortunately, the
answer to this question is, in general, “no” (unless we make more
assumptions about the φn’s). To keep things simple, we will consider
some examples where {φn(t)} and φ(t) are non-random functions.

EXAMPLE 5.8: Let {φn(t)} be a sequence of functions with

φn(t) =


1− n

∣∣∣t− 1
n

∣∣∣ for 0 ≤ t ≤ 2/n
1
2 − |t− 2| for 3/2 ≤ t ≤ 5/2
0 otherwise.

Note that φn(t) is maximized at tn = 1/n and φn(1/n) = 1. It is
easy to see that for each t, φn(t) → φ(t) where

φ(t) =
{ 1

2 − |t− 2| for 3/2 ≤ t ≤ 5/2
0 otherwise.

Thus φ(t) is maximized at t0 = 2; clearly, tn → 0 �= t0. ✸

What goes wrong in the previous example? The main problem
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seems to be that although φn(t) → φ(t) for each t, the convergence
is not uniform; that is, for any M > 0,

sup
|t|≤M

|φn(t)− φ(t)| = 1 (for n sufficiently large)

and so φn(t) does not converge to φ(t) uniformly for |t| ≤ M .
However, this uniform convergence is not by itself sufficient to
guarantee the convergence of the maximizers of φn(t) to the
maximizer of φ(t) as evidenced by the following example.

EXAMPLE 5.9: Let {φn(t)} be a sequence of functions with

φn(t) =


1
2 (1− 2|t|) for |t| ≤ 1/2
1− 2|t− n| for n− 1/2 ≤ t ≤ t + 1/2
0 otherwise.

It is easy to see that for any M > 0,

sup
|t|≤M

|φn(t)− φ(t)| → 0

where
φ(t) =

{ 1
2 (1− 2|t|) for |t| ≤ 1/2
0 otherwise.

However, φn(t) is maximized at tn = n while φ(t) is maximized at
t0 = 0; again, tn →∞ �= t0. ✸

Even though uniform convergence of φn(t) to φ(t) holds over
closed and bounded sets in this example, the sequence of maxi-
mizers {tn} cannot be contained within a closed and bounded set
and so the sequence does not converge to the maximizer of φ(t).
The following result shows that adding the condition that the se-
quence of maximizers is bounded is sufficient for convergence of tn
to t0 where t0 maximizes φ(t); moreover, this result covers the case
where {φn(t)} and φ(t) are random.

THEOREM 5.1 Suppose that {φn(t)} and φ(t) are real-valued
random functions defined on the real line. Suppose that
(a) for each M > 0,

sup
|t|≤M

|φn(t)− φ(t)| →p 0;

(b) Tn maximizes φn(t) and T0 is the unique maximizer of φ(t);
(c) for each ε > 0, there exists Mε such that P (|Tn| > Mε) < ε for
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all n.
Then Tn →p T0.

As appealing as Theorem 5.1 seems to be, it is very difficult to use
in practice. For example, although it is not too difficult to establish
the uniform convergence, it can be extremely difficult to show that
P (|Tn| > Mε) < ε. However, if we assume that φn(t) is a concave
function for each n, we can weaken the conditions of the previous
theorem considerably.

THEOREM 5.2 Suppose that {φn(t)} and φ(t) are random con-
cave functions. If
(a) for each t, φn(t) →p φ(t), and
(b) Tn maximizes φn(t) and T0 is the unique maximizer of φ(t)
then Tn →p T0.

In most applications of the preceding theorem, φn(t) will be an
average of n random variables (depending on t) and so we can use
the WLLN (or a similar result) to show that φn(t) →p φ(t); in
such cases, the limiting function φ(t) will be non-random and so its
maximizer T0 will also be non-random. Theorem 5.2 also holds if
the functions {φn} are defined on Rp; the same is true for Theorem
5.1.

Theorem 5.2 can also be used if the functions φn(t) are convex.
Since the negative of a convex function is a concave function, we
can use this theorem to establish convergence in probability of
minimizers of convex functions.

EXAMPLE 5.10: Suppose that X1, X2, · · · , Xn are i.i.d. random
variables with continuous distribution function F (x) and assume
that µ is the unique median of the distribution so that F (µ) = 0.5.
The sample median µ̂n of X1, · · · , Xn can be defined as a minimizer
of

n∑
i=1

|Xi − t|

or equivalently as the minimizer of

φn(t) =
1
n

n∑
i=1

[|Xi − t| − |Xi|] .

It is easy to see that φn(t) is a convex function since |a−t| is convex
in t for any a. By the WLLN,

φn(t) →p E [|X1 − t| − |X1|] = φ(t)
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and it can be easily shown that φ(t) is minimized at t = µ. Thus
µ̂n →p µ. (Note that this result is valid even if E[|Xi|] = ∞ since
E[|Xi − t| − |Xi|] < ∞ for all t.) It is interesting to compare this
proof of consistency to the proof given in Example 3.3. ✸

EXAMPLE 5.11: Suppose that X1, X2, · · · , Xn are i.i.d. random
variables from a one-parameter exponential family density or
frequency function

f(x; θ) = exp [c(θ)T (x)− d(θ) + S(x)] for x ∈ A.

The MLE of θ maximizes

φn(t) =
1
n

n∑
i=1

[c(t)T (Xi)− d(t)] ;

however, φn(t) is not necessarily a concave function. Nonetheless,
if c(·) is a one-to-one continuous function with inverse c−1(·), we
can define u = c(t) and consider

φ∗
n(u) =

1
n

n∑
i=1

[uT (Xi)− d0(u)] = φn(c(t))

where d0(u) = d(c−1(u)). It follows that φ∗
n(u) is a concave function

since its second derivative is −d′′0(u), which is negative. By the
WLLN, for each u, we have

φ∗
n(u) →p uEθ[T (X1)]− d0(u) = φ∗(u)

and φ∗(u) is maximized when d′0(u) = Eθ[T (X1)]. Since

Eθ[T (X1)] = d′0(c(θ)),

it follows that φ∗(u) is maximized at c(θ). Since u = c(t), it follows
that c(θ̂n) →p c(θ) and since c(·) is one-to-one and continuous, it
follows that θ̂n →p θ. ✸

We will now state a result concerning the asymptotic normality
of MLEs for i.i.d. sequences. We will assume that consistency of the
estimators has been proved.

THEOREM 5.3 (Asymptotic normality of MLEs) Suppose
that X1, X2, · · · , Xn are i.i.d. random variables with density or fre-
quency function f(x; θ) that satisfies conditions (A1)-(A6) and sup-
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pose that the MLEs satisfy θ̂n →p θ where
n∑
i=1

:′(Xi; θ̂n) = 0.

Then √
n(θ̂n − θ) →d N(0, I(θ)/J2(θ)).

When I(θ) = J(θ), we have
√
n(θ̂n − θ) →d N(0, 1/I(θ)).

Proof. From above we have that
√
n(θ̂n − θ)

=
−n−1/2 ∑n

i=1 :
′(Xi; θ)

n−1
∑n

i=1 :
′′(Xi; θ) + (θ̂n − θ)(2n)−1

∑n
i=1 :

′′′(Xi; θ∗n)
.

Given our previous development, we need only show that

Rn = (θ̂n − θ)
1
2n

n∑
i=1

:′′′(Xi; θ∗n) →p 0.

We have that for any ε > 0,

P (|Rn| > ε) = P (|Rn| > ε, |θ̂n − θ| > δ) + P (|Rn| > ε, |θ̂n − θ| ≤ δ)

and
P (|Rn| > ε, |θ̂n − θ| > δ) ≤ P (|θ̂n − θ| > δ) → 0

as n→∞. If |θ̂n − θ| ≤ δ , we have (by condition (A6)),

|Rn| ≤
δ

2n

n∑
i=1

M(Xi)

and since
1
n

n∑
i=1

M(Xi) →p Eθ[M(X1)] <∞

(by the WLLN), it follows that

P (|Rn| > ε, |θ̂n − θ| ≤ δ)

can be made arbitrarily small (for large n) by taking δ sufficiently
small. Thus Rn →p 0 and so

√
n(θ̂n − θ) →d N(0, I(θ)/J2(θ))

applying Slutsky’s Theorem.
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The regularity conditions (A1) through (A6) are by no means
minimal conditions. In particular, it is possible to weaken the
differentiability conditions at the cost of increasing the technical
difficulty of the proof. For example, we could replace conditions
(A5) and (A6) by a somewhat weaker condition that

1
n

n∑
i=1

:′′(Xi;Tn) →p −J(θ)

for any sequence of random variables {Tn} with Tn →p θ; it is
easy to see that this latter condition is implied by (A5) and (A6).
However, conditions (A1) through (A6) are satisfied for a wide
variety of one-parameter models and are relatively simple to verify.
An alternative condition to (A6) is considered in Problem 5.11.

Estimating standard errors

In all but rare cases, we have I(θ) = J(θ) and so the result of
Theorem 5.3 suggests that for sufficiently large n, the MLE θ̂n is
approximately Normal with mean θ and variance 1/(nI(θ)). This
result can be used to approximate the standard error of θ̂n by
[nI(θ)]−1/2. Since I(θ) typically depends on θ, it is necessary to
estimate I(θ) to estimate the standard error of θ̂n. There are two
approaches to estimating I(θ) and hence the standard error of θ̂n.
• If I(θ) has a closed-form, we can substitute θ̂n for θ; our standard

error estimator becomes

ŝe(θ̂n) =
1√

nI(θ̂n)
.

nI(θ̂n) is called the expected Fisher information for θ.
• Since I(θ) = −Eθ[:′′(Xi; θ)], we can estimate I(θ) by

Î(θ) = − 1
n

n∑
i=1

:′′(Xi; θ̂n),

which leads to the standard error estimator

ŝe(θ̂n) =
1√

nÎ(θ)
=

(
−

n∑
i=1

:′′(Xi; θ̂n)

)−1/2

.

nÎ(θ) is called the observed Fisher information for θ.
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EXAMPLE 5.12: Suppose X1, · · · , Xn have a one-parameter
exponential family density or frequency function

f(x; θ) = exp [c(θ)T (x)− d(θ) + S(x)] for x ∈ A

Using the facts that

1
n

n∑
i=1

T (Xi) =
d′(θ̂n)
c′(θ̂n)

and
I(θ) = d′′(θ)− c′′(θ)

d′(θ)
c′(θ)

,

it follows that the expected and observed Fisher information for θ
are the same. ✸

EXAMPLE 5.13: Suppose that X1, · · · , Xn are i.i.d. Cauchy
random variables with density function

f(x; θ) =
1
π

1
1 + (x− θ)2

.

Then
:′(x; θ) =

2(x− θ)
1 + (x− θ)2

and
:′′(x; θ) = −2(1− (x− θ)2)

(1 + (x− θ)2)2
.

It possible to show that
I(θ) =

1
2

and so the expected Fisher information for θ is n/2 and the
corresponding standard error estimate is

ŝe(θ̂n) =
√

2
n
.

On the other hand, the observed Fisher information for θ is
n∑
i=1

2(1− (Xi − θ̂n)2)
(1 + (Xi − θ̂n)2)2

(which is not equal to the expected Fisher information) and so the
corresponding standard error estimator is

ŝe(θ̂n) =

(
n∑
i=1

2(1− (Xi − θ̂n)2)
(1 + (Xi − θ̂n)2)2

)−1/2

.
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It is interesting to compare the limiting variance of the MLE with
that of the trimmed means in Example 4.40; we can compute the
minimum limiting variance for all trimmed means to 2.278, which
implies that the MLE is more efficient since its limiting variance is
2. ✸

In Example 5.13, we see that different estimates of the standard
error can result by using the observed and expected Fisher informa-
tion. This raises the question of whether either of the two estimators
can be shown to be superior to the other. While there is some de-
bate, results of Efron and Hinkley (1978) indicate that there are
reasons to prefer the estimator based on the observed Fisher in-
formation. Their rationale is that this estimator actually estimates
Var1/2θ (θ̂n|S = s) where S = S(X) is an ancillary statistic for θ and
s = S(x).

Multiparameter models

Extending the consistency and asymptotic normality results from
the single- to multi-parameter cases is simple, if somewhat nota-
tionally messy. Assume that X1, X2, · · · are i.i.d. random variables
with density or frequency function f(x; θ) where θ = (θ1, · · · , θp).
The MLE θ̂n based on X1, · · · , Xn satisfies the likelihood equations

n∑
i=1

:′(Xi; θ̂n) = 0

where now :′(x;θ) is the vector of partial derivatives of :(x;θ) =
ln f(x;θ) (with respect to the components of θ). The idea behind
proving asymptotic normality is really exactly the same as that used
in the single parameter case: we make a Taylor series expansion of
the likelihood equations around the true parameter value. Doing
this we get

0 =
1√
n

n∑
i=1

:′(Xi;θ) +

(
1
n

n∑
i=1

:′′(Xi;θ∗
n)

)
√
n(θ̂n − θ)

where
(a) :′′(x;θ) is the matrix of second partial derivatives (with respect
to θ1, · · · , θp); the (j, k) element of this matrix is given by

:′′jk(x;θ) =
∂2

∂θj∂θk
:(x;θ).
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(b) θ∗
n is on the line segment joining θ and θ̂n.

Now solving for
√
n(θ̂n − θ), we get

√
n(θ̂n − θ) =

(
− 1
n

n∑
i=1

:′′(Xi; θ∗
n)

)−1
1√
n

n∑
i=1

:′(Xi;θ)

and so, under appropriate regularity conditions, we should have

1√
n

n∑
i=1

:′(Xi;θ) →d Np(0, I(θ))

(with I(θ) = Covθ[:′(Xi;θ)]) and

1
n

n∑
i=1

:′′(Xi;θ∗
n) →p −J(θ) = Eθ

[
:′′(X1;θ)

]
where I(θ) and J(θ) are p × p matrices. Now provided J(θ) is
invertible, we have

√
n(θ̂n − θ) →d Np(0, J(θ)−1I(θ)J(θ)−1).

As in the single parameter case, for many models (including ex-
ponential families) we have I(θ) = J(θ) in which case the limit-
ing variance-covariance matrix J(θ)−1I(θ)J(θ)−1 above becomes
I(θ)−1. I(θ) = J(θ) if we are able to differentiate twice inside the
integral (or summation) sign with respect to all p components of θ.
(I(θ) is called the Fisher information matrix.)

We now state the regularity conditions that are sufficient to “rig-
orize” the previous argument. The conditions are simply analogues
of conditions (A1)-(A6) used previously.

(B1) The parameter space Θ is an open subset of Rp.
(B2) The set A = {x : f(x; θ) > 0} does not depend on θ.
(B3) f(x;θ) is three times continuously differentiable with respect
to θ for all x in A.
(B4) Eθ[:′(Xi;θ)] = 0 for all θ and Covθ[:′(Xi;θ)] = I(θ) where
I(θ) is positive definite for all θ.
(B5) Eθ[:′′(Xi;θ)] = −J(θ) where J(θ) is positive definite for all
θ.
(B6) Let :′′′jkl(x;θ) be the mixed partial derivative of :(x;θ) with
respect to θj , θk, θl. For each θ, δ > 0 and 1 ≤ j, k, l ≤ p,

|:′′′jkl(x; t)| ≤Mjkl(x)

for ‖θ − t‖ ≤ δ where Eθ[Mjkl(Xi)] <∞.
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THEOREM 5.4 Suppose that X1, X2, · · · , Xn are i.i.d. random
variables with density or frequency function f(x;θ) that satisfies
conditions (B1)-(B6) and suppose that the MLEs satisfy θ̂n →p θ
where n∑

i=1

:′(Xi; θ̂n) = 0.

Then √
n(θ̂n − θ) →d Np(0, J(θ)−1I(θ)J(θ)−1).

When I(θ) = J(θ), we have
√
n(θ̂n − θ) →d Np(0, I(θ)−1).

The proof of Theorem 5.4 parallels that of Theorem 5.3 and will
not be given. Note that Theorem 5.4 assumes consistency of θ̂n.
This can be proved in a variety of ways; for example, in the case
of p-parameter exponential families, Theorem 5.2 can be used as in
Example 5.11.

It should also be noted that both Theorems 5.3 and 5.4 hold even
if X1, X2, · · · , Xn are i.i.d. random vectors.

EXAMPLE 5.14: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance σ2. The MLEs of µ
and σ2 are

µ̂n =
1
n

n∑
i=1

Xi and σ̂2
n =

1
n

n∑
i=1

(Xi − µ̂n)2.

The joint limiting distribution of
√
n(µ̂n − µ) and

√
n(σ̂n − σ) can

be derived quite easily using Theorem 5.4. (Of course,
√
n(µ̂n − µ)

is exactly Normal for any n.) Writing

:(x;µ, σ) = − 1
2σ2

(x− µ)2 − ln(σ)− 1
2

ln(2π)

and taking partial derivatives of : with respect to µ and σ, it is
easy to show that

I(µ, σ) = J(µ, σ) =
(

σ−2 0
0 2σ−2

)
.

Thus (after verifying conditions (B1)-(B6) of Theorem 5.4 hold),
we have √

n

(
µ̂n − µ
σ̂n − σ

)
→d N2(0, I−1(µ, σ));

note that the variance-covariance matrix I−1(µ, σ) is diagonal with
diagonal entries σ2 and σ2/2. It is also worth noting that we could
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have determined the joint limiting distribution via the Multivariate
CLT more or less directly. ✸

EXAMPLE 5.15: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with shape parameter α and scale parameter λ.
The MLEs of α and λ satisfy the equations

1
n

n∑
i=1

Xi =
α̂n

λ̂n

1
n

n∑
i=1

ln(Xi) = ψ(α̂n)− ln(λ̂n)

where ψ(α) is the derivative of ln Γ(α). (ψ(α) is called the digamma
function and its derivative ψ′(α) the trigamma function.) Since this
is a two-parameter exponential family model, we can compute the
information matrix by looking at the second partial derivatives of
the log-density; we have

∂2

∂α2
ln f(x;α, λ) = −ψ′(α)

∂2

∂λ2
ln f(x;α, λ) = − α

λ2

and
∂2

∂α∂λ
ln f(x;α, λ) =

1
λ
.

Since none of these derivatives depends on x, we can easily compute

I(α, λ) =
(

ψ′(α) −1/λ
−1/λ α/λ2

)
.

Inverting I(α, λ), we obtain the limiting variance-covariance matrix

I−1(α, λ) =
λ2

αψ′(α)− 1

(
α/λ2 1/λ
1/λ ψ′(α)

)
.

In particular, this implies that
√
n(α̂n − α) →d N

(
0, α/(αψ′(α)− 1)

)
and √

n(λ̂n − λ) →d N
(
0, λ2ψ′(α)/(αψ′(α)− 1)

)
.

It is interesting to compare the limiting distribution of
√
n(λ̂n−λ)

(assuming α is unknown) to the limiting distribution of the MLE
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Table 5.1 Comparison of α−1 and g(α) = ψ′(α)/(αψ′(α) − 1) in Example 5.15
for various α.

α α−1 g(α)

0.1 10 11.09
0.5 2 3.36
1 1 2.55
2 0.5 2.22
5 0.2 2.08
10 0.1 2.04
100 0.01 2.00

of λ when α is known. In this latter case, the MLE is

λ̃n =
α

X̄n

and we have √
n(λ̃n − λ) →d N(0, λ2/α).

We should expect λ̃n to be the more efficient estimator of λ since
we are able to incorporate our knowledge of α into the estimation
of λ. In fact, it can be shown that α−1 < ψ′(α)/(αψ′(α)−1) for any
α > 0; Table 5.1 compares α−1 and g(α) = ψ′(α)/(αψ′(α)− 1) for
several values of α. Note that as α becomes larger, the difference
in efficiency is more substantial. In practice, of course, one would
rarely “know” α and so we would have no choice but to use λ̂n. ✸

Example 5.15 illustrates a more general point. Given two equally
valid statistical models, we can obtain more efficient estimators
in the model with fewer parameters (or more precisely, we will
not do worse with the lower parameter model). However, the
penalties we pay in assuming a “too small” model can be quite
severe. In practice, model selection is often the most difficult and
important step in the analysis of data. Some of the consequences
of misspecifying a model are examined in the next section.

5.5 Misspecified models

It is important to remember that statistical models are typically
merely approximations to reality and so the wrong model is, more
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often than not, fit to the observed data. As troubling as this
observation may seem, it may not be a problem from a practical
point of view. First, the assumed model may be “close enough” to
the true model so that very little is lost by assuming the wrong
model. Second, the parameters estimated for a given model can
often be interpreted usefully even if the assumed model is wrong.
The following two examples illustrate these points.

EXAMPLE 5.16: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. However, suppose that we
decide that the appropriate model for the data is given by the
following two-parameter family of densities for the Xi’s:

f(x;α, θ) =
α

θ

(
1 +

x

θ

)−(α+1)

for x > 0.

α > 0 and θ > 0 are the unknown parameters. Even though
the Exponential distribution is not a member of this family of
distributions, it is easy to see that by letting α and θ tend to infinity
such that α/θ tends to λ, we have (for x > 0),

f(x;α, θ) → λ exp(−λx) (as α, θ →∞ and α/θ → λ).

Thus given reasonable estimators α̂ and θ̂, the estimated density
f(x; α̂, θ̂) will be close to true density of the Xi’s. ✸

EXAMPLE 5.17: Suppose that X1, · · · , Xn are independent
random variables with

E(Xi) = α + βti and Var(Xi) = σ2

where α, β, and σ2 are unknown, and t1, · · · , tn are known
constants. In estimating α, β and σ2, it is often assumed that
the Xi’s are Normal and the parameters estimated by maximum
likelihood; we will see in Chapter 8 that these estimators remain
valid even when the Xi’s are non-normal. ✸

Suppose that X1, X2, · · · , Xn are i.i.d. random variables with
distribution function F . We assume, however, that the Xi’s have a
common density or frequency function f(x; θ) for some θ ∈ Θ where
the true distribution function F does not necessarily correspond to
any f(x; θ). Suppose that an estimator θ̂n satisfies the likelihood
equation

n∑
i=1

:′(Xi; θ̂n) = 0
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where :′(x; θ) = :′(x; θ). (In general, this type of relation that
defines an estimator is called an estimating equation and includes
the likelihood equation as a special case.) What exactly is θ̂n
estimating? What is the behaviour of the sequence of estimators
{θ̂n} for large n?

Consider the functional parameter θ(F ) defined by∫ ∞

−∞
:′(x; θ(F )) dF (x) = 0.

The substitution principle estimator of θ(F ) is simply the solution
to the likelihood equation given above. The influence curve of θ(F )
is

φ(x;F ) = − :′(x; θ(F ))∫ ∞
−∞ :′′(x; θ(F ))

,

which suggests that
√
n(θ̂n − θ(F )) →d N(0, σ2)

where

σ2 =
∫ ∞
−∞[:′(x; θ(F ))]2 dF (x)(∫ ∞
−∞ :′′(x; θ(F )) dF (x)

)2 .

The following theorem gives precise conditions under which the
preceding statement is true; these conditions parallel the differen-
tiability conditions (A4) through (A6).
THEOREM 5.5 Suppose that X1, X2, · · · , Xn are i.i.d. random
variables with distribution function F and that the estimator θ̂n
satisfies the estimating equation

n∑
i=1

:′(Xi; θ̂n) = 0

for some θ̂n in an open set Θ. If
(a) :′(x; θ) is a strictly decreasing (or strictly decreasing) function
of θ (over the open set Θ) for each x,
(b)

∫ ∞
−∞ :′(x; θ) dF (x) = 0 has a unique solution θ = θ(F ) where

θ(F ) ∈ Θ,
(c) I(F ) =

∫ ∞
−∞[:′(x; θ(F ))]2 dF (x) <∞,

(d) J(F ) = −
∫ ∞
−∞ :′′(x; θ(F )) dF (x) <∞,

(e) |:′′′(x; t)| ≤ M(x) for θ(F )− δ ≤ t ≤ θ(F ) + δ and some δ > 0
where

∫ ∞
−∞M(x) dF (x) <∞,

then θ̂n →p θ(F ) and
√
n(θ̂n − θ(F )) →d N(0, I(F )/J2(F )).
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Proof. Since :′(x; θ) is strictly decreasing in θ and θ(F ) is the unique
solution of the equation∫ ∞

−∞
:′(x; θ) dF (x) = 0,

we have for any ε > 0,

P

[
1
n

n∑
i=1

:′(Xi; θ(F ) + ε) > 0

]
→ 0

and
P

[
1
n

n∑
i=1

:′(Xi; θ(F )− ε) < 0

]
→ 0

as n→∞. From this it follows that

P
[
|θ̂n − θ(F )| > ε

]
→ 0

and so θ̂n →p θ(F ). Now expanding the estimating equation in a
Taylor series, we have

0 =
1√
n

n∑
i=1

:′(Xi; θ(F )) +
√
n(θ̂n − θ(F ))

1
n

n∑
i=1

:′′(Xi; θ(F ))

+
√
n(θ̂n − θ(F ))2

1
2n

n∑
i=1

:′′′(Xi; θ∗n)

where θ∗n lies between θ̂n and θ(F ). The remainder of the proof is
identical to the proof of Theorem 5.3.

We can remove the assumption that :′(x; θ) is strictly monotone
in θ for each x by adding the assumption that θ̂n →p θ(F ). In
certain cases, we will not have∫

:′(x; θ) dF (x) = 0

for any θ ∈ Θ but may instead have

lim
θ→a

∫
:′(x; θ) dF (x) = 0

for some a lying at the boundary of the set Θ (but not in Θ); for
example, a can be ±∞. In this case, it is usually possible to show
that the sequence of estimators {θ̂n} converges in probability to a.

It is also possible to extend the result to the multiparameter case.
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Suppose X1, · · · , Xn are i.i.d. random variables with distribution F
and let θ̂n satisfy

n∑
i=1

:′(Xi; θ̂n) = 0

where :′(x;θ) is the vector of partial derivatives (with respect to the
components of θ) of ln f(x; θ). Then under appropriate regularity
conditions, we have

√
n(θ̂n − θ(F )) →d Np(0, J(F )−1I(F )J(F )−1)

where θ(F ) = (θ1(F ), · · · , θp(F )) satisfies∫ ∞

−∞
:′(x; θ(F )) dF (x) = 0

and the matrices I(F ), J(F ) are defined by

I(F ) =
∫ ∞

−∞
[:′(x;θ(F ))][:′(x;θ)]T dF (x)

J(F ) = −
∫ ∞

−∞
:′′(x; θ(F )) dF (x).

(As before, :′′(x;θ) is the matrix of second partial derivatives of
:(x;θ) with respect to θ1, · · · , θp; the integrals defining I(F ) and
J(F ) are defined element by element.)

EXAMPLE 5.18: Suppose the X1, X2, · · · , Xn are i.i.d. Normal
random variables with (true) mean θ0 and variance σ2. However,
we (erroneously) assume that the density of the Xi’s is

f(x; θ) =
exp(x− θ)

[1 + exp(x− θ)]2

for some θ. The MLE of θ for this model based on X1, · · · , Xn is
the solution to the equation

n∑
i=1

exp(Xi − θ̂n)− 1
exp(Xi − θ̂n) + 1

= 0.

It is possible to show that θ̂n →p θ0 since∫ ∞

−∞

(
exp(x− θ0)− 1
exp(x− θ0) + 1

)
1

σ
√

2π
exp

(
−(x− θ0)2

2σ2

)
dx = 0.

We also have that
√
n(θ̂n − θ0) →d N(0, γ2(σ2)). The values of
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Table 5.2 Asymptotic variances of
√
n(θ̂n − θ) in Example 5.18.

σ 0.5 1 2 5 10 20 50

γ2(σ2)/σ2 1.00 1.02 1.08 1.24 1.37 1.46 1.53

γ2(σ2)/σ2 (as a function of σ) are given in Table 5.2. (The quantity
γ2/σ2 is the asymptotic relative efficiency of the sample mean to
the estimator θ̂n.) ✸

EXAMPLE 5.19: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, b]. We erroneously assume that
the Xi’s have the Gamma density

f(x;α, λ) =
λα

Γ(α)
xα−1 exp(−λx) for x > 0.

The estimators α̂n and λ̂n satisfy the equations

n ln(λ̂n) +
n∑
i=1

ln(Xi)− nψ(α̂n) = 0

n
α̂n

λ̂n
−

n∑
i=1

Xi = 0

where ψ(α) is the derivative of ln Γ(α). It follows that α̂n →p α(b)
and λ̂n →p λ(b) where α(b) and λ(b) satisfy

ln(λ(b)) +
1
b

∫ b

0
ln(x) dx− ψ(α(b)) = 0

α(b)
λ(b)

− 1
b

∫ b

0
x dx = 0.

From the second equation above, it is easy to see that α(b) =
bλ(b)/2 and so λ(b) satisfies

ln(λ(b)) + ln(b)− 1− ψ (bλ(b)/2) = 0.

Numerically solving this equation, we get

λ(b) =
3.55585

b

and so α(b) = bλ(b)/2 = 1.77793. Now using α(b) and λ(b), we can
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compute the matrices I(F ) and J(F ):

I(F ) =
(

1 −b/4
−b/4 b2/12

)
J(F ) =

(
0.74872 −b/3.55585

−b/3.55585 b2/7.11171

)
.

From this it follows that
√
n

(
α̂n − α(b)
λ̂n − λ(b)

)
→d N2(0, J(F )−1I(F )J(F )−1)

with

J(F )−1I(F )J(F )−1 =
(

9.61 16.03/b
16.03/b 29.92/b2

)
. ✸

EXAMPLE 5.20: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with shape parameter α and scale parameter
λ that represent incomes sampled from some population. Using
X1, · · · , Xn, we wish to estimate the Gini index (see Examples
4.21 and 4.31) of the distribution; for a Gamma distribution, this
depends only on α and is given by the expression

π−1/2 Γ(α + 1/2)√
πΓ(α + 1)

.

However, we erroneously assume that the observations are log-
Normal with density

f(x;µ, σ) =
1√

2πσx
exp

(
−(ln(x)− µ)2

2σ2

)
for x > 0

(ln(Xi) will have a Normal distribution with mean µ and variance
σ2). The Gini index for the log-Normal depends only on σ and is
given by γ(σ) = 2Φ(σ/

√
2)− 1 where Φ(x) is the standard Normal

distribution function. The MLE of σ is

σ̂n =

(
1
n

n∑
i=1

(Yi − Ȳn)2
)1/2

where Yi = ln(Xi)

and the corresponding estimator of the Gini index (assuming the
log-Normal model) is γ(σ̂n). By the WLLN,

1
n

n∑
i=1

(Yi − Ȳn)2 →p Var(ln(Xi)) = ψ′(α)
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Table 5.3 Comparison of true Gini index (from a Gamma model) with its
misspecified version based on a log-Normal model in Example 5.20.

α True Misspecified

0.1 0.883 1.000
0.2 0.798 1.000
0.5 0.637 0.884
1 0.500 0.636
2 0.375 0.430
5 0.246 0.261
10 0.176 0.181
20 0.125 0.127
50 0.080 0.080

where ψ′ is the derivative of the function ψ in Example 5.19 (that
is, the second derivative of the logarithm of the Gamma function).
Thus applying the Continuous Mapping Theorem, it follows that

γ(σ̂n) →p 2Φ
(
(ψ′(α)/2)1/2

)
− 1.

The limit can now be compared to the true value of the Gini index
in order to assess the asymptotic bias involved in assuming the
wrong model; these values are given in Table 5.3 for various α.

Table 5.3 shows that the estimator γ(σ̂n) is quite badly biased for
small α but also that the bias gradually disappears as α increases.
Note that we could also use the substitution principle estimator
discussed in Example 4.31; this estimator does not require us to
know the form of the distribution of the Xi’s but could be extremely
inefficient compared to an estimator that assumes the data comes
from a particular parametric model. ✸

The result of Theorem 5.5 suggests that an estimator of the
standard error of θ̂n (when a single parameter is estimated) is given
by

ŝe(θ̂n) =

(
−

n∑
i=1

:′′(Xi; θ̂n)

)−1 (
n∑
i=1

[:′(Xi; θ̂n)]2
)1/2

.

In the multiparameter case, the variance-covariance matrix of θ̂n
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can be estimated by

Ĉov(θ̂n) = Ĵ(θ̂n)−1Î(θ̂n)Ĵ(θ̂n)−1

where

Ĵ(θ̂n) = − 1
n

n∑
i=1

:′′(Xi; θ̂n)

Î(θ̂n) =
1
n

n∑
i=1

[:′(Xi; θ̂n)][:′(Xi; θ̂n)]T .

This estimator has come to be known as the sandwich estimator.

5.6 Non-parametric maximum likelihood estimation

In discussing maximum likelihood estimation, we have assumed
that the observations have a joint density or frequency function
(depending on a real- or vector-valued parameter), from which we
obtain the likelihood function. This formulation effectively rules
out maximum likelihood estimation for non-parametric models
as for these models we typically do not make sufficiently strong
assumptions to define a likelihood function in the usual sense.

However, it is possible to define a notion of non-parametric
maximum likelihood estimation although its formulation is some-
what tenuous. Suppose that X1, · · · , Xn are i.i.d. random variables
with unknown distribution function F ; we want to define a (non-
parametric) MLE of F . In order to make the estimation problem
well-defined, we will consider only distributions putting positive
probability mass only at the points X1, · · · , Xn. For simplicity, we
will assume here that the Xi’s are distinct (as would be the case
if the Xi’s were sampled from a continuous distribution). If pi is
the probability mass at Xi then the non-parametric log-likelihood
function is

lnL(p1, · · · , pn) =
n∑
i=1

ln(pi)

where pi ≥ 0 (i = 1, · · · , n) and p1 + · · ·+ pn = 1. Maximizing the
non-parametric log-likelihood, we obtain p̂i = 1/n (i = 1, · · · , n);
thus the non-parametric MLE of F is the empirical distribution
function F̂ with

F̂ (x) =
1
n

n∑
i=1

I(Xi ≤ x).
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See Scholz (1980) and Vardi (1985) for more discussion of non-
parametric maximum likelihood estimation.

Given our non-parametric MLE of F , we can determine the
non-parametric MLE of an arbitrary functional parameter θ(F )
to be θ̂ = θ(F̂ ), provided that this latter estimator is well-defined.
Thus the non-parametric MLE of θ(F ) is simply the substitution
principle estimator as described in section 4.5.

More discussion of non-parametric maximum likelihood estima-
tion will be given in section 7.5 where we discuss using the non-
parametric likelihood function to find confidence intervals for cer-
tain functional parameters θ(F ).

5.7 Numerical computation of MLEs

In many estimation problems, it is difficult to obtain closed-form
analytical expressions for maximum likelihood estimates. In these
situations, it is usually necessary to calculate maximum likelihood
estimates numerically. Many numerical methods are available for
calculating maximum likelihood (or other) estimates; a good survey
of such methods is available in the monograph by Thisted (1988).
We will describe just two methods here: the Newton-Raphson and
EM algorithms.

The Newton-Raphson algorithm

The Newton-Raphson algorithm is a general purpose algorithm
for finding the solution of a non-linear equation; it can also
be generalized to finding the solution of a system of non-linear
equations. The Newton-Raphson algorithm is natural in the context
of computing maximum likelihood estimates as these estimates
are often the solution of a system of equations (the likelihood
equations).

Suppose that we want to find the solution to the equation
g(x0) = 0 where g is a differentiable function. Given a number x
that is close to x0, it follows from a Taylor series expansion around
x that

0 = g(x0) ≈ g(x) + g′(x)(x0 − x)

and solving for x0, we get

x0 ≈ x− g(x)
g′(x)

.
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Thus given an estimate xk, we can obtain a new estimate xk+1 by

xk+1 = xk −
g(xk)
g′(xk)

and this procedure can be iterated for k = 1, 2, 3, · · · until |g(xk)|
(or |g(xk)/g′(xk)|) is sufficiently small.

The Newton-Raphson algorithm can be applied to the computa-
tion of maximum likelihood estimates (as well as other estimates
defined as the solution to a single equation or system of equa-
tions). Suppose that the joint density or joint frequency function
of X = (X1, · · · , Xn) is f(x; θ) and let L(θ) = f(x; θ) be the like-
lihood function based on X = x. Suppose that the maximum like-
lihood estimate θ̂ satisfies S(θ̂) = 0 where S(θ) is the derivative of
the log-likelihood function, lnL(θ). (S(θ) is often called the score
function.) Let θ̂(k) be the estimate of θ after k iterations of the
algorithm; then

θ̂(k+1) = θ̂(k) +
S(θ̂(k))
H(θ̂(k))

where

H(θ) = − ∂2

∂θ2
lnL(θ).

The procedure is then iterated until convergence (that is, when
|S(θ̂(k))| or the absolute difference between θ̂(k) and θ̂(k+1) is
sufficiently small).

In order to use the Newton-Raphson algorithm, one needs an
initial estimate of θ, θ̂(0). In fact, in some cases, this initial estimate
is critical as the algorithm will not always converge for a given
θ̂(0). It is also possible that there may be several solutions to the
equation S(θ̂) = 0, each solution corresponding to either a local
maximum, local minimum, or “saddle-point” of the log-likelihood
function; thus it is possible that the sequence of estimates {θ̂(k)}
will converge to the “wrong” solution of S(θ̂) = 0. (The convergence
question is much more important when estimating three or more
parameters; with one or two unknown parameters, it is possible to
plot the log-likelihood function and determine appropriate initial
estimates from this plot.) If it is not clear that the algorithm will
converge to the maximizer of the likelihood function then several
different initial estimates can be tried. Alternatively, one can use
another estimate (for example, a method of moments estimate) as
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an initial estimate for the algorithm. In fact, if θ̂(0) is a sufficiently
good estimator of θ then the “one-step” estimator

θ̂(1) = θ̂(0) +
S(θ̂(0))
H(θ̂(0))

has virtually the same large sample properties as the MLE. More
precisely, if θ̂

(0)
n is based on n observations and

√
n(θ̂(0)

n − θ)
converges in distribution then typically

√
n(θ̂(1)

n − θ̂n) →p 0 where
θ̂n is the MLE and θ̂

(1)
n is the “one-step” estimator using θ̂

(0)
n as a

starting value. Thus we could take θ̂
(0)
n to be a method of moments

estimator (or some other substitution principle estimator) of θ.

EXAMPLE 5.21: Suppose that X1, · · · , Xn are i.i.d. Cauchy
random variables with density function

f(x; θ) =
1

π(1 + (x− θ)2
.

Given outcomes x1, · · · , xn, the log-likelihood function is

lnL(θ) = −
n∑
i=1

ln[1 + (xi − θ)2]− n ln(π).

The maximum likelihood estimate θ̂ satisfies the equation

S(θ̂) =
n∑
i=1

2(xi − θ̂)
1 + (xi − θ̂)2

= 0.

Note that S(θ) is not monotone in θ and hence the equation
S(θ̂) = 0 may have more than one solution for a given sample
x1, · · · , xn. To illustrate the Newton-Raphson algorithm, we take a
sample of 100 observations with θ = 10. Plots of the log-likelihood
lnL(θ) and the score function S(θ) are given in Figures 5.1 and 5.2.

To find θ̂(0), we must first find a reasonable initial estimate of θ.
Since the density of the Xi’s is symmetric around θ, it makes sense
to consider either the sample mean or sample median as an initial
estimate; however, E(Xi) is not well-defined so that the sample
mean need not be a good estimate of θ. Thus we will use the sample
median as an initial estimate. Successive values of θ̂(k) are defined
by

θ̂(k+1) = θ̂(k) +
S(θ̂(k))
H(θ̂(k))
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Figure 5.1 Log-likelihood function for the Cauchy data in Example 5.21.

Table 5.4 Iterates of the Newton-Raphson algorithm for Cauchy data in
Example 5.21.

k θ̂(k) lnL(θ̂(k))

0 10.04490 -239.6569
1 10.06934 -239.6433
2 10.06947 -239.6433
3 10.06947 -239.6433

where

H(θ) = 2
n∑
i=1

1− (xi − θ)2

(1 + (xi − θ)2)2
.

The values of θ̂(k) and lnL(θ̂(k)) are given in Table 5.4. The choice
of θ̂(0) is crucial here; for example, if θ̂(0) is taken to be less than 8.74
or greater than 11.86 then the sequence {θ̂(k)} will not converge (at
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Figure 5.2 Score function for the Cauchy data in Example 5.21.

least to the maximum likelihood estimate). ✸

The Newton-Raphson algorithm can also be extended to the
multi-parameter case. Let θ = (θ1, · · · , θp)T and suppose that the
maximum likelihood estimate of θ is given by the equation S(θ̂) = 0
where

S(θ) =

(
∂

∂θ1
lnL(θ), · · · , ∂

∂θp
lnL(θ)

)T

.

Then given θ̂
(k)

, we define θ̂
(k+1)

by

θ̂
(k+1)

= θ̂
(k)

+
[
H

(
θ̂

(k)
)]−1

S

(
θ̂

(k)
)

where H(θ) is the matrix of negative second partial derivatives of
lnL(θ); the (i, j) element of H is given by

H ′′
ij(θ) = − ∂2

∂θi∂θj
lnL(θ).
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(H(θ̂) is sometimes called the observed Fisher information matrix.)
Estimates of standard error for the parameter estimates can

be obtained from the Newton-Raphson algorithm. In the single
parameter case, the variance of θ̂ can be estimated by [H(θ̂)]−1

while in the multi-parameter case, the variance-covariance matrix
of θ̂ can be estimated by the matrix [H(θ̂)]−1. These variance
estimates assume that the model is correctly specified (that is,
the data belong to the family of distributions being estimated).
In the case where the model is incorrectly specified, these variance
estimates can be modified to make them valid as in Section 4.5.

The Fisher scoring algorithm

A simple modification of the Newton-Raphson algorithm is the
Fisher scoring algorithm. This algorithm replaces H by H∗ where
the (i, j) element of H∗(θ) is

H∗
ij(θ) = Eθ[Hij(θ)] = −Eθ

[
∂2

∂θi∂θj
ln f(X;θ)

]
;

the expected value above is computed assuming that θ is the true
value of the parameter. (H is the observed Fisher information
matrix while H∗ is the expected Fisher information matrix.) Now

if θ̂
(k)

is the estimate of θ after k iterations, we define θ̂
(k+1)

by

θ̂
(k+1)

= θ̂
(k)

+
[
H

(
θ̂

(k)
)]−1

S

(
θ̂

(k)
)
.

The important distinction between the Newton-Raphson and Fisher
scoring algorithms is the fact that H∗(θ) depends on the observed
value of X, x, only through the value of θ while H(θ) depends, in
general, on both θ and x.

EXAMPLE 5.22: As in Example 5.21, let X1, · · · , Xn be i.i.d.
Cauchy random variables. From before, we have

H(θ) = 2
n∑
i=1

1− (xi − θ)2

(1 + (xi − θ)2)2

and so

H∗(θ) =
n

π

∫ ∞

−∞

1− (x− θ)2

(1 + (x− θ)2)3
dx =

n

2
.
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Table 5.5 Iterates of the Fisher scoring algorithm for the Cauchy data in
Example 5.21.

k θ̂(k) lnL(θ̂(k))

0 10.04490 -239.6569
1 10.06710 -239.6434
2 10.06923 -239.6433
3 10.06945 -239.6433
4 10.06947 -239.6433

Hence the Fisher scoring algorithm is

θ̂(k+1) = θ̂(k) +
4
n

n∑
i=1

xi − θ̂(k)

1 + (xi − θ̂(k))2
.

Values for θ̂(k) and lnL(θ̂(k)) are given in Table 5.5; as before, θ̂(0) is
taken to be the sample median. One advantage of the Fisher scoring
algorithm in this particular example is the fact that θ̂(k) converges
for a much wider interval of starting values θ̂(0). ✸

The differences between the Newton-Raphson and Fisher scoring
algorithms are subtle but still important. Although it is difficult to
generalize too much, we can make the following observations:
• The convergence of the Newton-Raphson algorithm is often fas-

ter when both algorithms converge.
• The radius of convergence for the Fisher scoring algorithm is

often larger; this suggests that the choice of an initial estimate
is less important for the Fisher scoring algorithm.

In the case of exponential family models, the Newton-Raphson
and Fisher scoring algorithms are almost equivalent; if (θ1, · · · , θp)
are the natural parameters then H(θ) = H∗(θ) and so the two
algorithms are identical.

The EM algorithm

The EM algorithm provides a useful framework for computing max-
imum likelihood estimates in so-called incomplete data situations,
for example, when data are missing or are not observed exactly. It
was formalized in a paper by Dempster, Laird and Rubin (1977)
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although special cases of the algorithm had been used in specific
problems for many years before 1977. Today, the EM algorithm
is widely used in a variety of problems. The following example il-
lustrates an incomplete data problem where a continuous random
variable is not observed exactly but rather in a given interval.

EXAMPLE 5.23: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. Given outcomes x1, · · · , xn of
X1, · · · , Xn, the maximum likelihood estimate of θ is 1/x̄, where
x̄ is the average of the xi’s. However, suppose that rather than
observing Xi exactly, we observe lower and upper bounds, ui and
vi, for Xi so that ui < Xi < vi. Given (u1, v1), · · · , (un, vn), the
likelihood function of λ is

L(λ) =
n∏
i=1

Pλ(ui ≤ Xi ≤ vi)

=
n∏
i=1

(exp(−λui)− exp(−λvi)) .

This is simple example of interval censored data. ✸

The main idea behind the EM algorithm is to construct an esti-
mate of the complete data likelihood, which can then be maximized
using traditional numerical methods (such as the Newton-Raphson
algorithm). Thus the EM algorithm is not really a numerical algo-
rithm but instead a general purpose procedure for computing pa-
rameter estimates from incomplete data by iteratively computing
parameter maximum likelihood estimates based on the complete
data likelihood function; implicit in the use of the EM algorithm is
the assumption that complete data maximum likelihood estimates
can be readily computed and the incomplete data likelihood func-
tion is difficult to work with. The EM algorithm iterates 2 steps
(called the E and M steps) to convergence. Before discussing the
algorithm in any depth, we will illustrate it using the example given
above.

EXAMPLE 5.24: In Example 5.23, the log-likelihood function of
λ based on the exact outcomes x1, · · · , xn is

lnLc(λ) = n ln(λ)− λ
n∑
i=1

xi.
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The first step of the EM algorithm involves finding an estimate
of lnLc(λ) given the incomplete data (u1, v1), · · · , (un, vn) and
assuming that the true parameter value is λ̂(k) where λ̂(k) is the
estimate of λ after k iterations of the algorithm; this is done by
finding the expected value of

n ln(λ)− λ
n∑
i=1

Xi

given u1 < X1 < v1 , · · · , un < Xn < vn and assuming that the
value of the parameter is λ̂(k). By simple integration, it follows that

E(Xi|ui < Xi < vi;λ) =
1
λ

+
ui exp(−λui)− vi exp(−λvi)

exp(−λui)− exp(−λvi)

and so to complete the E step of the algorithm, we substitute

x̂
(k)
i =

1
λ̂(k)

+
ui exp(−λ̂(k)ui)− vi exp(−λ̂(k)vi)

exp(−λ̂(k)ui)− exp(−λ̂(k)vi)

for xi in lnLc. The M step of the algorithm involves maximizing
this new log-likelihood; it is maximized at

λ̂(k+1) =

(
1
n

n∑
i=1

x̂
(k)
i

)−1

.

The E and M steps are then iterated until convergence. ✸

We can now discuss the EM algorithm in more or less complete
generality. Suppose that X = (X1, · · · , Xn) are continuous random
variables with joint density function fX(x; θ) (where θ can be real-
or vector-valued) and let Y = (Y1, · · · , Ym) be random variables
such that Yi = gi(X) where g1, · · · , gm are known functions. The
mapping that produces the Yi’s from the Xi’s is typically not one-
to-one; this means that any given outcome of the Yi’s, y1, · · · , ym
can be produced by more than one outcome of the Xi’s. We thus
think of the Xi’s as being the complete data and the Yi’s as being
the incomplete data. The joint density of Y is

fY (y; θ) =
∫
A(y)

fX(x; θ) dx

where
A(y) = {x : yi = gi(x) for i = 1, · · ·m}.
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If X1, · · · , Xn are discrete, the integral sign is replaced by a
summation over A(y).

If we observed X = x, we could estimate θ by maximizing the
complete data likelihood function Lc(θ) = fX(x; θ). Instead we
observe Y = y. In general, the joint density function of Y (as
given above) will be quite difficult to compute directly; hence, it
will be difficult to compute maximum likelihood estimates from
incomplete data using standard algorithms. However, it is often
possible to impute (or “estimate”) the values of the complete data
using the observed (incomplete) data. Given a preliminary estimate
of the parameter, the EM algorithm first constructs an estimate
of the complete data likelihood function and then maximizes this
likelihood to obtain a new parameter estimate; this two step
procedure is then iterated until convergence.
• (E step) The E (for expectation) step of the EM algorithm

involves finding an estimate of the likelihood function of θ for the
complete data given the observed (or incomplete) data. Given an
estimate of θ, θ̂(k), after k iterations of the algorithm, we define

lnL(k)(θ) = E[ln fX(X; θ)|Y = y; θ̂(k)]

where the expectation is taken assuming that the true parameter
value is θ̂(k).

• (M step) An updated estimate of θ is obtained in the M
(maximization) step of the EM algorithm. The updated estimate,
θ̂(k+1), is chosen to maximize the estimate of the complete data
log-likelihood function, lnL(k)(θ), that was obtained in the E
step. Computation of θ̂(k+1) will often involve the use of some
numerical method such as the Newton-Raphson algorithm; it is
often useful to use θ̂(k) as an initial estimate of θ̂(k+1) in this
case. Once θ̂(k+1) is computed, we return to the E step.

The E and M steps are repeated until convergence.
In many situations (for example, exponential family models),

fX(x; θ) is a product of two non-constant factors, one of which
does not depend on θ. We can then write

ln fX(x; θ) = h1(x; θ) + h2(x).

In such cases, we can redefine lnL(k)(θ) in the E step by

lnL(k)(θ) = E[h1(X; θ)|Y = y; θ̂(k)].
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This modification of the algorithm can considerably simplify com-
putations. The M step of the algorithm remains the same; as before,
θ̂(k+1) maximizes lnL(k)(θ).

What can be said about the convergence properties of the EM
algorithm? If L(θ) is the likelihood function based on y1, · · · , ym, it
can be shown that

lnL(θ̂(k+1)) ≥ lnL(θ̂(k))

for any initial estimate θ̂(0). Unfortunately, this does not neces-
sarily imply that the sequence {θ̂(k)} converges to the maximum
likelihood estimate (namely the maximizer of L(θ)). This suggests
that the choice of initial estimate can be very important as it is
for the Newton-Raphson algorithm. In practice, it is a good idea to
use a variety of initial estimates. If θ̂(k+1) is computed numerically
in the M step of the algorithm, it is important to ensure that an
appropriate initial estimate is chosen to guarantee that θ̂(k+1) will
maximize L(k)(θ). A rigorous treatment of the convergence proper-
ties of the EM algorithm is given by Wu (1983).

EXAMPLE 5.25: Suppose that X1, · · · , Xn are i.i.d. random vari-
ables whose distribution is a mixture of two Poisson distributions:

fX(x;λ, θ) = θ
exp(−λ)λx

x!
+ (1− θ)

exp(−µ)µx

x!

for x = 1, 2, · · ·. The frequency function given above arises if we
observe a Poisson random variable with mean λ with probability
θ and a Poisson distribution with mean µ with probability 1 − θ.
(Note that when µ = λ, the model becomes a i.i.d. Poisson model
and the parametrization is not identifiable.

The log-likelihood function for θ, λ, and µ is given by

lnL(θ, λ, µ) =
n∑
i=1

ln
(
θ
exp(−λ)λxi

xi!
+ (1− θ)

exp(−µ)µxi

xi!

)
.

Given x1, · · · , xn, it is possible to estimate the parameters using the
Newton-Raphson algorithm; however, the implementation of the
Newton-Raphson algorithm in this example is somewhat difficult
and so the EM algorithm is a natural alternative.

To use the EM algorithm, we must find a suitable “complete”
data problem. Assume that (X1, Y1), · · · , (Xn, Yn) are i.i.d. pairs of
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random variables with

P (Yi = y) = θy(1− θ)1−y for y = 0, 1

P (Xi = x|Y = 0) =
exp(−µ)µx

x!
for x = 0, 1, 2, · · ·

P (Xi = x|Y = 1) =
exp(−λ)λx

x!
for x = 0, 1, 2, · · ·.

The complete data likelihood based on (x1, y1), · · · , (xn, yn) is then

lnLc(θ, λ, µ) =
n∑
i=1

yi [ln(θ) + xi ln(λ)− λ]

+
n∑
i=1

(1− yi) [ln(1− θ) + xi ln(µ)− µ]

−
n∑
i=1

ln(xi!).

We must now find the expected value of the complete data
log-likelihood given the observations x1, · · · , xn; to do this, it is
sufficient to find the expected value of Yi given Xi = xi for any
values of the parameters θ, λ, and µ; an easy computation using
Bayes’ Theorem yields

E(Yi|Xi = x; θ, λ, µ) =
θ exp(−λ)λx

θ exp(−λ)λx + (1− θ) exp(−µ)µx
.

Thus given estimates θ̂(k), λ̂(k), and µ̂(k), we obtain θ̂(k+1), λ̂(k+1),
and µ̂(k+1) by maximizing

lnL(k)(θ, λ, µ) =
n∑
i=1

ŷ
(k)
i [ln(θ) + xi ln(λ)− λ]

+
n∑
i=1

(1− ŷ
(k)
i ) [ln(1− θ) + xi ln(µ)− µ]

where
ŷ

(k)
i = E

(
Yi|Xi = x; θ̂(k), λ̂(k), µ̂(k)

)
.

It is easy to see that

θ̂(k+1) =
1
n

n∑
i=1

ŷ
(k)
i
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Table 5.6 Frequency distribution of goals in First Division matches.

Goals 0 1 2 3 4 5 6 7

Frequency 252 344 180 104 28 11 2 3

λ̂(k+1) =
∑n

i=1 xiŷ
(k)
i∑n

i=1 ŷ
(k)
i

µ̂(k+1) =
∑n

i=1 xi(1− ŷ
(k)
i )∑n

i=1(1− ŷ
(k)
i )

.

To illustrate the convergence EM algorithm in this example, we
consider the number of goals scored during a game by teams in the
First Division of the English Football League during the 1978-79
season; at that time, there were 22 teams with each team playing
42 games for a total of 924 observations. The data are summarized
in Table 5.6. The EM algorithm is very slow to converge in this
example even when the initial estimates are taken to be close to
the maximizing values. For example, starting from initial estimates
θ̂(0) = 0.95, λ̂(0) = 1.23, and µ̂(k) = 3.04, the EM algorithm
described above takes about 300 iterations to converge (to three
decimal places) to the maximum likelihood estimates θ̂ = 0.954,
λ̂ = 1.232, and µ̂ = 3.043. The Newton-Raphson algorithm can,
of course, also be applied; its performance in this example is very
erratic. For example, using the same starting values as above, the
Newton-Raphson algorithm actually diverges. ✸

Comparing the Newton-Raphson and EM algorithms

Frequently, it is feasible to use both the Newton-Raphson and
EM algorithms to compute maximum likelihood estimates. This
raises the question of which algorithm is best to use. There are
two compelling theoretical reasons to prefer the Newton-Raphson
algorithm:

• standard error estimates are a by-product of the Newton-Raph-
son algorithm and not of the EM algorithm;

• the Newton-Raphson algorithm has a faster rate of convergence
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in the sense that θ̂(k) → θ̂ more quickly when θ̂(k) is in a
neighbourhood of θ̂.

Nonetheless, there are also many reasons to prefer the EM algo-
rithm, perhaps the most important being ease of implementation.
For example, the EM algorithm often leads to a considerable sav-
ings in programming time that far outweigh the savings in com-
puter time incurred by using the Newton-Raphson or other more
sophisticated algorithm. Moreover, in many problems, the number
of iterations to convergence for the EM algorithm can be compara-
ble to the Newton-Raphson algorithm; much depends on how close
the complete data problem is to the incomplete data problem. For
example, in Example 5.24, there is virtually no difference in the
convergence rate between the EM and Newton-Raphson algorithm.

5.8 Bayesian estimation

To this point, we have regarded a parameter θ as a fixed quan-
tity whose value is unknown and used the data to estimate (or
make inference about) its value. In essence, we treat the observable
quantities (the data) as outcomes of random variables and the un-
observable quantity (the parameter) as a constant. The Bayesian
approach describes the uncertainty in θ with a probability distri-
bution on the parameter space Θ. This approach works by specify-
ing a distribution for θ prior to observing the data and considering
f(x; θ) as a “conditional” density or frequency function given θ; the
observed data is then used to update this distribution. The proba-
bilities placed on different subsets of Θ are generally not interpreted
as “long-run frequencies” but instead are usually subjective proba-
bilities that reflect “degrees of belief” about θ lying in the various
subsets of Θ.

Before we go into the specifics of the Bayesian approach, we will
discuss some of its pros and cons. First, if we accept the notion of
describing uncertainty in the parameter by means of a probability
distribution, the Bayesian approach yields a unified procedure for
solving practically any problem in statistical inference. Second,
mathematical arguments can be used to show that the only coherent
systems for describing uncertainty are those based on probability
distributions. A common complaint with Bayesian inference is
that it is not “objective” in the sense that estimates depend
on the prior distribution that is specified by the scientist or
investigator (perhaps in consultation with someone else). Therefore,
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the possibility exists for the unscrupulous scientist to influence the
results by choosing the appropriate prior. The counter-argument to
this is that most scientific inference is very subjective; for example,
scientists constantly make subjective judgements about how to
carry out experiments. Moreover, much of non-Bayesian inference
is also to some extent subjective. If a scientist or investigator
is in a good position to specify a prior distribution then the
Bayesian approach to estimation (and inference) can be extremely
useful. However, in many cases, there is no obvious, realistic prior
distribution available; in such cases, the usefulness of the Bayesian
approach is questionable although some remedies do exist.

We will now elaborate on the implementation of the Bayesian
approach. Suppose that X = (X1, · · · , Xn) are random variables
with joint density or frequency function f(x; θ) where θ is a real-
valued parameter lying in Θ, which we will assume to an open
set. Let Π(θ) be a distribution function defined on Θ and suppose
that π(θ) is the corresponding density function; π(θ) is called the
prior density for θ and describes the uncertainty in the value of the
parameter θ prior to observing X. We define the posterior density
of θ given X = x as follows:

π(θ|x) =
f(x; θ)π(θ)∫

Θ f(x; t)π(t) dt
.

Note that the denominator of the right-hand-side above does not
depend on θ and so

π(θ|x) ∝ f(x; θ)π(θ) = L(θ)π(θ)

where L(θ) is the likelihood function based on x.
It is very easy to generalize posterior distributions to the cases

where θ is vector-valued or is discrete-valued. If θ = (θ1, · · · , θp) is
vector-valued, the (joint) posterior density of θ is

π(θ|x) =
f(x; θ)π(θ)∫

· · ·
∫
Θ f(x; t)π(t) dt

where π(θ) is the joint prior density of θ. The marginal posterior
density of any single parameter (or the joint posterior density of
a collection of parameters) in θ can be obtained by integrating
the joint posterior density over all the other parameters. If θ is
discrete-valued and π(θ) is the prior frequency function for θ then
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the posterior frequency function is given by

π(θ|x) =
f(x; θ)π(θ)∑
t f(x; t)π(t)

.

Again in both these cases, we have that

π(θ|x) ∝ π(θ)L(θ)

where L(θ) is the likelihood function based on x.
The posterior distribution describes the uncertainty in the value

of θ after observing the data, taking into account the prior
distribution. This brings up an important distinction between
Bayesian and Frequentist statistics. In the Bayesian approach, all of
the information about the uncertainty about θ is contained in the
posterior distribution. More importantly, inference for θ depends
only on the observed data (through the likelihood function) as well
as the prior distribution. In contrast, the Frequentist approach often
measures uncertainty (for example, by the standard error of a point
estimator) by averaging over all possible (but unobserved) samples.
Since the posterior distribution depends on the data only through
the likelihood function, it follows that all Bayesian procedures
satisfy the likelihood principle.

EXAMPLE 5.26: Suppose that X1, · · · , Xn are i.i.d. Bernoulli
random variables with unknown parameter θ and assume the
following Beta prior density for θ

π(θ) =
Γ(α + β)
Γ(α)Γ(β)

θα−1(1− θ)β−1 for 0 < θ < 1

where α and β are specified. Then given X1 = x1, · · · , Xn = xn,
the posterior density for θ is

π(θ|x) =
f(x1, · · · , xn; θ)π(θ)∫ 1

0 f(x; t)π(t) dt

=
θy+α−1(1− θ)n−y+β−1∫ 1

0 ty+α−1(1− t)n−y+β−1 dt

(where y = x1 + · · ·+ xn)

=
Γ(n + α + β)

Γ(y + α)Γ(n− y + β)
θy+α−1(1− θ)n−y+β−1.

Note that the posterior distribution is also a Beta distribution with
data dependent parameters. ✸
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EXAMPLE 5.27: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ where the prior density for
λ is also an Exponential distribution with known parameter α.
To complicate matters somewhat, we will assume that only the
r smallest of X1, · · · , Xn are observed. Letting Yi = X(i) for
i = 1, · · · , r, the joint density of Y1, · · · , Yr is

f(y;λ) = λr exp

[
−λ

(
r∑
i=1

yi + (n− r)yr

)]
.

Given Y1 = y1, · · · , Yr = yr, the posterior density of λ is

π(λ|y) = [K(y, α)]−1 αλr exp

[
−λ

(
r∑
i=1

yi + (n− r)yr + α

)]
where

K(y, α) =
∫ ∞

0
αλr exp

[
−λ

(
r∑
i=1

yi + (n− r)yr + α

)]
dλ

=
αr!

(
∑r

i=1 yi + (n− r)yr + α)r+1 .

It is easy to see that the posterior distribution is a Gamma
distribution with shape parameter r + 1 and scale parameter∑r

i=1 yi + (n− r)yr + α. ✸

In the previous two examples, the prior distributions themselves
depend on parameters (α and β in Example 5.26, α in Example
5.27); these parameters are often called hyperparameters. Orthodox
Bayesian statisticians maintain that the values of hyperparameters
must be specified independently of the observed data so the prior
distribution reflects true a priori beliefs. However, if we are not
willing a priori to specify the values of the hyperparameters, it
is possible to use the so-called empirical Bayes approach in which
hyperparameter values are estimated from the observed data and
then substituted into the posterior distribution. More precisely, if
π(θ;α) is a prior density for θ depending on a hyperparameter α
(possibly vector-valued), we can define the “marginal” joint density
or frequency function

g(x;α) =
∫
Θ
f(x; θ)π(θ;α) dθ.

The hyperparameter α can then be estimated by maximum likeli-
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hood or substitution principle estimation assuming that the joint
density or frequency function of the data is g(x;α). Empirical Bayes
methods are often very useful although despite their name, they are
essentially non-Bayesian since the prior distribution is estimated
from the data.

EXAMPLE 5.28: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ where the prior distribution for λ is
given by

π(λ;α, β) =
αβ

Γ(β)
λβ−1 exp(−αλ) for λ > 0

with α and β the hyperparameters. Setting y = x1 + · · ·+ xn, the
“marginal” joint frequency function is given by

g(x;α, β) =
∫ ∞

0

exp(−nλ)λy

x1! · · ·xn!
π(θ;α, β) dλ

=
(

α

n + α

)β Γ(y + β)
Γ(α)x1! · · ·xn!

(
1

n + α

)y

.

Estimates for α and β can be obtained by maximum likelihood
using g(x;α, β) as the likelihood function. Alternatively, method of
moments estimates can be used. For example, if we think of λ as a
random variable (with density π(λ;α, β), we have that E(Xi|λ) = λ
and Var(Xi|λ) = λ. Then

E(Xi) = E[E(Xi|λ)] =
α

β

and Var(Xi) = E[Var(Xi|λ)] + Var[E(Xi|λ)]

=
α

β
+

α

β2

using the fact that the mean and variance of the Gamma prior are
α/β and α/β2, respectively. Estimates α̂ and β̂ can be obtained by
setting the sample mean and variance of the xi’s equal to α̂/β̂ and
α̂/β̂ + α̂/β̂2 respectively. ✸

How do we go from the posterior density for θ to a point estimator
for θ? A common practice is to take the mean of the posterior
distribution (or the median) to be the Bayesian point estimator.
Another commonly used estimator is the posterior mode, that is,
the value of θ that maximizes π(θ|x). In some sense, Bayesian
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point estimators are really just descriptive measures of the posterior
distribution as it is the posterior distribution itself that is of
primary importance. However, one can also study Bayesian point
estimators from a Frequentist point of view; in fact, Bayesian point
estimators have very attractive Frequentist properties and are often
superior to estimators obtained by Frequentist principles.

EXAMPLE 5.29: In Example 5.26, the posterior distribution for
θ is

π(θ|x) =
Γ(n + α + β)

Γ(y + α)Γ(n− y + β)
θy+α−1(1− θ)n−y+β−1

where y = x1 + · · ·+ xn. The posterior mean is

θ̂ =
∫ 1

0
θ π(θ|x) dθ =

y + α

n + α + β

while the posterior mode is

θ̃ =
y + α− 1

n + α + β − 2
.

It is easy to see that when both y and n are large compared to
α and β then both θ̂ and θ̃ are approximately y/n (which is the
maximum likelihood estimate of θ). ✸

EXAMPLE 5.30: In Example 5.27, the posterior distribution for
λ is a Gamma distribution with shape parameter r + 1 and scale
parameter

∑r
i=1 yi + (n− r)yr + α. The posterior mean is

θ̂ =
r + 1∑r

i=1 yi + (n− r)yr + α

while the posterior mode is

θ̃ =
r∑r

i=1 yi + (n− r)yr + α
.

Note that the difference between the posterior mean and mode
becomes smaller as n increases. ✸

Conjugate and ignorance priors

Although prior distributions are essentially arbitrary, it is often
convenient to choose the prior distribution so that the posterior
distribution is easily derivable. The classical examples of such prior
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distributions are conjugate families, which are typically parametric
families of priors such that posterior distribution belongs the
same parametric family. For example, suppose that the model for
(X1, · · · , Xn) is a one-parameter exponential family so that

f(x; θ) = exp [c(θ)T (x)− d(θ) + S(x)]

and suppose that the prior density for θ is of the form

π(θ) = K(α, β) exp [αc(θ)− βd(θ)]

for some α and β (where the K(α, β) is chosen so that π(θ) is a
density). Then it is easy to see that

π(θ|x) ∝ π(θ)f(x; θ)
∝ exp [(T (x) + α)c(θ)− (β + 1)d(θ)] .

From this, we can generally deduce that

π(θ|x) = K(T (x) + α, β + 1) exp [(T (x) + α)c(θ)− (β + 1)d(θ)] ,

which has exactly the same form as π(θ). The prior distributions
{π(θ)} indexed by the hyperparameters α and β is a conjugate
family of priors for the one-parameter exponential family.

EXAMPLE 5.31: Suppose that X1, · · · , Xn are i.i.d. Geometric
random variables with frequency function

f(x; θ) = θ(1− θ)x

for x = 0, 1, 2, · · · where 0 < θ < 1. The joint frequency function of
X1, · · · , Xn is a one-parameter exponential family:

f(x; θ) = exp

[
ln(1− θ)

n∑
i=1

xi + n ln(θ)

]
.

This suggests that a conjugate family of priors for θ is given by

π(θ) = K(α, β) exp (α ln(1− θ) + β ln(θ)) = K(α, β)(1− θ)αθβ

for 0 < θ < 1. For α > 0 and β > 0, π(θ) is simply a Beta density
with

K(α, β) =
Γ(α, β)

Γ(α)Γ(β))
.

Note that the same family is conjugate in Example 5.26. ✸

EXAMPLE 5.32: Suppose that X1, · · · , Xn are i.i.d. Exponential
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random variables with parameter λ. Again we have a one-parameter
exponential family whose joint density function is

f(x; θ) = exp

[
−λ

n∑
i=1

xi + n ln(λ)

]
.

This suggests that a conjugate family of prior densities for λ is
given by

π(λ) = K(α, β) exp (−αλ + β ln(λ)) = K(α, β)λβ exp (−αλ)

for λ > 0. For α > 0 and β > −1, this is a Gamma density and
K(α, β) = αβ+1/Γ(β + 1). Note that the Exponential prior density
given in Example 5.27 is a special case. ✸

Conjugate prior distributions are often used simply for conve-
nience rather than for their ability to accurately describe a priori
beliefs. Basically, assuming a conjugate prior for θ greatly facilitates
evaluation of the integral∫

Θ
π(θ)f(x; θ) dθ.

However, with the rapid increase in computational power over the
past 20 years, the use of conjugate priors to simplify computation
has become less important; numerical integration techniques can
be used to evaluate posterior distributions with minimal difficulty.
These numerical techniques are particularly important in multipa-
rameter problems where useful conjugate families are not generally
available. Monte Carlo integration (see Chapter 3) is often useful
in this context; in recent years, techniques such as Gibbs sampling
and related Markov chain Monte Carlo methods have been used
effectively in problems with large numbers of parameters. A good
reference is the monograph by Gilks et al (1996).

EXAMPLE 5.33: Suppose we want to evaluate the integral

K(x) =
∫
Θ
π(θ)f(x; θ) dθ.

Let g be a density function on Θ; then

K(x) =
∫
Θ

π(θ)f(x; θ)
g(θ)

g(θ) dθ.

To estimate K(x), let T1, · · · , Tm be i.i.d. random variables with
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density g; for m sufficiently large, we will have (by the WLLN)

K̂(x) =
1
m

m∑
i=1

π(Ti)f(x;Ti)
g(Ti)

≈ K(x)

and K̂(x) serves as estimate of K(x). This is simply the importance
sampling estimate of the integral considered in section 3.6. ✸

As stated above, Bayesian inference is often perceived as not
objective. While this perception is perhaps undeserved, it is
nonetheless desirable to find prior distributions that express an
indifference among all values of the parameter space. In the case
where the parameter space is discrete and finite, the solution
is clear; if there are m elements in the parameter space, we
can specify a prior distribution putting probability 1/m on each
element. However, when the parameter space is not finite then some
difficulties arise.

As above, we will concentrate on the case where the parameter
space Θ is a subset of the real-line. Suppose first of all that Θ is
the interval (a, b). Then a natural prior distribution is a Uniform
distribution with density

π(θ) = (b− a)−1 for a < θ < b.

However, expression of indifference by Uniform distributions is not
invariant under transformations: the prior density of g(θ) will not
itself be Uniform if g(·) is a non-linear function. If Θ is a infinite
interval (for example, the real-line) then “proper” Uniform prior
densities do not exist in the sense that

∫
Θ k dθ = ∞ for any k > 0.

Nonetheless, these “improper” prior densities will often yield valid
posterior densities; the posterior density is

π(θ|x) =
f(x; θ)∫

Θ f(x; t) dt
.

Uniform improper priors share the same problem as Uniform
proper priors, namely, the lack of invariance under non-linear
transformation.

EXAMPLE 5.34: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance 1. We will assume a
uniform prior on the real-line for µ. It follows that the posterior for
µ is

π(µ|x) = k(x) exp

[
−1

2

n∑
i=1

(xi − µ)2
]
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where

k(x) =

(∫ ∞

−∞
exp

[
−1

2

n∑
i=1

(xi − t)2
]
dt

)−1

=
√

n

2π
exp

[
1
2

n∑
i=1

(xi − x̄)2
]
.

Thus

π(θ|x) =
√

n

2π
exp

[
−n

2
(µ− x̄)2

]
and so the posterior distribution is Normal with mean x̄ and
variance 1/n. ✸

One approach to defining ignorance priors has been proposed by
Jeffreys (1961). Let g be a monotone function on Θ and define
ν = g(θ). The information for ν can be defined in the usual way:

I(ν) = Varν
[
∂

∂ν
ln f(X; g−1(ν))

]
=

1
(g′(θ))2

Varθ
[
∂

∂θ
ln f(X; θ)

]
.

Now choose the function g so that I(ν) is constant and put a
uniform prior distribution on g(Θ); this implies that the prior
distribution on Θ is

π(θ) = k|g′(θ)| ∝ Varθ
[
∂

∂θ
ln f(X; θ)

]1/2

= I1/2(θ)

where k is some positive constant. Note that this prior distribution
could be improper. These prior distributions are called Jeffreys
priors.

EXAMPLE 5.35: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ. The information for λ is I(λ) = n/λ.
It is easy to verify that the transformation g must satisfy

λ(g′(λ))2 = constant.

Thus the Jeffreys prior for λ is

π(λ) =
k√
λ

for λ > 0.
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Since
∫ ∞
0 λ−1/2 dλ = ∞, the prior is improper and so k can be

chosen arbitrarily. Using the Jeffreys prior, the posterior density of
λ given x1, · · · , xn is the Gamma density

π(λ|x) =
ny+1/2λy−1/2 exp(−nλ)

Γ(y + 1/2)

where y = x1 + · · · + xn. This posterior density is always proper
(even though the prior density is improper). ✸

5.9 Problems and complements

5.1: Suppose that X1, · · · , Xn are i.i.d. random variables with
density

f(x; θ1, θ2) =
{

a(θ1, θ2)h(x) for θ1 ≤ x ≤ θ2

0 otherwise

where h(x) > 0 is a known continuous function defined on the
real line.
(a) Show that the MLEs of θ1 and θ2 are X(1) and X(n)

respectively.
(b) Let θ̂1n and θ̂2n be the MLEs of θ1 and θ2 and suppose that
h(θ1) = λ1 > 0 and h(θ2) = λ2 > 0. Show that

n

(
θ̂1n − θ1

θ2 − θ̂2n

)
→d

(
Z1

Z2

)
where Z1 and Z2 are independent Exponential random variables
with parameters λ1a(θ1, θ2) and λ2a(θ1, θ2) respectively.

5.2: Suppose that (X1, Y1), · · · , (Xn, Yn) are i.i.d. pairs of Normal
random variables where Xi and Yi are independent N(µi, σ2)
random variables.
(a) Find the MLEs of µ1, · · · , µn and σ2.
(b) Show that the MLE of σ2 is not consistent. Does this
result contradict the theory we have established regarding the
consistency of MLEs? Why or why not?
(c) Suppose we observe only Z1, · · · , Zn where Zi = Xi − Yi.
Find the MLE of σ2 based on Z1, · · · , Zn and show that it is
consistent.

5.3: Suppose that X1, · · · , Xn, Y1, · · ·Yn are independent Exponen-
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Table 5.7 Data for Problem 5.3.

xi yi xi yi xi yi xi yi

0.7 3.8 20.2 2.8 1.1 2.8 15.2 8.8
11.3 4.6 0.3 1.9 1.9 3.2 0.2 7.6
2.1 2.1 0.9 1.4 0.5 8.5 0.7 1.3

30.7 5.6 0.7 0.4 0.8 14.5 0.4 2.2
4.6 10.3 2.3 0.9 1.2 14.4 2.3 4.0

tial random variables where the density of Xi is

fi(x) = λiθ exp(−λiθx) for x ≥ 0

and the density of Yi is

gi(x) = λi exp(−λix) for x ≥ 0

where λ1, · · · , λn and θ are unknown parameters.
(a) Show that the MLE of θ (based on X1, · · · , Xn, Y1, · · ·Yn)
satisfies the equation

n

θ̂
− 2

n∑
i=1

Ri

1 + θ̂Ri

= 0

where Ri = Xi/Yi.
(b) Show that the density of Ri is

fR(x; θ) = θ (1 + θx)−2 for x ≥ 0.

and show that the MLE for θ based on R1, · · · , Rn is the same
as that given in part (a).

(c) Let θ̂n be the MLE in part (c). Find the limiting distribution
of
√
n(θ̂n − θ).

(d) Use the data for (Xi, Yi), i = 1, · · · , 20 given in Table
5.7 to compute the maximum likelihood estimate of θ using
either the Newton-Raphson or Fisher scoring algorithm. Find
an appropriate starting value for the iterations and justify your
choice.
(e) Give an estimate of the standard error for the maximum
likelihood estimate computed in part (c).
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5.4: Suppose that X1, · · · , Xn are i.i.d. nonnegative random vari-
ables whose hazard function is given by

λ(x) =
{

λ1 for x ≤ x0

λ2 for x > x0

where λ1, λ2 are unknown parameters and x0 is a known
constant.
(a) Show that the density of Xi is

f(x;λ1, λ2) =
{

λ1 exp(−λ1x) for x ≤ x0

λ2 exp(−λ2(x− x0)− λ1x0) for x > x0

(b) Find the MLEs of λ1 and λ2 as well as their joint limiting
distribution.

5.5: Suppose that X1, · · · , Xn are i.i.d. discrete random variables
with frequency function

f(x; θ) =
{

θ for x = −1
(1− θ)2θx for x = 0, 1, 2, · · ·

where 0 < θ < 1.
(a) Show that the MLE of θ based on X1, · · · , Xn is

θ̂n =
2

∑n
i=1 I(Xi = −1) +

∑n
i=1 Xi

2n +
∑n

i=1 Xi

and show that {θ̂n} is consistent for θ.

(b) Show that
√
n(θ̂n − θ) →d N(0, σ2(θ) and find the value of

σ2(θ).
5.6: Suppose that U1, · · · , Un are i.i.d. Uniform random variables

on [0, θ]. Suppose that only the smallest r values are actually
observed, that is, the order statistics U(1) < U(2) < · · · < U(r).
(a) Find the MLE of θ based on U(1), U(2), · · · , U(r).
(b) If r = rn = n − k where k is fixed, find the limiting
distribution of n(θ − θ̂n) as n→∞ where θ̂n is the MLE.

5.7: Suppose that X = (X1, · · · , Xn) has a k-parameter exponen-
tial family distribution with joint density or frequency function

f(x;θ) = exp

[
k∑
i=1

ci(θ)Ti(x)− d(θ) + S(x)

]
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where the parameter space Θ is an open subset of Rk and the
function c = (c1, · · · , ck) is one-to-one on Θ.
(a) Suppose that Eθ[Ti(X)] = bi(θ) (i = 1, · · · , k). Show that
the MLE θ̂ satisfies the equations

Ti(X) = bi(θ̂) (i = 1, · · · , k).

(b) Suppose that the Xi’s are also i.i.d. so that Ti(X) can be
taken to be an average of i.i.d. random variables. If θ̂n is the
MLE, use the Delta Method to show that

√
n(θ̂n − θ) has the

limiting distribution given in Theorem 5.4.
5.8: Suppose that X1, · · · , Xn are i.i.d. continuous random vari-

ables with density f(x; θ) where θ is real-valued.
(a) We are often not able to observe the Xi’s exactly rather only
if they belong to some region Bk (k = 1, · · · ,m); an example
of this is interval censoring in survival analysis. Intuitively, we
should be able to estimate θ more efficiently with the actual
values of the Xi’s; in this problem, we will show that this is
true (at least) for MLEs.
Assume that B1, · · · , Bm are disjoint sets such that

Pθ

(
Xi ∈

m⋃
k=1

Bk

)
= 1.

Define i.i.d. discrete random variables Y1, · · · , Yn where Yi = k
if Xi ∈ Bk; the frequency function of Yi is

p(k; θ) = Pθ(Xi ∈ Bk) =
∫
Bk

f(x; θ) dx for k = 1, · · · ,m.

Also define

IX(θ) = Varθ
[
∂

∂θ
ln f(Xi; θ)

]
and IY (θ) = Varθ

[
∂

∂θ
ln p(Yi; θ)

]
.

Assume the usual regularity conditions for f(x; θ), in particular,
that f(x; θ) can be differentiated with respect to θ inside
integral signs with impunity! Show that IX(θ) ≥ IY (θ) and
indicate under what conditions there will be strict inequality.
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(Hint: Note that (i) f(x; θ)/p(k; θ) is a density function on Bk,
and (ii) for any random variable U , E(U2) ≥ [E(U)]2 with
strict inequality unless U is constant.)
(b) Suppose that we observe Yi = g(Xi) (i = 1, · · · , n) for
some differentiable function g. Show that IX(θ) ≥ IY (θ) with
equality if g is a monotone function.

5.9: Let X1, · · · , Xn be i.i.d. Exponential random variables with
parameter λ. Suppose that the Xi’s are not observed exactly
but rather we observe random variables Y1, · · · , Yn where

Yi = kδ if kδ ≤ Xi < (k + 1)δ

for k = 0, 1, 2, · · · where δ > 0 is known.
(a) Give the joint frequency function of Y = (Y1, · · · , Yn) and
show that

∑n
i=1 Yi is sufficient for λ.

(b) Find the MLE of λ based on Y1, · · · , Yn.
(c) Let λ̂n be the MLE of λ in part (b). Show that

√
n(λ̂n − λ) →d N(0, σ2(λ, δ))

where σ2(λ, δ) → λ2 as δ → 0.
5.10: Let X1, · · · , Xn be i.i.d. random variables with density or

frequency function f(x; θ) satisfying conditions (A1)-(A6) with
I(θ) = J(θ). Suppose that θ̃n is such that

√
n(θ̃n− θ) →d Z for

some random variable Z (not necessarily Normal); θ̃n is said to
be

√
n-consistent. Define

θ̂n = θ̃n −
(

n∑
i=1

:′′(Xi; θ̃n)

)−1 n∑
i=1

:′(Xi; θ̃n)

(a) Show that
√
n(θ̂n − θ) →d N(0, 1/I(θ)).

(b) Suppose that X1, · · · , Xn are i.i.d. random variables with
density function

f(x; θ) =
θ

(1 + θx)2

for x ≥ 0 and define µ̂n to be the sample median of X1, · · · , Xn.
Use µ̂n to construct a

√
n-consistent estimator of θ, θ̃n. What

is the asymptotic distribution of
√
n(θ̃n − θ)?

(c) Using θ̃n from part (b), show how to construct an estimator
with the same limiting distribution as the MLE in Problem
5.3(b).
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5.11: The key condition in Theorem 5.3 is (A6) as this allows us
to approximate the likelihood equation by a linear equation in√
n(θ̂n − θ). However, condition (A6) can be replaced by other

similar conditions, some of which may be weaker than (A6).

Assume that θ̂n →p θ and that conditions (A1)-(A5) hold.
Suppose that for some δ > 0, there exists a function Kδ(x)
and a constant α > 0 such that∣∣:′(x; t)− :′(x; θ)

∣∣ ≤ K(x)|t− θ|α

for |t−θ| ≤ δ where Eθ [Kδ(Xi)] <∞. Show that the conclusion
of Theorem 5.3 holds.

5.12: In section 5.4, we noted that the consistency of the MLE
is straightforward when the log-likelihood function is concave.
Similarly, it is possible to exploit the concavity or convexity of
objective functions to derive the limiting distributions of esti-
mators. In this problem, we will derive the limiting distribution
of the sample median using the fact that the median minimizes
a convex objective function; see Problem 4.19.
Suppose that {Zn(u)} is a sequence of random convex functions
and for any (u1, u2, · · · , uk), we have

(Zn(u1), · · · , Zn(uk)) →d (Z(u1), · · · , Z(uk))

where Z(u) is a random convex function that is uniquely
minimized at U (which will be a random variable). Then it
can be shown that if Un minimizes Zn then Un →d U (Davis et
al, 1992).
This result can be used to rederive the limiting distribution
of the sample median (see Examples 3.5 and 3.6). Suppose
that X1, · · · , Xn are i.i.d. random variables with distribution
function F where F (µ) = 1/2 and F ′(µ) = λ > 0. If µ̂n is the
sample median of X1, · · · , Xn then we know that

√
n(µ̂n − µ) →d N(0, 1/(4λ2)).

(a) Show that Un =
√
n(µ̂n − µ) minimizes the objective

function

Zn(u) =
n∑
i=1

[
|Xi − µ− u/

√
n| − |Xi − µ|

]
and that Zn is a convex function of u.
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(b) Show that

|x− y| − |x| = −y sgn(x) + 2
∫ y

0
[I(x ≤ s)− I(x ≤ 0)] ds

for x �= 0 where sgn(x) = I(x > 0) − I(x < 0) is the “sign” of
x.
(c) Show that

Zn(u) = − u√
n

n∑
i=1

sgn(Xi − µ)

+
2√
n

n∑
i=1

∫ u

0

[
I

(
Xi ≤ µ +

s√
n

)
− I(Xi ≤ µ)

]
ds

using the formula in part (b).
(d) Show that

(Zn(u1), · · · , Zn(uk)) →d (Z(u1), · · · , Z(uk))

where Z(u) = −uW +2λu2 and W ∼ N(0, 1). (Hint: Note that

E[I(Xi ≤ µ + s/
√
n)− I(Xi ≤ µ)] = F (µ + s/

√
n)− F (µ)

and

Var[I(Xi ≤ µ + s/
√
n)− I(Xi ≤ µ)] ≤ F (µ + s/

√
n)− F (µ)

for each s, with F (µ + s/
√
n)− F (µ) ≈ λs/

√
n.)

(e) Show that
√
n(µ̂n − µ) →d W/(2λ).

5.13: The same approach used in Problem 5.12 can be used to
determine the limiting distribution of the sample median under
more general conditions. Again let X1, · · · , Xn be i.i.d. with
distribution function F and median µ where now

lim
n→∞

√
n[F (µ + s/an)− F (µ)] = ψ(s)

for some increasing function ψ and sequence of constants an →
∞. The asymptotic distribution of an(µ̂n−µ) will be determined
by considering the objective function

Zn(u) =
an√
n

n∑
i=1

[|Xi − µ− u/an| − |Xi − µ|] .

(a) Show that Un = an(µ̂n − µ) minimizes Zn.
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(b) Repeat the steps used in Problem 5.12 to show that

(Zn(u1), · · · , Zn(uk)) →d (Z(u1), · · · , Z(uk))

where Z(u) = −uW + 2
∫ u
0 ψ(s) ds and W ∼ N(0, 1).

(c) Show that an(µ̂n − µ) →d ψ
−1(W/2).

5.14: The conditions assumed in Theorems 5.3 and 5.4 effectively
imply that the log-likelihood function is approximately quad-
ratic in a neighbourhood of the true parameter value. These
quadratic approximations can be used to give “heuristic” proofs
of Theorems 5.3 and 5.4.
Suppose that X1, · · · , Xn are i.i.d. random variables with
density or frequency function f(x;θ) satisfying conditions (B1)-
(B6). Define

Zn(u) =
n∑
i=1

ln
[
f(Xi; θ + u/

√
n)/f(Xi;θ)

]
and note that Zn is maximized at u =

√
n(θ̂n− θ) where θ̂n is

the MLE of θ.
(a) Show that

Zn(u) = uTW n −
1
2
uTJ(θ)u + Rn(u)

where supK |Rn(u)| →p 0 for any compact set K and W n →d

Np(0, I(θ)).
(b) Part (a) suggests that the limit of Zn is

Z(u) = uTW − 1
2
uTJ(θ)u

where W ∼ Np(0, I(θ)). Show that Z is maximized at u =
J−1(θ)W , which suggests that

√
n(θ̂n − θ) →d J−1(θ)W . (If

Zn(u) is a concave function of u for each n then this argument
is a rigorous proof of Theorem 5.4.)

5.15: In Theorems 5.3 and 5.4, we assume that the parameter space
Θ is an open subset of Rp. However, in many situations, this
assumption is not valid; for example, the model may impose
constraints on the parameter θ, which effectively makes Θ a
closed set. If Θ is not an open set then the MLE of θ need not
satisfy the likelihood equations as the MLE θ̂n may lie on the
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boundary of Θ. In determining the asymptotic distribution of
θ̂n the main concern is whether or not the true value of the
parameter lies on the boundary of the parameter space. If θ
lies in the interior of Θ then eventually (for sufficiently large
n) θ̂n will satisfy the likelihood equations and so Theorems 5.3
and 5.4 will still hold; however, the situation becomes more
complicated if θ lies on the boundary of Θ.
Suppose that X1, · · · , Xn are i.i.d. random variables with
density or frequency function f(x; θ) (satisfying conditions
(B2)-(B6)) where θ lies on the boundary of Θ. Define (as in
Problem 5.14) the function

Zn(u) =
n∑
i=1

ln
[
f(Xi; θ + u/

√
n)/f(Xi;θ)

]
and the set

Cn = {u : θ + u/
√
n ∈ Θ}.

The limiting distribution of the MLE can be determined by the
limiting behaviour of Zn and Cn; see Geyer (1994) for details.

(a) Show that
√
n(θ̂n − θ) maximizes Zn(u) subject to the

constraint u ∈ Cn.
(b) Suppose that {Cn} is a decreasing sequence of sets whose
limit is C. Show that C is non-empty.
(c) Parts (a) and (b) (together with Problem 5.14) suggest that√
n(θ̂n − θ) converges in distribution to the minimizer of

Z(u) = uTW − 1
2
uTJ(θ)u

(where W ∼ Np(0, I(θ))) subject to u ∈ C. Suppose that
X1, · · · , Xn are i.i.d. Gamma random variables with shape
parameter α and scale parameter λ where the parameter space
is restricted so that α ≥ λ > 0 (that is, E(Xi) ≥ 1). If α = λ,
describe the limiting distribution of the MLEs. (Hint: Show
that C = {(u1, u2) : u1 ≥ u2}.)

5.16: Suppose that X1, · · · , Xn are i.i.d. random variables with
density or frequency function f(x; θ) where θ is real-valued.
In many cases, the MLE of θ satisfies the likelihood equation

n∑
i=1

:′(Xi; θ̂n) = 0.
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If :(x; θ) is an unbounded function in x then a single observation
can potentially have an arbitrarily large influence on the
value of the MLE. For this reason, it is often desirable to
robustify maximum likelihood estimation by replacing :′(x; θ)
by a function ψc(x; θ) that is bounded in x. In order to have
Fisher consistency, we choose ψc so that Eθ[ψc(Xi; θ)] = 0
where the expected value is taken with respect to the density
or frequency function f(x; θ).
Suppose that X1, · · · , Xn are i.i.d. Exponential random vari-
ables with parameter λ. The MLE of λ satisfies the likelihood
equation

n∑
i=1

(
1
λ̂n

−Xi

)
= 0,

which can be solved to yield λ̂n = 1/X̄n. Consider replacing
:′(x;λ) = 1/λ− x (which is unbounded in x) by

ψc(x;λ) =
{

1/λ + gc(λ)− x if x ≤ c/λ + 1/λ + gc(λ)
c/λ otherwise

where c > 0 is a tuning parameter and gc(λ) is determined so
that Eλ[ψc(Xi;λ)] = 0.
(a) Show that gc(λ) satisfies the equation

exp(−c− 1− gc(λ)λ) + gc(λ) = 0

(b) Define λ̃n to satisfy the equation
n∑
i=1

ψc(Xi; λ̃n) = 0.

Assuming that the standard regularity conditions hold, find the
limiting distribution of

√
n(λ̃n − λ).

(c) Find the asymptotic relative efficiency of λ̃n with respect
to the MLE λ̂n. For what value of c is the asymptotic relative
efficiency equal to 0.95?

5.17: Let X1, · · · , Xn be i.i.d. random variables with density or
frequency function f(x; θ) where θ is a real-valued parameter.
Suppose that MLE of θ, θ̂, satisfies the likelihood equation

n∑
i=1

:′(Xi; θ̂) = 0
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where :′(x; θ) is the derivative with respect to θ of ln f(x; θ).
(a) Let θ̂−j be MLE of θ based on all the Xi’s except Xj . Show
that

θ̂−j ≈ θ̂ +
:′(Xj ; θ̂)∑n
i=1 :

′′(Xi; θ̂)
(if n is reasonably large).
(b) Show that the jackknife estimator of θ̂ satisfies

V̂ar(θ̂) ≈ n− 1
n

∑n
j=1[:

′(Xj ; θ̂)]2(∑n
i=1 :

′′(Xi; θ̂)
)2 .

(c) The result of part (b) suggests that the jackknife estimator
of Var(θ̂) is essentially the “sandwich” estimator; the latter
estimator is valid when the model is misspecified. Explain the
apparent equivalence between these two estimators of Var(θ̂).
(Hint: Think of the MLE as a substitution principle estimator
of some functional parameter.)

5.18: Millar (1987) considers a statistical model for determining
the composition of a mixed stock fishery. The statistical model
can be described as follows: We have a sample of N fish that can
be classified into one of G genotypes (where typically G >> N).
If Yi is the number of fish in the sample with genotype i then
Y = (Y1, · · · , YG) is a Multinomial random vector with

P (Y = y) =
N !

y1!× · · · × yG!

G∏
i=1

λi

where

λi =
S∑
j=1

xijθj

where θ1, · · · , θS (unknown) are the proportion of fish belonging
to the S sub-populations or stocks, and xij (known) is the
(conditional) probability of belonging to genotype i given
membership in stock j.
To estimate θ = (θ1, · · · , θS), we maximize the log-likelihood
function

lnL(θ) =
G∑
i=1

yi ln

 S∑
j=1

xijθj

 + k(y)
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where k(y) does not depend on θ. (We also must assume that
θj ≥ 0 for all j and θ1 + · · ·+ θS = 1.)
(a) Show that lnL(θ) can be written as

lnL(θ) =
N∑
r=1

ln

 S∑
j=1

xirjθj


where ir is the genotype of the r-th fish in the sample.
(b) Show that the MLEs of θ1, · · · , θS satisfy the equations

θ̂j =
1
N

N∑
r=1

xirj θ̂j∑S
k=1 xirkθ̂k

for j = 1, · · · , S.

(c) Assume that S = 2. In this case, we need only estimate a
single parameter θ (equal, say, to the proportion belonging to
stock 1). Assuming that the standard regularity conditions for
maximum likelihood estimators hold, find an estimator of the
standard error of θ̂.

5.19: Suppose that X = (X1, · · · , Xn) has a joint density or
frequency function f(x; θ) where θ has prior density π(θ). If
T = T (X) is sufficient for θ, show that the posterior density of
θ given X = x is the same as the posterior density of θ given
T = T (x).

5.20: Suppose that X1, · · · , Xn are i.i.d. Uniform random variables
on [0, θ] where θ has a Pareto prior density function:

π(θ) =
α

θ0

(
θ

θ0

)−α−1

for θ > θ0 > 0 and α > 0 where θ0 and α are hyperparameters.
(a) Show that the posterior distribution of θ is also Pareto.
(b) Suppose that θ∗ is the true value of θ. Under i.i.d. sampling,
what happens to the posterior density of θ as n → ∞? (Hint:
There are two cases to consider: θ∗ ≥ θ0 and θ∗ < θ0.)

5.21: The Zeta distribution is sometimes used in insurance as a
model for the number of policies held by a single person in an
insurance portfolio. The frequency function for this distribution
is

f(x;α) =
x−(α+1)

ζ(α + 1)
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Table 5.8 Data for Problem 5.21.

Observation 1 2 3 4 5

Frequency 63 14 5 1 2

for x = 1, 2, 3, · · · where α > 0 and

ζ(p) =
∞∑
k=1

k−p.

(The function ζ(p) is called the Riemann zeta function.)
(a) Suppose that X1, · · · , Xn are i.i.d. Zeta random variables.
Show that the MLE of α satisfies the equation

1
n

n∑
i=1

ln(Xi) = −ζ ′(α̂n + 1)
ζ(α̂n + 1)

and find the limiting distribution of
√
n(α̂n − α).

(b) Assume the following prior density for α:

π(α) =
1
2
α2 exp(−α) for α > 0

A sample of 85 observations is collected; its frequency distribu-
tion is given in Table 5.8.
Find the posterior distribution of α. What is the mode (ap-
proximately) of this posterior distribution?
(c) Repeat part (b) using the improper prior density

π(α) =
1
α

for α > 0.

Compare the posterior densities in part (b) and (c).
5.22: Suppose that X has a Binomial distribution with parameters

n and θ where θ is unknown.
(a) Find the Jeffreys prior for θ. Is this prior density proper?
(b) Find the posterior density for θ given X = x using the
Jeffreys prior.

5.23: The concept of Jeffreys priors can be extended to derive
“noninformative” priors for multiple parameters. Suppose that
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X has joint density or frequency function f(x;θ) and define
the matrix

I(θ) = Eθ[S(X;θ)ST (X;θ)]

where S(x;θ) is the gradient (vector of partial derivatives)
of ln f(x;θ) with respect to θ. The Jeffreys prior for θ is
proportional to det(I(θ))1/2.
(a) Show that the Jeffreys prior can be derived using the same
considerations made in the single parameter case. That is, if
φ = g(θ) for some one-to-one function g such that I(φ) is
constant then the Jeffreys prior for θ corresponds to a uniform
prior for φ.
(b) Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean µ and variance σ2. Find the Jeffreys prior for (µ, σ).
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CHAPTER 6

Optimality in Estimation

6.1 Introduction

To this point, we have discussed a number of approaches for
obtaining point estimators. We have also discussed approaches for
determining various properties of these estimators, such as limiting
distributions and approximate standard errors. However, we have
not (so far) attempted to determine if a given estimator is optimal
in any sense.

As it turns out, “optimal” is a poorly defined term in the context
of estimation as there are a number of criteria for optimality.
For example, we can approach optimality from a large sample (or
asymptotic) point of view. Suppose that X1, X2, · · · is a sequence
of random variables and θ̂n is an estimator of some parameter θ
based on X = (X1, · · · , Xn) such that

√
n(θ̂n − θ) →d N(0, σ2(θ)).

A natural question to ask is whether a lower bound for σ2(θ) exists;
if such a lower bound exists and is attained by some sequence of
estimators {θ̂n} then we can say that this sequence is optimal.

In this chapter, we will discuss optimal estimation from three
perspectives. First, we will look at estimation from a decision
theoretic point of view, comparing estimators based on their risk
for a given loss function. Next, we will narrow our focus to
unbiased estimation and attempt to find unbiased estimators with
uniformly minimum variance over the parameter space. Finally, we
will take an asymptotic point of view and consider estimators with
asymptotic Normal distributions.

6.2 Decision theory

While we have discussed a number of different approaches to point
estimation, we have so far avoided the issue of which estimator is
“best” or optimal in a given situation. One approach to finding and
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evaluating estimators is based on decision theory. We will discuss
only the most basic elements of decision theory here; a more detailed
treatment is given in Ferguson (1967).

In decision theory, in addition to specifying a model for X
(depending on some unknown parameter θ), we also specify a loss
function L(θ̂, θ) that describes the “loss” incurred by making an
estimate θ̂ when the true value of the parameter is θ. Typically,
the loss function is chosen so that for fixed θ, L(a, θ) increases as a
moves away from θ and L(θ, θ) = 0.

DEFINITION. A loss function L(·, ·) is a nonnegative-valued
function defined on Θ × Θ so that L(θ̂, θ) indicates the loss
incurred in estimating a parameter θ by θ̂.

Perhaps the most commonly used loss functions for real-valued
parameters are squared error loss (L(a, b) = (a− b)2) and absolute
error loss (L(a, b) = |a−b|). However, many other loss functions are
possible. Strictly speaking, the loss function used should be dictated
by the particular problem; however, almost invariably squared error
loss is used in the vast majority of estimation problems.

DEFINITION. Given a loss function L and an estimator θ̂, the
risk function Rθ(θ̂) is defined to be the expected value of L(θ̂, θ):

Rθ(θ̂) = Eθ[L(θ̂, θ)].

If squared error loss is used, then Rθ(θ̂) = MSEθ(θ̂), the mean
square error of θ̂. Likewise, if absolute error loss is used then
Rθ(θ̂) = MAEθ(θ̂), the mean absolute error.

Given a particular loss function L, we can try to find an estimator
θ̂ such that Rθ(θ̂) is minimized for all θ. Unfortunately, this is
impossible to do except in trivial cases; typically, the estimator that
minimizes Rθ(·) for a fixed θ will not minimize Rθ(·) uniformly over
all θ. However, if we accept risk (for example, mean square error) as
a measure of the quality of an estimator, we can rule out estimators
whose risk is uniformly higher than another estimator.

DEFINITION. For a given loss function L, an estimator θ̂ is an
inadmissible estimator of θ if there exists an estimator θ̃ such
that

Rθ(θ̃) ≤ Rθ(θ̂) for all θ ∈ Θ

and
Rθ0(θ̃) < Rθ0(θ̂) for some θ0 ∈ Θ.
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If no such estimator θ̃ exists then θ̂ is admissible.

EXAMPLE 6.1: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. The MLE of λ is

λ̂ =
1
X̄

where X̄ is the sample mean. It can be shown that Eλ(λ̂) = nλ/(n−
1) when n ≥ 2. An unbiased estimator of λ is λ̃ = (n − 1)λ̂/n.
Clearly,

MSEλ(λ̃) < MSEλ(λ̂)

since λ̃ is unbiased and Varλ(λ̃) < Varλ(λ̂). Since MSEλ(λ̂) = Rλ(λ̂)
when the loss function is squared error loss, λ̂ is an inadmissible
estimator of λ under squared error loss. However, in the case of
estimating positive parameters, mean square error tends to penalize
over-estimation more heavily than under-estimation (since the
maximum possible under-estimation is bounded) and thus squared
error loss may not be the best loss function to consider in this
example. Instead, we might define the loss function

L(a, b) =
b

a
− 1− ln(b/a)

for which we have for each fixed b > 0,

lim
a→0

L(a, b) = lim
a→∞

L(a, b) = ∞.

Evaluating the risk function of λ̃, we get

Rλ(λ̃) = Eλ

[
nλX̄

n− 1
− 1− ln

(
nλX̄

n− 1

)]
= Eλ

[
λX̄ − 1− ln

(
λX̄

)]
+

1
n− 1

Eλ(λX̄)− ln
(

n

n− 1

)
= Eλ

[
λX̄ − 1− ln

(
λX̄

)]
+

1
n− 1

− ln
(

n

n− 1

)
> Eλ

[
λX̄ − 1 + ln

(
λX̄

)]
= Rλ(λ̂)

c© 2000 by Chapman & Hall/CRC



(since 1/(n − 1) − ln(n/(n − 1)) > 0 for n ≥ 2) and so λ̃ is
inadmissible under this loss function. ✸

Note that we cannot make any claims about the admissibility of
the estimators in Example 6.1. More precisely, to prove admissi-
bility, we need to show that there exists no other estimator with
uniformly lower risk. At first glance, this may seem a formidable
task; however, there are technical devices available that facilitate
it. One of these devices arises by putting a prior distribution on the
parameter space.

Suppose that we put a (proper) prior density function π(θ) on
the parameter space Θ. Then given a loss function L(·, θ) and risk
function Rθ(·), we can define the Bayes risk of an estimator θ̂ by

RB(θ̂) =
∫
Θ
Rθ(θ̂)π(θ) dθ.

(Note that RB(θ̂) depends on the loss function, the distribution of
X as well as the prior distribution on Θ.) Then a Bayes estimator
of θ is an estimator that minimizes the Bayes risk.

Bayes estimators can usually be determined from the posterior
distribution of θ; more precisely, if the expected posterior loss
function ∫

Θ
L(T (x), θ)π(θ|x) dθ

is minimized at T (x) = T ∗(x) (where π(θ|x) is the posterior density
function of θ) then T ∗(X) is a Bayes estimator. For example,
for squared error loss, the Bayes estimator is simply the mean of
the posterior distribution while for absolute error loss, the Bayes
estimator is any median of the posterior distribution.

Bayes estimators are also admissible estimators provided that
they are unique. For example, suppose that θ̂ is a unique Bayes
estimator and suppose that Rθ(θ̃, θ) ≤ Rθ(θ̂, θ) for some other
estimator θ̃. Then

RB(θ̃) =
∫
Θ
Rθ(θ̃)π(θ) dθ

≤
∫
Θ
Rθ(θ̂)π(θ) dθ

= RB(θ̂),

which contradicts the uniqueness of θ̂ as a Bayes estimator; thus θ̂
must be admissible.
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An important optimality concept in decision theory is minimax
estimation.

DEFINITION. An estimator θ̂ is said to be minimax (with
respect to a loss function L) if

sup
θ∈Θ

Rθ(θ̂) ≤ sup
θ∈Θ

Rθ(θ̃)

for any estimator θ̃.

It is easy to see that a minimax estimator is admissible. In
general, proving that an estimator is minimax is not easy although
this can be facilitated if it can be shown that the estimator is a
Bayes estimator (or a limit of Bayes estimators) and has constant
risk over the parameter space; see Problem 6.5 for more details.

It should be noted that there are pitfalls involved in using any
criterion for evaluating estimators based on risk functions (such as
admissibility or minimaxity), particularly when the loss function
is not appropriate for the problem. In some problems, estimators
are often inadmissible only because they are dominated (in terms of
risk) by estimators whose practical use is somewhat dubious; in such
cases, it may be the loss function rather than the estimator that is
suspect. However, even if we are confident that our loss function is
appropriate, it may be worthwhile to limit the class of estimators
under consideration. For example, if θ is a parameter describing the
center of a distribution, it may be desirable to consider only those
estimators θ̂ = S(X1, · · · , Xn) for which

S(X1 + c, · · · , Xn + c) = S(X1, · · · , Xn) + c.

More generally, we might consider only those estimators that satisfy
a certain invariance or equivariance property, or only unbiased
estimators. In the next section, we will consider unbiased estimation
under squared error loss.

6.3 Minimum variance unbiased estimation

As mentioned above, one approach to finding estimators is to find
an estimator having uniformly smallest risk over some restricted
class of estimators. If we take the loss function to be squared error
loss and consider only unbiased estimators of a parameter then
we reduce the problem to finding the unbiased estimator with the
minimum variance (since the mean square error and variance are the
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same for unbiased estimators); if such an estimator has minimum
variance over the parameter space then this estimator is called a
uniformly minimum variance unbiased (UMVU) estimator.

Suppose that X1, · · · , Xn are random variables whose joint
distribution depends on some parameter θ, which may be real- or
vector-valued. In this section, we will consider unbiased estimation
of g(θ) where g is a real-valued function defined on the parameter
space Θ.

As discussed previously in Chapter 4, it is not clear that unbiased
estimators are always desirable. For example, if we believe in the
likelihood principle then it is easily shown that the requirement of
unbiasedness is a violation of this principle. For the time being,
however, we will ignore the possible shortcomings of unbiased
estimators and focus our energy on the theory of optimal unbiased
estimator under squared error loss. Nonetheless, it should be noted
that unbiased estimators do not always exist or, if they do exist, can
be nonsensical estimators; the following examples illustrate these
points.

EXAMPLE 6.2: Suppose that X is a Binomial random variable
with parameters n and θ, where 0 < θ < 1 is unknown. We wish to
find an unbiased estimator of g(θ) = 1/θ; that is, we need to find
a statistic T (X) such that Eθ[T (X)] = 1/θ for all 0 < θ < 1. Thus
we need to find T (0), T (1), · · · , T (n) such that

n∑
x=0

T (x)

(
n

x

)
θx(1− θ)n−x =

1
θ
.

Multiplying both sides by θ, we get

n∑
x=0

T (x)

(
n

x

)
θx+1(1− θ)n−x =

n+1∑
k=1

a(k)θk

= 1

where a(1), · · · , a(n+ 1) depend on T (0), T (1), · · · , T (n). It follows
that whatever the choice of a(1), · · · , a(n + 1), the equality

a(1)θ + · · ·+ a(n + 1)θn+1 = 1

is satisfied for at most n+1 values of θ between 0 and 1 and cannot
be satisfied for all θ. Thus there exists no unbiased estimator of 1/θ.
✸

EXAMPLE 6.3: Suppose that X is a Poisson random variable
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with mean λ. We wish to find an unbiased estimator of exp(−2λ)
based on X. If T (X) is this estimator, we must have

Eλ[T (X)] =
∞∑
x=0

T (x)
exp(−λ)λx

x!
= exp(−2λ)

for all λ > 0. Multiplying both sides of the equation by exp(λ), we
get

∞∑
x=0

T (x)
λx

x!
= exp(−λ)

=
∞∑
x=0

(−1)x
λx

x!
,

which implies that T (x) = (−1)x. Thus the only unbiased estimator
of exp(−2λ) is (−1)X ; since 0 < exp(−2λ) < 1 for λ > 0, this is
clearly a ridiculous estimator. It should be noted, however, that if
X1, · · · , Xn are i.i.d. Poisson random variables with parameter λ
then (1− 2/n)T (with T =

∑n
i=1 Xi) is unbiased; this estimator is

somewhat more sensible especially for larger values of n. ✸

Examples 6.2 and 6.3 notwithstanding, in many cases the class
of unbiased estimators is non-trivial.

EXAMPLE 6.4: Suppose that X1, · · · , Xn are i.i.d. random
variables with density

f(x;µ) = exp (−(x− µ)) for x ≥ µ

(where −∞ < µ <∞). Two possible unbiased estimators of µ are

µ̂1 = X(1) −
1
n

and µ̂2 = X̄ − 1;

note also that tµ̂1 + (1 − t)µ̂2 is also unbiased for any t. Simple
calculations reveal that

Var(µ̂1) =
1
n2

and Var(µ̂2) =
1
n

so that µ̂1 has the smaller variance. It is interesting to note that µ̂1

depends only on the one-dimensional sufficient statistic X(1). ✸

Does the estimator µ̂1 have the minimum variance among all
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unbiased estimators of µ in the previous example? The following
result indicates that any candidate for the minimum variance
unbiased estimator should be a function of the sufficient statistic.

THEOREM 6.1 (Rao-Blackwell Theorem) Suppose that X
has a joint distribution depending on some unknown parameter θ
and that T = T (X) is a sufficient statistic for θ. (Both θ and T can
be vector-valued.) Let S = S(X) be a statistic with Eθ(S) = g(θ)
and Varθ(S) <∞ for all θ.
If S∗ = E(S|T ) then
(a) S∗ is an unbiased estimator of g(θ), and
(b) Varθ(S∗) ≤ Varθ(S) for all θ.
Moreover, Varθ(S∗) < Varθ(S) unless Pθ(S = S∗) = 1.

Proof. Since T is sufficient for θ, h(t) = E(S|T = t) does not
depend on θ and so S∗ = h(T ) is a statistic with Eθ(S∗) =
Eθ[E(S|T )] = Eθ(S) = g(θ). Also

Varθ(S) = Varθ[E(S|T )] + Eθ[Var(S|T )]
≥ Varθ[E(S|T )]
= Varθ(S∗)

and so Varθ(S∗) ≤ Varθ(S). Also

Var(S|T ) = E[(S − S∗)2|T ] > 0

unless P (S = S∗|T ) = 1. Thus Eθ[Var(S|T )] > 0 unless S = S∗

with probability 1.

The Rao-Blackwell Theorem says that any unbiased estimator
should be a function of a sufficient statistic; if not, we can
construct an estimator with smaller variance merely by taking the
conditional expectation given a sufficient statistic. However, this
raises the question of which sufficient statistic to use to compute
the conditional expectation. For example, suppose that S is an
unbiased estimator of g(θ) (with finite variance) and T1 and T2 are
both sufficient statistics for θ with T2 = h(T1) for some function h.
(Both T1 and T2 can be vector-valued.) We define S∗

1 = E(S|T1)
and S∗

2 = E(S|T2). By the Rao-Blackwell Theorem, the variances
of S∗

1 and S∗
2 cannot exceed Var(S); however, it is not obvious

which “Rao-Blackwellized” estimator will have the smaller variance
although intuition suggests that Varθ(S∗

2) should be smaller since
T2 is the “simpler” statistic (as T2 = h(T1)).
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PROPOSITION 6.2 Suppose that S is an unbiased estimator
of g(θ) with finite variance and define S∗

1 = E(S|T1) and S∗
2 =

E(S|T2) for sufficient statistics T1 and T2. If T2 = h(T1),

Varθ(S∗
2) ≤ Varθ(S∗

1).

Proof. We will use the fact that Eθ[(S−φ(T1))2] is minimized over
all functions φ by E(S|T1). Since T2 is a function of T1, it follows
that

E(S∗
1 |T2) = E [E(S|T1)|T2]

= E [E(S|T2)|T1]
= E(S∗

2 |T1)
= S∗

2

where the last equality holds since S∗
2 is a function of T1. The

conclusion now follows from the Rao-Blackwell Theorem.
Proposition 6.2 essentially says that for any unbiased estimator

S of g(θ) the best “Rao-Blackwellization” of S is achieved by
conditioning on a minimal sufficient statistic. (Recall that a statistic
T is minimal sufficient if for any other sufficient statistic T ∗,
T = h(T ∗) for some function h.) However, even if T is minimal
sufficient, the estimator S∗ = E(S|T ) will not necessarily have the
minimum variance among all unbiased estimators since there may
exist another unbiased estimator S1 such that S∗

1 = E(S1|T ) has a
smaller variance than S∗. In the next section, we will show that in
certain problems, it is possible to find a sufficient statistic T such
that S∗ = E(S|T ) is independent of S. The following simple (and
rather silly) example illustrates the potential problem.

EXAMPLE 6.5: Suppose X is a discrete random variable with
frequency function

f(x; θ) =
{

θ for x = −1
(1− θ)2θx for x = 0, 1, 2, · · ·

where 0 < θ < 1. The statistic X is sufficient for θ and can be
shown to be minimal sufficient. Two unbiased estimators of θ are
S1 = I(X = −1) and S2 = I(X = −1) + X (since Eθ(X) = 0 for
all θ). Since both S1 and S2 are functions of the minimal sufficient
statistic X, we have S∗

1 = E(S1|X) = S1 and S∗
2 = E(S2|X) = S2.

But
Varθ(S1) = θ(1− θ)
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while

Varθ(S2) = Var(S1) + Var(X) + 2Cov(S1, X)

= θ(1− θ) +
2θ

1− θ
− 2θ

=
θ(θ2 + 1)

1− θ
> Varθ(S1)

thus illustrating that dependence on the minimal sufficient statistic
does not guarantee that an unbiased estimator will have minimum
variance. ✸

Complete and Sufficient Statistics

Suppose that S1 and S2 are two unbiased estimators of g(θ) (with
finite variance) and suppose that T is sufficient for θ. We can define
S∗

1 = E(S1|T ) and S∗
2 = E(S2|T ). Although Varθ(S∗

i ) ≤ Varθ(Si)
(for i = 1, 2), there is no way of knowing a priori whether S∗

1 or S∗
2

will have a smaller variance. However, for an appropriate choice of
T , we would like to have
• Varθ(S∗

1) = Varθ(S∗
2) for all θ, or

• Pθ(S∗
1 = S∗

2) = 1 for all θ.
More precisely, for this particular choice of T , there will be only
one unbiased estimator that is a function of T and, if T is minimal
sufficient, this unbiased estimator will have minimum variance.

EXAMPLE 6.6: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ and consider unbiased estimators
of g(λ) = exp(−λ) = Pλ(Xi = 0). Two unbiased estimators of g(λ)
are

S1 = I(X1 = 0) and S2 =
1
n

n∑
i=1

I(Xi = 0).

A minimal sufficient statistic for λ is T =
∑n

i=1 Xi. To find
the “Rao-Blackwellized” estimators, we must find the conditional
distributions of S1 and S2 given T = t. It is easy to see that

P (S1 = 1|T = t) =
Pλ(S1 = s, T = t)

Pλ(T = t)

=
(

1− 1
n

)t
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and hence

S∗
1 = E(S1|T ) =

(
1− 1

n

)T

.

For S2, define U =
∑n

i=1 I(Xi = 0); we get

P (U = u|T = t) =

(
n

u

) (
1− u

n

)t

for u = max(n− t, 0), · · · ,max(n− 1, n− t). It follows then that

E(U |T = t) =
∑
u

u

(
n

u

) (
1− u

n

)t

= n

(
1− 1

n

)t

and so S∗
2 = (1 − 1/n)T = S∗

1 . Thus, in this example, “Rao-
Blackwellizing” S1 and S2 leads to the same estimator. ✸

DEFINITION. Suppose that X1, · · · , Xn are random variables
whose joint distribution depends on some unknown parameter θ.
A statistic T = T (X1, · · · , Xn) (possibly vector-valued) is said
to be complete for θ if for any function g, Eθ[g(T )] = 0 for all θ
implies that Pθ[g(T ) = 0] = 1 for all θ.
Completeness of a statistic T essentially means that T contains

no “ancillary” (meaningless) information about θ. For example,
if T is complete for θ then g(T ) is an ancillary statistic for θ if,
and only if, g(T ) is constant over the range of T . (More precisely,
for some constant k, Pθ[g(T ) = k] = 1 for all θ.) It can be
shown that if a statistic T is sufficient and complete then T is
also minimal sufficient. However, a minimal sufficient statistic need
not be complete.

EXAMPLE 6.7: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ and define T =

∑n
i=1 Xi. T , of

course, is sufficient for λ; to see if T is complete, we need to see if
there exists a function g such that Eλ[g(T )] = 0 for all λ > 0. Since
T has a Poisson distribution with mean nλ, we have

Eλ[g(T )] =
∞∑
x=0

g(x)
exp(−nλ)(nλ)x

x!

and so Eλ[g(T )] = 0 for all λ if, and only if,
∞∑
x=0

g(x)
(nλ)x

x!
= 0 for all λ > 0.
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Since
∑∞

k=0 ckλ
k = 0 for all a < λ < b if, and only if, ck = 0 for

all k ≥ 0, it follows that Eλ[g(T )] = 0 for all λ > 0 if, and only if,
g(x)nx/x! = 0 for x = 0, 1, · · ·. Hence Eλ[g(T )] = 0 for all λ > 0
implies that Pλ(g(T ) = 0) = 1 for all λ > 0. ✸

EXAMPLE 6.8: Suppose that X1, · · · , Xn are i.i.d. discrete
random variables with frequency function

f(x; θ) =
{

θ for x = −1
(1− θ)2θx for x = 0, 1, 2, · · ·

where 0 < θ < 1. The joint frequency function of X = (X1, · · · , Xn)
can be written as a two-parameter exponential family:

f(x; θ) = exp [c1(θ)T1(x) + c2(θ)T2(x) + 2 ln(1− θ)]

where c1(θ) = ln(θ)− 2 ln(1− θ), c2(θ) = ln(θ) and

T1(x) =
n∑
i=1

I(xi = −1)

T2(x) =
n∑
i=1

xiI(xi ≥ 0).

Thus (T1(X), T2(X) is sufficient (in fact, minimal sufficient) for θ.
However, this sufficient statistic is not complete. To see this, note
that

Eθ(Xi) = −θ +
∞∑
x=0

x(1− θ)2θx = 0.

Since

n∑
i=1

Xi =
n∑
i=1

XiI(Xi ≥ 0)−
n∑
i=1

I(Xi = −1)

= T2 − T1,

it follows that Eθ(T2 − T1) = 0 for all θ. Since Pθ(T2 = T1) < 1 for
all θ, it follows that the sufficient statistic (T1, T2) is not complete.
(This explains what happens in Example 6.5.) ✸

The following result gives a condition for a sufficient statistic to
be complete in an exponential family.

THEOREM 6.3 Suppose that X = (X1, · · · , Xn) have joint
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density or joint frequency function that is a k-parameter exponential
family:

f(x; θ) = exp

[
k∑
i=1

ci(θ)Ti(x)− d(θ) + S(x)

]
for x ∈ A

Define C = {(c1(θ), · · · , ck(θ)) : θ ∈ Θ}. If the set C contains an
open set (rectangle) of the form (a1, b1) × · · · × (ak, bk) then the
statistic (T1(X), · · · , Tk(X)) is complete as well as sufficient for θ.

The proof of Theorem 6.3 is beyond the scope of this book; a
proof can be found in Lehmann (1991). Essentially this result is a
consequence of the uniqueness of characteristic functions. It says,
roughly speaking, that a k-dimensional sufficient statistic in a k-
parameter exponential family will also be complete provided that
the dimension of the parameter space is k. Note that in Example
6.8, the parameter space is one-dimensional while the model is a
two-parameter exponential family.

EXAMPLE 6.9: Suppose X1, · · · , Xn are i.i.d. Normal random
variables with mean µ and variance σ2. The joint density can be
written as a two-parameter exponential family:

f(x;µ, σ) = exp

[
− 1

2σ2

n∑
i=1

x2
i +

µ

σ2

n∑
i=1

xi − d(µ, σ)

]

with d(µ, σ) = nµ2/(2σ2) + n ln(σ) + n ln(2π)/2. Clearly range of
the function

c(µ, σ) =
(
− 1

2σ
,
µ

σ2

)
for −∞ < µ < ∞ and σ > 0 contains an open rectangle in R2 so
the sufficient statistic (

n∑
i=1

Xi,
n∑
i=1

X2
i

)

is complete as well as sufficient for (µ, σ). Moreover, as with
sufficiency, any one-to-one function of a complete statistic will
also be complete; thus, for example,

(
X̄,

∑n
i=1(Xi − X̄)2

)
is also

complete. ✸

The following result gives a simple criterion for the existence of
a UMVU estimator when a complete and sufficient statistic exists.
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THEOREM 6.4 (Lehmann-Scheffé Theorem) Suppose that
T is a sufficient and complete statistic for θ and that S is a statistic
with Eθ(S) = g(θ) and Varθ(S) <∞ for all θ. If S∗ = E(S|T ) and
V is any other unbiased estimator of g(θ) then
(a) Varθ(S∗) ≤ Varθ(V )
(b) Varθ(S∗) = Varθ(V ) implies that Pθ(S∗ = V ) = 1.
(Thus S∗ is the unique UMVU estimator of g(θ).)

Proof. Take V to be an arbitrary statistic with Eθ(V ) = g(θ) and
Varθ(V ) < ∞. Define V ∗ = E(V |T ) and note that Varθ(V ∗) ≤
Varθ(V ) by the Rao-Blackwell Theorem. It suffices to show that
Pθ(S∗ = V ∗) = 1 for all θ. Since both S∗ and V ∗ are unbiased
estimators of g(θ), we have

0 = Eθ(S∗ − V ∗) = Eθ [E(S|T )− E(V |T )] for all θ

or Eθ[h(T )] = 0 for all θ where h(T ) = E(S|T )−E(V |T ) = S∗−V ∗.
Since T is complete, it follows that Pθ(S∗ − V ∗ = 0) = 1 for all θ,
which completes the proof.

The Lehmann-Scheffé Theorem states that if a complete and
sufficient statistic T exists, then the UMVU estimator of g(θ)
(if it exists) must be a function of T ; moreover, if the UMVU
estimator exists then it is unique. The Lehmann-Scheffé Theorem
also simplifies the search for unbiased estimators considerably: if
a complete and sufficient statistic T exists and there exists no
function h such that Eθ[h(T )] = g(θ) then no unbiased estimator
of g(θ) exists.

Taken together, the Rao-Blackwell and Lehmann-Scheffé The-
orems also suggest two approaches to finding UMVU estimators
when a complete and sufficient statistic T exists.
• Find a function h such that Eθ[h(T )] = g(θ). If Varθ[h(T )] <∞

for all θ then h(T ) is the unique UMVU estimator of g(θ). The
function h can be determined by solving the equation Eθ[h(T )] =
g(θ) or by making an educated guess.

• Given an unbiased estimator S of g(θ), define the “Rao-Blackwel-
lized” estimator S∗ = E(S|T ). Then S∗ is the unique UMVU
estimator of g(θ).

EXAMPLE 6.10: Suppose that X1, · · · , Xn are i.i.d. Bernoulli
random variables with parameter θ. By the Neyman Factorization
Criterion, T = X1 + · · · + Xn is sufficient for θ and since the
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distribution of (X1, · · · , Xn) is a one-parameter exponential family,
T is also complete. Suppose we want to find the UMVU estimator
of θ2.

First suppose that n = 2. If a UMVU estimator exists, it must
be of the form h(T ) where the function h satisfies

θ2 =
2∑

k=0

h(k)

(
2
k

)
θk(1− θ)2−k.

It is easy to see that h(0) = h(1) = 0 while h(2) = 1. Thus
h(T ) = T (T − 1)/2 is the unique UMVU estimator of θ2 when
n = 2.

For n > 2, we set S = I(X1 + X2 = 2) and note that this
is an unbiased estimator of θ2. By the Lehman-Scheffé Theorem,
S∗ = E(S|T ) is the unique UMVU estimator of θ2. We have

E(S|T = t) = P (X1 + X2 = 2|T = t)

=
Pθ(X1 + X2 = 2, X3 + · · ·+ Xn = t− 2)

Pθ(T = t)

=

{
0 if t ≤ 1(n−2

t−2

)/(n
t

)
if t ≥ 2

=
t(t− 1)
n(n− 1)

.

Thus S∗ = T (T − 1)/[n(n− 1)] is the UMVU estimator of θ2. ✸

EXAMPLE 6.11: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with unknown mean and variance, µ and σ2. It
was shown earlier that the statistic

(T1, T2) =

(
n∑
i=1

Xi,
n∑
i=1

(Xi − X̄)2
)

is sufficient and complete for (µ, σ). Consider unbiased estimators
of µ/σ. It is not obvious that an unbiased estimator exists; however,
T1 is independent of T2 with T2/σ

2 ∼ χ2
n−1, which suggests that

E
(
T1/

√
T2

)
= E(T1)E

(
T
−1/2
2

)
= kn

µ

σ
where the constant kn depends only on n and not on µ or σ. It
follows that E(T1) = nµ while

E
(
T
−1/2
2

)
=

Γ(n/2− 1)√
2Γ ((n− 1)/2)

σ−1 (for n ≥ 3)
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and so
kn =

nΓ(n/2− 1)√
2Γ ((n− 1)/2)

.

Thus k−1
n T1/

√
T2 is an unbiased estimator of µ/σ when n ≥ 3 and

has finite variance when n ≥ 4; since the estimator is a function
of the sufficient and complete statistic, it is the unique UMVU
estimator. ✸

6.4 The Cramér-Rao lower bound

In the previous section, we saw that UMVU estimators of g(θ) could
be found if a complete and sufficient statistic existed. However,
in many problems, the minimal sufficient statistic is not complete
and so we cannot appeal to the Lehmann-Scheffé Theorem to find
UMVU estimators. In this section, we will derive a lower bound for
the variance of an unbiased estimator of g(θ); if the variance of some
unbiased estimator achieves this lower bound, then the estimator
will be UMVU.

Suppose that X1, · · · , Xn are random variables with joint density
or frequency function depending on a real-valued parameter θ and
consider unbiased estimators of g(θ) (if they exist). Suppose that
S = S(X1, · · · , Xn) is an unbiased estimator of g(θ). Under fairly
weak regularity conditions, we would like to find a function φ(θ)
such that

Varθ(S) ≥ φ(θ) (for all θ)

for any statistic S with Eθ(S) = g(θ). Moreover, we would like to
be able to find unbiased estimators such that the lower bound is
achieved or comes close to being achieved. (For example, 0 is always
a lower bound for Varθ(S) but is typically unattainable.)

The Cauchy-Schwarz inequality states that if U and V are
random variables with E(U2) <∞ and E(V 2) <∞ then

[Cov(U, V )]2 ≤ Var(U)Var(V ).

Using this result, we obtain the following lower bound for Varθ(S),

Varθ(S) ≥ [Covθ(S,U)]2

Varθ(U)
,

which is valid for any random variable U . However, as it stands,
this lower bound is not particularly useful since Covθ(S,U) will
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generally depend on S and not merely on θ. Fortunately, it is
possible to find a random variable U such that Covθ(S,U) depends
only on g(θ) = Eθ(S).

We will assume that θ is real-valued and make the following
assumptions about the joint density or frequency function of X =
(X1, · · · , Xn):
(1) The set A = {x : f(x; θ) > 0} does not depend on θ.
(2) For all x ∈ A, f(x; θ) is differentiable with respect to θ.
(3) Eθ[Uθ(X1, · · · , Xn)] = 0 where

Uθ(x) =
∂

∂θ
ln f(x; θ).

(4) For a statistic T = T (X) with Eθ(|T |) < ∞ (for all θ) and
g(θ) = Eθ(T ) differentiable,

g′(θ) = Eθ[TUθ(X)]

for all θ.

At first glance, assumptions (3) and (4) may not appear to make
sense. However, suppose that f(x; θ) is a density function. Then for
some statistic S,

d

dθ
Eθ(S) =

d

dθ

∫
· · ·

∫
S(x)f(x; θ) dx

=
∫
· · ·

∫
S(x)

∂

∂θ
f(x; θ) dx

=
∫
· · ·

∫
S(x)Uθ(x) dx

= Eθ[SUθ]

provided that the derivative may be taken inside the integral sign.
Setting S = 1 and S = T , it is easy to see that assumptions (3)
and (4) hold.
THEOREM 6.5 (Cramér-Rao lower bound)
Suppose that X = (X1, · · · , Xn) has a joint density (frequency)
function f(x; θ) satisfying assumptions (1), (2), and (3). If the
statistic T satisfies assumption (4) then

Varθ(T ) ≥ [g′(θ)]2

I(θ)

where I(θ) = Eθ(U2
θ ).
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Proof. By the Cauchy-Schwarz inequality,

Varθ(T ) ≥ Cov2
θ(T,Uθ)

Varθ(Uθ)
.

Since Eθ(Uθ) = 0, it follows that Varθ(Uθ) = I(θ). Also

Covθ(T,Uθ) = Eθ(TUθ)− Eθ(T )Eθ(Uθ)
= Eθ(TUθ)

=
d

dθ
Eθ(T ) = g′(θ),

which completes the proof.

When is the Cramér-Rao lower bound attained? If

Varθ(T ) =
[g′(θ)]2

I(θ)

then

Varθ(T ) =
Cov2

θ(T,Uθ)
Varθ(Uθ)

,

which occurs if, and only if, Uθ is a linear function of T ; that is,
with probability 1,

Uθ = A(θ)T + B(θ)

or
∂

∂θ
ln f(x; θ) = A(θ)T (x) + B(θ)

for all x ∈ A. Hence

ln f(x; θ) = A∗(θ)T (x) + B∗(θ) + S(x)

and so Varθ(T ) attains the Cramér-Rao lower bound if, and only
if, the density or frequency function of (X1, · · · , Xn) has the one-
parameter exponential family form given above. In particular, the
estimator T must be a sufficient statistic.

If X1, · · · , Xn are i.i.d. random variables with common density
f(x; θ) then

Uθ(x) =
n∑
i=1

∂

∂θ
ln f(xi; θ)

and so
I(θ) = Varθ(U2

θ ) = nVarθ
(

∂

∂θ
ln f(X1; θ)

)
.
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An alternative method for computing I(θ) can frequently be used.
If Eθ(T ) can be differentiated twice with respect to θ under the
integral or sum signs then

I(θ) = Eθ[Hθ(X)]

where
Hθ(x) = − ∂2

∂θ2
. ln f(x; θ)

A similar result was proved in Chapter 5 in the case of finding the
asymptotic variance of the MLE. This alternative method works in
many models including one-parameter exponential families.

EXAMPLE 6.12: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ. A simple calculation yields

Uλ(x) =
n∑
i=1

∂

∂λ
ln f(xi;λ) = −n +

1
λ

n∑
i=1

xi

and so
I(λ) = Varλ(Uλ) =

1
λ2

n∑
i=1

Varλ(Xi) =
n

λ
.

Also note that

Hλ(x) = −
n∑
i=1

∂2

∂λ2
ln f(xi;λ) =

1
λ2

n∑
i=1

xi

and so Eλ(Hλ) = n/λ = I(λ).
The Cramér-Rao lower bound for unbiased estimators of λ is

simply λ/n and this lower bound is attained by the estimator
T = X̄. In fact, the lower bound can only be attained by estimators
of the form aT + b for constants a and b.

Now consider unbiased estimators of λ2; the Cramér-Rao lower
bound in this case is

(2λ)2

I(λ)
=

4λ3

n
.

From above, we know that no unbiased estimator attains this lower
bound. However, we would like to see how close different estimators
come to attaining the lower bound. Using the fact that

Eλ[Xi(Xi − 1)] = λ2,

it follows that

T1 =
1
n

n∑
i=1

Xi(Xi − 1)
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is an unbiased estimator of λ2; a tedious calculation yields

Varλ(T1) =
4λ3

n
+

2λ2

n
.

Since X̄ is sufficient and complete for λ, the UMVU estimator of
λ2 is T2 = E(T1|X̄) with

Varλ(T2) =
4λ3

n
+

2λ2

n2
.

Finally consider the biased estimator T3 = (X̄)2, which is the MLE
of λ2. Since nX̄ has a Poisson distribution with mean nλ, another
tedious calculation yields

Eλ(T3) = λ2 +
λ

n

and Varλ(T3) =
4λ3

n
+

5λ2

n2
+

λ

n3
.

The difference between the UMVE estimator and the MLE of λ2

becomes negligible for large n. ✸

EXAMPLE 6.13: Suppose that X1, · · · , Xn are i.i.d. Logistic
random variables with density function

f(x; θ) =
exp(x− θ)

[1 + exp(x− θ)]2
.

It is easy to verify that I(θ) = n/3 and so if θ̂ is an unbiased
estimator of θ based on X1, · · · , Xn, we have

Varθ(θ̂) ≥
3
n
.

Since the model is not a one-parameter exponential family, no
unbiased estimator attains the lower bound. For example, X̄ is an
unbiased estimator of θ with Varθ(X̄) = π2/(3n) ≈ 3.29/n. The
sample median is also unbiased; asymptotic theory predicts that its
variance is approximately 4/n. It follows from standard asymptotic
theory for MLEs that

√
n(θ̂n − θ) →d N(0, 3) for the MLE, which

suggests that for large n, Varθ(θ̂n) ≈ 3/n. ✸

6.5 Asymptotic efficiency

Suppose that X1, · · · , Xn are i.i.d. random variables with density
or frequency function f(x; θ) where θ is a real-valued parameter. In
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Chapter 4, we showed that, subject to some regularity conditions,
if θ̂n is the MLE of θ then

√
n(θ̂n − θ) →d N(0, 1/I(θ))

where
I(θ) = Varθ

[
∂

∂θ
ln f(X1; θ)

]
.

This result suggests that for sufficiently large n,

Eθ(θ̂n) ≈ θ and Varθ(θ̂n) ≈
1

nI(θ)
.

On the other hand if T is any statistic (based on X1, · · · , Xn) with
Eθ(T ) = θ) then

Varθ(T ) ≥ 1
nI(θ)

.

Juxtaposing the Cramér-Rao lower bound with the asymptotic
theory for MLEs (as developed in Chapter 5) raises the following
question: If θ̃n is a sequence of estimators with

√
n(θ̃n − θ) →d N(0, σ2(θ))

then is σ2(θ) ≥ 1/I(θ) for all θ? The answer to the question is a
qualified “yes” although we will show it is possible to find estimators
for which σ2(θ) < 1/I(θ) for some θ.

What qualifications must be made in order to conclude that the
asymptotic variance σ2(θ) ≥ 1/I(θ)? It will follow from results
given below that if σ2(θ) is a continuous function of θ then σ2(θ) ≥
1/I(θ). The following example shows that σ2(θ) < 1/I(θ) for some
θ if σ2(θ) is not continuous.

EXAMPLE 6.14: Suppose X1, X2, · · · , Xn are i.i.d. Normal
random variables with mean θ and variance 1; for this model,
I(θ) = 1 for all θ. Consider the estimator

θ̃n =

{
X̄n if |X̄n| ≥ n−1/4

aX̄n if |X̄n| < n−1/4

where a is a constant with |a| < 1. We will show that
√
n(θ̃n−θ) →d

N(0, σ2(θ)) where

σ2(θ) =
{

1 if θ �= 0
a2 if θ = 0 ;
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thus, σ2(0) < 1/I(0). To prove this, note that
√
n(X̄n − θ) =d Z

where Z ∼ N(0, 1). It follows then that
√
n(θ̃n − θ) =

√
n(X̄n − θ)I(|X̄n| ≥ n−1/4)

+
√
n(aX̄n − θ)I(|X̄n| < n−1/4)

=
√
n(X̄n − θ)I(

√
n|X̄n − θ + θ| ≥ n1/4)

+
√
n(aX̄n − θ)I(

√
n|X̄n − θ + θ| < n1/4)

=d ZI(|Z +
√
nθ| ≥ n1/4)

+[aZ +
√
nθ(a− 1)]I(|Z +

√
nθ| < n1/4).

Now note that Z +
√
nθ ∼ N(

√
nθ, 1) and so

I(|Z +
√
nθ| ≥ n1/4) →p

{
0 if θ = 0
1 if θ �= 0.

Thus we have

ZI(|Z +
√
nθ| ≥ n1/4) →p

{
Z if θ �= 0
0 if θ = 0

and also

[aZ +
√
nθ(a− 1)]I(|Z +

√
nθ| < n1/4) →p

{
0 if θ �= 0
aZ if θ = 0.

Thus √
n(θ̃n − θ) →d

{
Z if θ �= 0
aZ if θ = 0.

This example was first given by J.L. Hodges in 1952. ✸

Asymptotically Normal estimators whose limiting variance σ2(θ)
satisfies

σ2(θ0) <
1

I(θ0)
for some θ0 are often called superefficient estimators. Bahadur
(1964) showed that (subject to some weak regularity conditions)
the set of θ for which σ2(θ) < 1/I(θ) is at most countable. We can
also define the notion of “regularity” of a sequence of estimators,
an idea dating back to Hájek (1970). We say that a sequence of
estimators {θ̂n} is regular at θ if, for θn = θ + c/

√
n,

lim
n→∞

Pθn

(√
n(θ̂n − θn) ≤ x

)
= Gθ(x)

where the limiting distribution function Gθ(x) can depend on θ
but not c. It is possible to verify that the sequence of estimators
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{θ̂n} given in Example 6.14 is not regular at θ = 0. Virtually all
“standard” estimators such as maximum likelihood and substitu-
tion principle estimators are regular.

EXAMPLE 6.15: Suppose that X1, X2, · · · , Xn are i.i.d. Normal
random variables with mean θ and variance 1; define θ̂n = X̄n. If
θn = θ + c/

√
n is the true parameter value then θ̂n has a Normal

distribution with mean θn and variance 1/n; hence
√
n(θ̂n−θn) has

a standard Normal distribution for all n and so {θ̂n} is regular (at
any θ). ✸

EXAMPLE 6.16: Suppose that X1, X2, · · · , Xn are i.i.d. Expo-
nential random variables with parameter λ and define λ̂n = 1/X̄n.
If λn = λ + c/

√
n, it is possible to show (using, for example, the

Lyapunov Central Limit Theorem) that

Pλn

(√
n(X̄n − λ−1

n ) ≤ x
)
→ Φ(λx)

where Φ(·) is the standard Normal distribution function. Then using
a “Delta Method”-type argument, we get

Pλn

(√
n(λ̂n − λn) ≤ x

)
→ Φ(x/λ)

and so {λ̂n} is a regular sequence of estimators. ✸

The following theorem gives a representation for regular estima-
tors based on i.i.d. random variables in the case where the log-
likelihood function can be approximated by a quadratic function in
a neighbourhood of the true parameter θ.

THEOREM 6.6 Let X1, X2, · · · , Xn be i.i.d. random variables
with density or frequency function f(x; θ) and suppose that {θ̂n}
is a sequence of estimators that is regular at θ. If
n∑
i=1

[
ln f(Xi; θ + c/

√
n)− ln f(Xi; θ)

]
= cSn(θ)−

1
2
c2I(θ)+Rn(c, θ)

where Sn(θ) →d N(0, I(θ)) and Rn(c, θ) →p 0 for all c then
√
n(θ̂n − θ) →d Z1 + Z2

where Z1 ∼ N(0, 1/I(θ)) and Z2 is independent of Z1.

In most cases,
√
n(θ̂n − θ) →d N(0, σ2(θ)) so that the random

variable Z2 in Theorem 6.6 has a Normal distribution with mean
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0 and variance σ2(θ)− 1/I(θ). If σ2(θ) = 1/I(θ) then the sequence
{θ̂n} is said to be asymptotically efficient. Theorem 6.6 can also
be extended to handle an estimator of a vector parameter θ in
which case Z1 becomes a multivariate Normal random vector with
variance-covariance matrix [I(θ)]−1.

It is important to note that, under the conditions of Theorem
6.6, the sequence of MLEs {θ̂n} typically satisfies

√
n(θ̂n − θ) →d

N(0, 1/I(θ)), which establishes the MLE as the most efficient of all
regular estimators. However, it is also important to recognize that
there may be other regular estimators that, while not MLEs, have
the same asymptotic variance as the MLE and, at the same time,
have superior finite sample properties.

The proof of Theorem 6.6 is quite technical and will not be given
here. We will however sketch a proof of the result under somewhat
stronger assumptions. In particular, we will assume that

Eθ

[
exp

(
t1
√
n(θ̂n − θ) + t2Sn(θ)

)]
→ m(t1, t2)

and that as n→∞
Eθn

[
exp(

(
t1
√
n(θ̂n − θn)

)]
→ m(t1, 0)

(where θn = θ + c/
√
n) for |t1| ≤ b, |t2| ≤ b where b > 0. We need

to show that m(t1, 0) is the product of two moment generating
functions, one of which is the moment generating function of a
N(0, 1/I(θ)) random variable. First of all, for θn = θ + c/

√
n, we

have that

Eθn

[
exp

(
t1
√
n(θ̂n − θ)

)]
= exp(−t1c)Eθn

[
exp

(
t1
√
n(θ̂n − θn)

)]
→ exp(−t1c)m(t1, 0).

On the other hand, if we set

Wn(θ, c) =
n∑
i=1

[
ln f(Xi; θ + c/

√
n)− ln f(Xi; θ)

]
,

we also have

Eθn

[
exp

(
t1
√
n(θ̂n − θ)

)]
= Eθ

[
exp

(
t1
√
n(θ̂n − θ) + Wn(θ, c)

)]
→ m(t1, c) exp

(
−1

2
c2I(θ)

)
,
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which follows by substituting the approximately quadratic function
(in c) for Wn(θ, c). Equating the two limits above, it follows that

m(t1, 0) = m(t1, c) exp
(
−t1c−

1
2
c2I(θ)

)
and setting c = −t1/I(θ), we get

m(t1, 0) = m(t1,−t1/I(θ)) exp

(
t21

2I(θ)

)
.

It is easy to verify that m(t1,−t1/I(θ)) is a moment generating
function and exp

(
t21/(2I(θ))

)
is the moment generating function of

a N(0, 1/I(θ)) random variable.
It should be noted that the rigorous proof of Theorem 6.6 is

very similar to that given above except that characteristic functions
are used and a few other technical difficulties must be addressed.
Theorem 6.6 also holds in the multi-parameter case where Z1 and
Z2 are random vectors and I(θ) is a matrix.

Verifying the regularity of a sequence of estimators is generally a
tedious process. The assumption of regularity in Theorem 6.6 can
be replaced by a more natural condition (Tierney, 1987), namely
that

lim
n→∞

Pθ
(√

n(θ̂n − θ) ≤ x
)

= Gθ(x)

where the limiting distribution function Gθ(x) is “continuous” in θ
in the sense that ∫ ∞

−∞
h(x) dGθ(x)

is a continuous function of θ for all bounded, continuous functions
h(x). For example, if Gθ(x) is the N(0, σ2(θ)) distribution function
and σ2(θ) is a continuous function of θ then this condition is
satisfied. Sequences of estimators satisfying this “continuous limit”
condition are typically regular and vice versa although exceptions
in both directions can be found.

It is important to view Theorem 6.6 in its proper context, that
is, as an asymptotic optimality result for MLEs within a partic-
ular class of estimators, namely regular estimators. In particular,
it is somewhat tempting to dismiss non-regular estimators as con-
trivances that would never be used in practice. While this is prob-
ably true of the estimator in Example 6.14, there are estimators
used in practice (particularly in multi-parameter problems) that
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are similar in spirit to the Hodges estimator of Example 6.14; for
example, in regression models, it is quite common to set certain
parameter estimators to 0 if some preliminary estimator of that
parameter falls below a specified threshold.

6.6 Problems and complements

6.1: Suppose that X = (X1, · · · , Xn) have joint density or fre-
quency function f(x; θ) where θ is a real-valued parameter with
a proper prior density function π(θ). For squared error loss, de-
fine the Bayes risk of an estimator θ̂ = S(X):

RB(θ̂, θ) =
∫
Θ
Eθ[(θ̂ − θ)2]π(θ) dθ.

The Bayes estimator of minimizes the Bayes risk.
(a) Show that the Bayes estimator is the mean of the posterior
distribution of θ.
(b) Suppose that the Bayes estimator in (a) is also an unbiased
estimator. Show that the Bayes risk of this estimator must
be 0. (This result implies that Bayes estimators and unbiased
estimators agree only in pathological examples.)

6.2: Suppose that X ∼ Bin(n, θ) where θ has a Beta prior:

π(θ)
Γ(α + β)
Γ(α)Γ(β)

θα−1(1− θ)β−1

for 0 < θ < 1.
(a) Show that the Bayes estimator of θ under squared error loss
is (X + α)/(α + β + n).
(b) Find the mean square error of the Bayes estimator in
(a). Compare the mean square error to that of the unbiased
estimator X/n.

6.3: Suppose that X1, · · · , Xn are i.i.d. Poisson random variables
with mean θ where θ has a Gamma (α , β ) prior distribution.
(a) Show that

θ̂ =
α +

∑n
i=1 Xi

β + n

is the Bayes estimator of θ under squared error loss.
(b) Use the result of (a) to show that any estimator of the form
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aX̄ + b for 0 < a < 1 and b > 0 is an admissible estimator of θ
under squared error loss.

6.4: Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean θ and variance 1 where θ has the improper prior
density π(θ) = exp(θ) for −∞ < θ <∞.
(a) Find the posterior density of θ given X1, · · · , Xn.
(b) Find the posterior mean of θ. Is this estimator admissible
under squared error loss?

6.5: Given a loss function L, we want to find a minimax estimator
of a parameter θ.
(a) Suppose that θ̂ is a Bayes estimator of θ for some prior
distribution π(θ) with

RB(θ̂) = sup
θ∈Θ

Rθ(θ̂).

Show that θ̂ is a minimax estimator. (The prior distribution π
is called a least favourable distribution.)
(b) Let {πn(θ)} be a sequence of prior density functions on Θ
and suppose that {θ̂n} are the corresponding Bayes estimators.
If θ̂0 is an estimator with

sup
θ∈Θ

Rθ(θ̂0) = lim
n→∞

∫
Θ
Rθ(θ̂n)π(θ) dθ,

show that θ̂0 is a minimax estimator.
(c) Suppose that X ∼ Bin(n, θ). Assuming squared error loss,
find a minimax estimator of θ. (Hint: Use a Beta prior as in
Problem 6.2.)

6.6: The Rao-Blackwell Theorem can be extended to convex loss
functions. Let L(a, b) be a loss function that is convex in a for
each fixed b. Let S = S(X) be some estimator and suppose
that T = T (X) is sufficient for θ. Show that

Eθ[L(E(S|T ), θ)] ≤ Eθ[L(S, θ)].

(Hint: Write Eθ[L(S, θ)] = Eθ[E[L(S, θ)|T ]]. Then apply Jen-
sen’s inequality to the conditional expected value.)

6.7: Suppose that X = (X1, · · · , Xn) are random variables with
joint density or frequency function f(x; θ) and suppose that
T = T (X) is sufficient for θ.

c© 2000 by Chapman & Hall/CRC



(a) Suppose that there exists no function φ(t) such that φ(T ) is
an unbiased estimator of g(θ). Show that no unbiased estimator
of g(θ) (based on X) exists.

6.8: Suppose that X has a Binomial distribution with parameters
n and θ where θ is unknown. Consider unbiased estimators of
g(θ) = θ2(1− θ)2.
(a) Show that no unbiased estimator of g(θ) exists if n ≤ 3.
(b) Find the UMVU estimator of g(θ) when n ≥ 4. (Hint:
Consider the case n = 4 first.)

6.9: Suppose that X = (X1, · · · , Xn) have a joint distribution
depending on a parameter θ where T = T (X) is sufficient for θ.
(a) Prove Basu’s Theorem: If S = S(X) is an ancillary statistic
and the sufficient statistic T is complete then T and S are
independent. (Hint: It suffices to show that P (S ∈ A|T ) =
P (S ∈ A) for any set A; note that neither P (S ∈ A|T ) nor
P (S ∈ A) depends on θ. Use the completeness of T to argue
that P (S ∈ A|T ) = P (S ∈ A).)
(b) Suppose that X and Y are independent Exponential
random variables with parameter λ. Use Basu’s Theorem to
show that X + Y and X/(X + Y ) are independent.
(c) Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean µ and variance σ2. Let T = T (X1, · · · , Xn) be a
statistic such that

T (X1 + a,X2 + a, · · · , Xn + a) = T (X1, · · · , Xn) + a

and E(T ) = µ. Show that

Var(T ) = Var(X̄) + E[(T − X̄)2].

(Hint: Show that T − X̄ is ancillary for µ with σ2 known.)
6.10: Suppose that X1, · · · , Xn are i.i.d. Normal random variables

with mean µ and variance σ2, both unknown. We want to find
the UMVU estimator of

gc(µ, σ) = Φ
(
c− µ

σ

)
= Pµ,σ(Xi ≤ c)

for some specified c.
(a) State why (X̄,

∑n
i=1(Xi − X̄)2) is sufficient and complete

for (µ, σ).
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(b) Show that Xi − X̄ is independent of X̄ for any i. (Hint:
It suffices to show (why?) that the covariance between the two
r.v.’s is 0; alternatively, we could use Basu’s Theorem.)
(c) Using the preliminary estimator S = I(X1 ≤ c), find the
UMVU estimator of gc(µ, σ) by “Rao-Blackwellizing” S.

6.11: Suppose that X1, · · · , Xn are i.i.d. Poisson random variables
with mean λ.
(a) Use the fact that

∞∑
k=0

ckx
k = 0 for all a < x < b

if, and only if, c0 = c1 = c2 = · · · = 0 to show that T =
∑n

i=1 Xi

is complete for λ.
(b) Find the unique UMVU estimator of λ2. (Hint: Find g(0),
g(1), g(2), · · · to solve

∞∑
k=0

g(k)
exp(−nλ)(nλ)k

k!
= λ2

by multiplying both sides by exp(nλ) and matching the coeffi-
cients of λk.)
(c) Find the unique UMVU estimator of λr for any integer
r > 2.

6.12: Suppose that X1, · · · , Xn are i.i.d. Exponential random
variables with parameter λ. Define g(λ) = Pλ(Xi > t) for some
specified t > 0.
(a) Show that T = X1 + · · ·+ Xn is independent of X1/T .
(b) Find the UMVU estimator of g(λ). (Hint: “Rao-Blackwel-
lize” the unbiased estimator S = I(X1 > t) using the result of
part (a).)

6.13: Suppose that X = (X1, · · · , Xn) has a joint distribution that
depends on an unknown parameter θ and define

U = {U : Eθ(U) = 0, Eθ(U2) <∞}

to be the space of all statistics U = U(X) that are unbiased
estimators of 0 with finite variance.
(a) Suppose that T = T (X) is an unbiased estimator of g(θ)
with Varθ(T ) <∞. Show that any unbiased estimator S of g(θ)
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with Varθ(S) <∞ can be written as

S = T + U

for some U ∈ U .
(b) Let T be an unbiased estimator of g(θ) with Varθ(T ) <∞.
Suppose that Covθ(T,U) = 0 for all U ∈ U (and all θ). Show
that T is a UMVU estimator of g(θ). (Hint: Use the result of
part (a).)
(c) Suppose that T is a UMVU estimator of g(θ). Show that
Covθ(T,U) = 0 for all U ∈ U . (Hint: Let Sλ = T + λU for
some U ∈ U and find the minimum value of Varθ(Sλ) for
−∞ < λ <∞.)

6.14: Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean θ > 0 and variance θ2. A (minimal) sufficient
statistic for θ is

T =

(
n∑
i=1

Xi,
n∑
i=1

X2
i

)
.

Show that T is not complete.
6.15: Suppose that X1, · · · , Xn are i.i.d. Normal random variables

with mean θ and variance θ2 where θ > 0. Define

θ̂n = X̄n

(
1 +

∑n
i=1(Xi − X̄n)2 − nX̄2

n

3
∑n

i=1(Xi − X̄n)2

)
where X̄n is the sample mean of X1, · · · , Xn.
(a) Show that θ̂n →p θ as n→∞.

(b) Find the asymptotic distribution of
√
n(θ̂n − θ). Is θ̂n

asymptotically efficient?
(c) Find the Cramér-Rao lower bound for unbiased estimators
of θ. (Assume all regularity conditions are satisfied.)
(d) Does there exist an unbiased estimator of θ that achieves
the lower bound in (a)? Why or why not?

6.16: Suppose that X1, · · · , Xn are independent random variables
where the density function of Xi is

fi(x;β) =
1
βti

exp(−x/(βti)) for x ≥ 0

where t1, · · · , tn are known constants. (Note that each Xi has
an Exponential distribution.)
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(a) Show that

β̂ =
1
n

n∑
i=1

Xi/ti

is an unbiased estimator of β.
(b) Compute the Cramér-Rao lower bound for the variance of
unbiased estimators of β. Does the estimator in (a) achieve this
lower bound? (Hint: Write the joint density as a one-parameter
exponential family.)

6.17: Suppose that X1, · · · , Xn are i.i.d. random variables with
frequency function

f(x; θ) =
{

θ for x = −1
(1− θ)2θx for x = 0, 1, 2, · · ·

where 0 < θ < 1.
(a) Find the Cramér-Rao lower bound for unbiased estimators
of θ based on X1, · · · , Xn.
(b) Show that the maximum likelihood estimator of θ based on
X1, · · · , Xn is

θ̂n =
2

∑n
i=1 I(Xi = −1) +

∑n
i=1 Xi

2n +
∑n

i=1 Xi

and show that {θ̂n} is consistent for θ.

(c) Show that
√
n(θ̂n− θ) →d N(0, σ2(θ)) and find the value of

σ2(θ). Compare σ2(θ) to the Cramér-Rao lower bound found
in part (a).

6.18: Suppose that X = (X1, · · · , Xn) are random variables with
joint density or frequency function f(x; θ) where θ is a one-
dimensional parameter. Let T = T (X) be some statistic with
Varθ(T ) <∞ for all θ and suppose that

(i) A = {x : f(x; θ) > 0} does not depend on θ

(ii) Eθ(T ) = g(θ)

Show that

Varθ(T ) ≥ [g(θ + ∆)− g(θ)]2

Varθ(ψ(X; θ)

(provided that θ + ∆ lies in the parameter space) where

ψ(x; θ) =
f(x; θ + ∆)− f(x; θ)

f(x; θ)
.
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(This lower bound for Varθ(T ) is called the Chapman-Robbins
lower bound.)

6.19: Suppose that X1, · · · , Xn be i.i.d. Bernoulli random variables
with parameter θ.
(a) Indicate why S = X1 + · · ·+Xn is a sufficient and complete
statistic for θ.
(b) Find the UMVU estimator of θ(1 − θ). (Hint: I(X1 =
0, X2 = 1) is an unbiased estimator of θ(1− θ).)

6.20: Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with mean µ and variance 1. Given λn > 0, define µ̂n to
minimize

gn(t) =
n∑
i=1

(Xi − t)2 + λn|t|

(a) Show that

µ̂n =
{

0 if |X̄n| ≤ λn/(2n)
X̄n − λnsgn(X̄n)/(2n) if |X̄n| > λn/(2n).

(b) Suppose that λn/
√
n → λ0 > 0. Find the limiting

distribution of
√
n(µ̂n − µ) for µ = 0 and µ �= 0. Is {µ̂n} a

sequence of regular estimators in either the Hájek or Tierney
sense?

6.21: Suppose that X1, · · · , Xn are i.i.d. random variables with
density or frequency function f(x; θ) satisfying the conditions
of Theorem 6.6. Let θ̂n be the MLE of θ and θ̃n be another
(regular) estimator of θ such that

√
n

(
θ̂n − θ

θ̃n − θ

)
→d N2(0, C(θ)).

Show that C(θ) must have the form

C(θ) =
(

I−1(θ) I−1(θ)
I−1(θ) σ2(θ)

)
.

(Hint: Consider estimators of the form tθ̂n + (1 − t)θ̃n; by
Theorem 6.6, the minimum asymptotic variance must occur
at t = 1.)
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CHAPTER 7

Interval Estimation and Hypothesis
Testing

7.1 Confidence intervals and regions

Suppose X1, · · · , Xn are random variables with some joint distribu-
tion depending on a parameter θ that may be real- or vector-valued.
To this point, we have dealt exclusively with the problem of finding
point estimators of θ.

The obvious problem with point estimation is the fact that
typically Pθ(θ̂ = θ) is small (if not 0) for a given point estimator
θ̂. Of course, in practice, we usually attach to any point estimator
an estimator of its variability (for example, its standard error);
however, this raises the question of exactly how to interpret such
an estimate of variability.

An alternative approach to estimation is interval estimation.
Rather than estimating θ by a single statistic, we instead give a
range of values for θ that we feel are consistent with observed values
of X1, · · · , Xn, in the sense, that these parameter values could have
produced (with some degree of plausibility) the observed data.

We will start by considering interval estimation for a single (that
is, real-valued) parameter.
DEFINITION. Let X = (X1, · · · , Xn) be random variables with

joint distribution depending on a real-valued parameter θ and
let L(X) < U(X) be two statistics. Then the (random) interval
[L(X), U(X)] is called a 100p% confidence interval for θ if

Pθ [L(X) ≤ θ ≤ U(X)] ≥ p

for all θ with equality for at least one value of θ.

The number p is called the coverage probability (or simply
coverage) or confidence level of the confidence interval. In many
cases, we will be able to find an interval [L(X), U(X)] with

Pθ [L(X) ≤ θ ≤ U(X)] = p
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for all θ. We can also define upper and lower confidence bounds for
θ. For example, suppose that

Pθ [θ ≥ L(X)] = p

for some statistic L(X) and for all θ; then L(X) is called a 100p%
lower confidence bound for θ. Likewise, if

Pθ [θ ≤ U(X)] = p

for some statistic U(X) and all θ then U(X) is called a 100p%
upper confidence bound for θ. It is easy to see that if L(X)
is a 100p1% lower confidence bound and U(X) a 100p2% upper
confidence bound for θ then the interval

[L(X), U(X)]

is a 100p% confidence interval for θ where p = p1 +p2−1 (provided
that L(X) < U(X)).

The interpretation of confidence intervals is frequently misunder-
stood. Much of the confusion stems from the fact that confidence in-
tervals are defined in terms of the distribution of X = (X1, · · · , Xn)
but, in practice, are stated in terms of the observed values of these
random variables leaving the impression that a probability state-
ment is being made about θ rather than about the random interval.
However, given data X = x, the interval [L(x), U(x)] will either
contain the true value of θ or not contain the true value of θ; under
repeated sampling, 100p% of these intervals will contain the true
value of θ. This distinction is important but poorly understood by
many non-statisticians.

In many problems, it is difficult or impossible to find an exact
confidence interval; this is particularly true if a model is not
completely specified. However, it may be possible to find an interval
[L(X), U(X)] for which

Pθ [L(X) ≤ θ ≤ U(X)] ≈ p,

in which case the resulting interval is called an approximate 100p%
confidence interval for θ.

EXAMPLE 7.1: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with mean µ and variance 1. Then

√
n(X̄ − µ) ∼

N(0, 1) and so

Pµ
[
−1.96 ≤

√
n(X̄ − µ) ≤ 1.96

]
= 0.95.
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The event [−1.96 ≤ √
n(X̄ − µ) ≤ 1.96] is clearly the same as the

event [X̄ − 1.96/
√
n ≤ µ ≤ X̄ + 1.96/

√
n] and so we have

Pµ

[
X̄ − 1.96√

n
≤ µ ≤ X̄ +

1.96√
n

]
= 0.95.

Thus the interval whose endpoints are X̄ ± 1.96/
√
n is a 95%

confidence interval for µ.
Note in this example, if we assume only that X1, · · · , Xn are i.i.d.

with mean µ and variance 1 (not necessarily normally distributed),
we have (by the CLT),

Pµ
[
−1.96 ≤

√
n(X̄ − µ) ≤ 1.96

]
≈ 0.95

if n is sufficiently large. Using the same argument used above, it
follows that the interval whose endpoints are X̄ ± 1.96/

√
n is an

approximate 95% confidence interval for µ. ✸

Pivotal method

Example 7.1 illustrates a simple but useful approach to finding
confidence intervals; this approach is called the pivotal method.
Suppose X = (X1, · · · , Xn) have a joint distribution depending on
a real-valued parameter θ and let g(X; θ) be a random variable
whose distribution does not depend on θ; that is, the distribution
function Pθ[g(X; θ) ≤ x] = G(x) is independent of θ. Thus we can
find constants a and b such that

p = Pθ[a ≤ g(X; θ) ≤ b]

for all θ. The event [a ≤ g(X; θ) ≤ b] can (hopefully) be
manipulated to yield

p = Pθ[L(X) ≤ θ ≤ U(X)]

and so the interval [L(X), U(X)] is a 100p% confidence interval for
θ. The random variable g(X; θ) is called a pivot for the parameter
θ.

EXAMPLE 7.2: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on [0, θ]. The MLE of θ is X(n), the sample
maximum, and the distribution function of X(n)/θ is

G(x) = xn for 0 ≤ x ≤ 1.

Thus X(n)/θ is a pivot for θ. To find a 100p% confidence interval

c© 2000 by Chapman & Hall/CRC



for θ, we need to find a and b such that

Pθ

[
a ≤

X(n)

θ
≤ b

]
= p.

There are obviously infinitely many choices for a and b; however, it
can be shown that setting b = 1 and a = (1 − p)1/n results in the
shortest possible confidence interval using the pivot X(n)/θ, namely
[X(n), X(n)/(1− p)1/n]. ✸

EXAMPLE 7.3: Suppose that X1, · · · , X10 are i.i.d. Exponential
random variables with parameter λ. Then the random variable
λ

∑10
i=1 Xi is a pivot for λ having a Gamma distribution with shape

parameter 10 and scale parameter 1. (Alternatively, we can use
2λ

∑10
i=1 Xi, which has a χ2 distribution with 20 degrees of freedom,

as our pivot.) To find a 90% confidence interval for λ, we need to
find a and b such that

Pλ

[
a ≤ λ

10∑
i=1

Xi ≤ b

]
= 0.90.

Again there are infinitely many choices for a and b; one approach
is to choose a and b so that

Pλ

[
λ

10∑
i=1

Xi < a

]
= 0.05 and

Pλ

[
λ

10∑
i=1

Xi > b

]
= 0.05;

this yields a = 5.425 and b = 15.705. We thus get

[L(X), U(X)] =

[
5.425∑10
i=1 Xi

,
15.705∑10
i=1 Xi

]

as a 90% confidence interval for λ. As one might expect, this
confidence interval is not the shortest possible based on the pivot
used here; in fact, by using a = 4.893 and b = 14.938 we obtain
the shortest possible 90% confidence interval based on the pivot
λ

∑10
i=1 Xi. ✸

It is easy to extend the pivotal method to allow us to find
confidence intervals for a single real-valued parameter when there
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are other unknown parameters. Suppose that θ = (θ1, · · · , θp) and
consider finding a confidence interval for θ1. Let g(X; θ1) be a
random variable that depends on θ1 but not on θ2, · · · , θp and
suppose that

Pθ [g(X; θ1) ≤ x] = G(x)
where G(x) is independent of θ; the random variable g(X; θ1) is
then a pivot for θ1 and can be used to obtain a confidence interval
for θ1 in exactly the same way as before.

EXAMPLE 7.4: Suppose that X1, · · · , Xn are i.i.d. Normal
random variables with unknown mean and variance µ and σ2,
respectively. To find a confidence interval for µ, define

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

and note that the random variable
√
n(X̄ − µ)

S

has Student’s t distribution with n − 1 degrees of freedom; this
distribution is independent of both µ and σ2 and hence

√
n(X̄ − µ)/S

is a pivot for µ.
To find confidence intervals for σ2, note that

(n− 1)S2

σ2
=

1
σ2

n∑
i=1

(Xi − X̄)2 ∼ χ2(n− 1)

and is therefore a pivot for σ2. ✸

In many problems, it is difficult to find exact pivots or to
determine the distribution of an exact pivot if it does exist.
However, in these cases, it is often possible to find an approximate
pivot, that is, a random variable g(X; θ) for which

Pθ [g(X; θ) ≤ x] ≈ G(x)

where G(x) is independent of θ; almost inevitably approximate
pivots are justified via asymptotic arguments and so we assume
that n is large enough to justify the approximation. In such cases,
the approximate pivot can be used to find approximate confidence
intervals for θ. The classic example of this occurs when we have a
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point estimator θ̂ whose distribution is approximately Normal with
mean θ and variance σ2(θ); in this case, we have

θ̂ − θ

σ(θ)
∼ N(0, 1)

and so (θ̂ − θ)/σ(θ) is an approximate pivot for θ. (Note that σ(θ)
is essentially the standard error of θ̂.) If σ(θ) depends on θ, it
may be desirable to substitute θ̂ for θ and use (θ̂ − θ)/σ(θ̂) as
the approximate pivot. This approximate pivot is particularly easy
to use; if zp satisfies Φ(zp)− Φ(−zp) = p then

Pθ

[
−zp ≤

θ̂ − θ

σ(θ̂)
≤ zp

]
≈ p,

which yields an approximate 100p% confidence interval whose
endpoints are θ̂ ± zpσ(θ̂).

EXAMPLE 7.5: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with unknown parameter λ. The MLE of λ is
λ̂ = 1/X̄ and, if n is sufficiently large,

√
n(λ̂− λ) is approximately

Normal with mean 0 and variance λ2 (from asymptotic theory for
MLEs). Thus the random variable

√
n(λ̂− λ)

λ

is an approximate pivot for λ and has a standard Normal distri-
bution. To find an approximate 95% confidence interval for λ, we
note that

Pλ

[
−1.96 ≤

√
n(λ̂− λ)

λ
≤ 1.96

]
≈ 0.95

and so the interval[
λ̂(1 + 1.96/

√
n)−1, λ̂(1− 1.96/

√
n)−1

]
is an approximate 95% confidence interval for λ. We can also use√
n(λ̂ − λ)/λ̂ as an approximate pivot; using the same argument

as before, we obtain an approximate 95% confidence interval whose
endpoints are λ̂±1.96λ̂/

√
n. The two confidence intervals are quite

similar when n is large since

(1− 1.96/
√
n)−1 = 1 + 1.96/

√
n + (1.96)2/n + · · ·

and (1 + 1.96/
√
n)−1 = 1− 1.96/

√
n + (1.96)2/n + · · · ;
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a more careful analysis is needed in order to determine which
interval gives a coverage closer to 95%. ✸

EXAMPLE 7.6: Suppose that X has a Binomial distribution
with parameters n and θ where θ is unknown. The MLE of θ is
θ̂ = X/n and if n is sufficiently large,

√
n(θ̂ − θ)/[θ(1 − θ)]1/2

has approximately a standard Normal distribution and is an
approximate pivot for θ. To find an approximate 95% confidence
interval for θ, note that

Pθ

[
−1.96 ≤

√
n(θ̂ − θ)

[θ(1− θ)]1/2
≤ 1.96

]
= Pθ

[
n(θ̂ − θ)2

θ(1− θ)
≤ 1.962

]
≈ 0.95.

Thus an approximate 95% confidence interval for θ will consist of
all values of t for which

g(t) = n(θ̂ − t)2 − 1.962t(1− t) ≤ 0.

Note that g(t) is a quadratic function and will have zeros at

t =
θ̂ + 1.962/(2n)± 1.96

(
θ̂(1− θ̂) + 1.962/(4n2)

)1/2

1 + 1.962/n

and so the region between these two zeros becomes the approximate
95% confidence interval for θ. Figure 7.1 shows the function g(t)
and the confidence interval for θ when n = 20 and X = 13.
Alternatively, we can use

√
n(θ̂ − θ)

[θ̂(1− θ̂)]1/2

as an approximate pivot, which leads to an approximate 95%
confidence interval whose endpoints are θ̂ ± 1.96[θ̂(1 − θ̂)/n]1/2.
It is easy to see that the difference between these two confidence
intervals will be small when n is large. (We can also refine
the confidence intervals in this example by using the continuity
correction for the Normal approximation discussed in Chapter 3;
the result of this is that we replace θ̂ by θ̂+1/(2n) in the expressions
for the upper limits and replace θ̂ by θ̂ − 1/(2n) in the expressions
for the lower limits.) ✸
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Figure 7.1 The function g(t) in Example 7.6; the approximate 95% confidence
interval for θ consists of the values of t for which g(t) ≤ 0.

It is possible to use variance stabilizing transformations (see
Chapter 3) to obtain approximate pivots. For example, let θ̂ be
an estimator of θ and suppose that the distribution of

√
n(θ̂ − θ)

is approximately Normal with mean 0 and variance σ2(θ). By the
Delta Method, if g is a monotone function then the distribution of√
n(g(θ̂)−g(θ)) is approximately normal with mean 0 and variance

[g′(θ)]2σ2(θ); we choose the variance stabilizing transformation g

so that [g′(θ)]2σ2(θ) = 1. Now using
√
n(g(θ̂) − g(θ)) as the

approximate pivot, we obtain an approximate 100p% confidence
interval for g(θ) with endpoints g(θ̂)± zp/

√
n. Since we can take g

to be strictly increasing, our approximate 100p% confidence interval
for θ is the interval

[
g−1

(
g(θ̂)− zp/

√
n
)
, g−1

(
g(θ̂) + zp/

√
n
)]

.

It should be noted that it is not necessary to take g to be a variance
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stabilizing transformation. In general, it is possible to use
√
n(g(θ̂)− g(θ))
g′(θ)σ(θ)

or
√
n(g(θ̂)− g(θ))
g′(θ̂)σ(θ̂)

as approximate pivots for θ. If the parameter space Θ is not the
entire real-line then it is sometimes useful to take g to be a function
mapping Θ onto the real-line.

EXAMPLE 7.7: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ. For the MLE λ̂ = 1/X̄, we
have

√
n(λ̂ − λ) approximately Normal with mean 0 and variance

λ2. It is easy to verify that a variance stabilizing transformation
is g(t) = ln(t); we get an approximate 95% confidence interval for
ln(λ) with endpoints ln(λ̂)± 1.96/

√
n and so an approximate 95%

confidence interval for λ is[
λ̂ exp(−1.96/

√
n), λ̂ exp(1.96/

√
n)

]
.

Note that the function g(t) = ln(t) maps the parameter space (the
positive real-numbers) onto the real-line; thus both endpoints of
this confidence interval always lie in the parameter space (unlike
the confidence intervals given in Example 7.5). ✸

Confidence regions

Up to this point, we have considered interval estimation only for
real-valued parameters. However, it is often necessary to look at
two or more parameters and hence extend the notion of confidence
intervals (for a single parameter) to confidence regions for multiple
parameters.

DEFINITION. Let X = (X1, · · · , Xn) be random variables
with joint distribution depending on a (possibly) vector-valued
parameter θ ∈ Θ and let R(X) be a subset of Θ depending on
X. Then R(X) is called a 100p% confidence region for θ if

Pθ [θ ∈ R(X)] ≥ p

for all θ with equality at least one value of θ ∈ Θ.

Again it is important to keep in mind that it is R(X) that is
random and not θ in the probability statement above.

c© 2000 by Chapman & Hall/CRC



Note that there is nothing in the definition above that dictates
that R(X) be a contiguous set; thus it is possible to have a
confidence region that consists of two or more disjoint regions.
Thus for a single parameter, the definition of a confidence region
is somewhat more general than that for a confidence interval.
However, in practice, confidence regions are typically (but not
always) contiguous sets.

Many of the procedures for confidence intervals extend mutatis
mutandis to confidence regions. For example, the pivotal method
can be easily extended to derive confidence regions. A random
variable g(X;θ) is called a pivot (as before) if its distribution is
independent of θ; if so, we have

p = Pθ [a ≤ g(X;θ) ≤ b]
= Pθ [θ ∈ R(X)]

where R(x) = {θ : a ≤ g(x; θ) ≤ b}.

EXAMPLE 7.8: Suppose that X1, · · · ,Xn are i.i.d. k-variate
Normal random vectors with mean µ and variance-covariance
matrix C (where we assume that C−1 exists). Unbiased estimators
of µ and C are given by

µ̂ =
1
n

n∑
i=1

Xi

Ĉ =
1

n− 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T ,

which are simply the natural analogs of the unbiased estimators in
the univariate case. (We have assumed here that the Xi’s and µ
are column vectors.) To obtain a confidence region for µ, we will
use the pivot

g(µ̂, Ĉ;µ) =
n(n− k)
k(n− 1)

(µ̂− µ)T Ĉ−1(µ̂− µ),

which (Johnson and Wichern, 1992) has an F distribution with
k and n − k degrees of freedom. Let fp be the p quantile of the
F(k, n − k) distribution. Then a 100p% confidence region for µ is
given by the set

R(µ̂, Ĉ) =
{

µ :
n(n− k)
k(n− 1)

(µ̂− µ)T Ĉ−1(µ̂− µ) ≤ fp

}
.
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This confidence region contains all the points lying within a certain
ellipsoid in k-dimensional Euclidean space. If n is large then we
can obtain an approximate 100p% confidence region for µ that will
be valid for i.i.d. (not necessarily k-variate Normal) Xi’s having
(finite) variance-covariance matrix C. In this case,

g∗(µ̂, Ĉ;µ) = n(µ̂− µ)T Ĉ−1(µ̂− µ)

is approximately χ2 distributed with k degrees of freedom and so is
an approximate pivot. If cp is the p quantile of the χ2(k) distribution
then an approximate 100p% confidence region for µ is given by the
set

R∗(µ̂, Ĉ) =
{
µ : n(µ̂− µ)T Ĉ−1(µ̂− µ) ≤ cp

}
.

The validity of this confidence region depends on the fact that the
distribution of

√
n(µ̂−µ) is approximately Nk(0, C) and that Ĉ is

a consistent estimator of C. ✸

While it is as conceptually simple to construct confidence regions
as it is to construct confidence intervals, confidence regions lose
the ease of interpretation that confidence intervals have as the
dimension of the parameter increases; it is straightforward to
graphically represent a confidence region in two dimensions and
feasible in three dimensions but for four or more dimensions, it
is practical impossible to give a useful graphical representation of
a confidence region. One exception to this is when a confidence
region is a rectangle in the k-dimensional space; unfortunately, such
regions do not seem to arise naturally! However, it is possible to
construct such regions by combining confidence intervals for each
of the parameters.

Suppose that θ = (θ1, · · · , θk) and suppose that [Li(X), Ui(X)]
is a 100pi% confidence interval for θi. Now define

R(X) = [L1(X), U1(X)]× · · · × [Lk(X), Uk(X)]
= {θ : Li(X) ≤ θi ≤ Ui(X) for i = 1, · · · , k} .

R(X) is a confidence region for θ but the coverage of this region
is unclear. However, it is possible to give a lower bound for the
coverage of R(X). Using Bonferroni’s inequality (see Example 1.2),
it follows that

Pθ [θ ∈ R(X)] ≥ 1−
k∑
i=1

P [θi /∈ [Li(X), Ui(X)]]
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= 1−
k∑
i=1

(1− pi).

This suggests a simple procedure for obtaining conservative confi-
dence regions. Given a desired coverage probability p, we construct
confidence intervals for each of the k parameters with coverage
pi = 1− (1−p)/k. Then the resulting region R(X) (which is called
a Bonferroni confidence region) will have coverage of at least p.

7.2 Highest posterior density regions

Confidence intervals represent the classic frequentist approach to
interval estimation. Within the Bayesian framework, posterior
distributions provide a natural analog to frequentist confidence
intervals.

Suppose that X = (X1, · · · , Xn) are random variables with
joint density or frequency function f(x; θ) where θ is a real-valued
parameter. We will take π(θ) to be a prior density for the parameter
θ; recall that this density reflects the statistician’s beliefs about the
parameter prior to observing the data. The statistician’s beliefs
after observing X = x are reflected by the posterior density

π(θ|x) =
π(θ)f(x; θ)∫ ∞

−∞ π(t)f(x; t) dt
;

the posterior density of θ is proportional to the product of the prior
density and the likelihood function.

DEFINITION. Let π(θ|x) be a posterior density for θ on Θ ⊂ R.
A region C = C(x) is called a highest posterior density (HPD)
region of content p if
(a)

∫
C π(θ|x) dθ = p;

(b) for any θ ∈ C and θ∗ �∈ C, we have

π(θ|x) ≥ π(θ∗|x).

HPD regions are not necessarily contiguous intervals; however, if
the posterior density is unimodal (as is typically the case) then the
HPD region will be an interval.

It is important to note that HPD regions and confidence intervals
(or confidence regions) are very different notions derived from
different philosophies of statistical inference. More precisely, the
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confidence interval is constructed using the distribution of X: if
C(X) = [L(X), U(X)] is the confidence interval, we have

Pθ(θ ∈ C(X)) = p for all θ

where Pθ is the joint probability distribution of X for a given
parameter value θ. On the other hand, a HPD region is constructed
using the posterior distribution of θ given X = x: if C = C(x) is a
HPD region, we have∫

C
π(θ|x) dθ = P (θ ∈ C|X = x) = p.

Interestingly enough, in many cases, confidence intervals and HPD
regions show a remarkable agreement even for modest sample sizes.

EXAMPLE 7.9: Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean θ and assume a Gamma prior density
for θ:

π(θ) =
λαθα−1 exp(−λθ)

Γ(α)
for θ > 0

(λ and α are hyperparameters). The posterior density of θ is also
Gamma:

π(θ|x) =
(n + λ)t+αθt+α+1 exp(−(n + λ)θ)

Γ(t + α)
for θ > 0

where t = x1 + · · ·+xn. It is easy to verify that the posterior mode
is θ̂ = (t + α− 1)/(n + λ).

What happens to the posterior density when n is large? First
of all, note that the variance of the posterior distribution is
(t+α)/(n+λ)2, which tends to 0 as n tends to ∞; thus the posterior
density becomes more and more concentrated around the posterior
mode as n increases. We will define ψ(θ) = lnπ(θ|x); making a
Taylor series expansion of ψ(θ) around the posterior mode θ̂, we
have (for large n)

ψ(θ) ≈ ψ(θ̂) + (θ − θ̂)ψ′(θ̂) +
1
2
(θ − θ̂)2ψ′′(θ̂)

= ψ(θ̂)− 1
2
(θ − θ̂)2

(
n + λ

θ̂

)
since ψ′(θ̂) = 0 and ψ′′(θ̂) = −(n + λ)/θ̂. We also have

ψ(θ̂) = (t+ α) ln(n+ λ) + (t+ α− 1) ln(θ̂)− (n− λ)θ̂− ln Γ(t+ α)
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and (using Stirling’s approximation)

ln Γ(t + α) = ln(t + α− 1) + ln Γ(t + α− 1)

= ln(t + α− 1) + ln Γ((n− λ)θ̂)

≈ ln(t + α− 1) +
1
2

ln(2π)

+
[
(n− λ)θ̂ − 1

2

]
ln((n− λ)θ̂)− (n− λ)θ̂.

Putting the pieces together, we get

ψ(θ) ≈ −1
2

ln(2π) +
1
2

ln
(
n + λ

θ̂

)
− 1

2
(θ − θ̂)2

(
n + λ

θ̂

)
and since π(θ|x) = exp(ψ(θ)),

π(θ|x) ≈
(
n + λ

2πθ̂

)1/2

exp
[
−n + λ

2θ̂
(θ − θ̂)2

]
.

Thus, for large n, the posterior distribution is approximately
Normal with mean θ̂ and variance θ̂/(n + λ). This suggests, for
example, that an approximate 95% HPD interval for θ isθ̂ − 1.96

(
θ̂

n + λ

)1/2

, θ̂ + 1.96

(
θ̂

n + λ

)1/2
 ;

note that this interval is virtually identical to the approximate 95%
confidence interval for θ whose endpoints are x̄ ± 1.96

√
x̄/n since

θ̂ ≈ x̄ and n/(n + λ) ≈ 1 for large n. ✸

Example 7.9 illustrates that there may exist a connection (at
least for large sample sizes) between confidence intervals and HPD
intervals. We will now try to formalize this connection. Suppose that
X1, · · · , Xn are i.i.d. random variables with density or frequency
function f(x; θ) where f(x; θ) satisfies the regularity conditions for
asymptotic normality of MLEs given in Chapter 5. If θ has prior
density π(θ) then the posterior density of θ is given by

π(θ|x) =
π(θ)Ln(θ)∫ ∞

−∞ π(t)Ln(t) dt

where Ln(θ) =
∏n
i=1 f(xi; θ). We want to try to show that the

posterior density can be approximated by a Normal density when
n is large; the key result needed to do this is the following.
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PROPOSITION 7.1 (Laplace’s approximation) Define

In =
∫ ∞

−∞
g(θ) exp(nh(θ)) dθ

where g and h are “smooth” functions and h(θ) is maximized at θ̂.
Then In = În(1 + rn) where

În = g(θ̂)

(
− 2π
nh′′(θ̂)

)1/2

exp(nh(θ̂))

and |nrn| ≤M <∞.

We have not precisely specified the conditions on the functions g
and h necessary to give a rigorous proof of Laplace’s approximation.
However, it is quite easy to give a heuristic proof by expanding h(θ)
in Taylor series around θ̂. Then

h(θ) ≈ h(θ̂) +
1
2
(θ − θ̂)2h′′(θ̂)

where h′′(θ̂) < 0 since θ̂ maximizes h. Then

In ≈ exp(nh(θ̂))
∫ ∞

−∞
g(θ) exp

(
n

2
h′′(θ̂)(θ − θ̂)2

)
dθ.

Laplace’s approximation follows if we make the change of variable
s = [−nh′′(θ̂)]1/2(θ − θ̂) and assume sufficient smoothness for g.

Laplace’s approximation is quite crude but will be sufficient for
our purposes; we will use it to approximate the integral∫ ∞

−∞
π(t)Ln(t) dt.

Note that we can write

π(θ)Ln(θ) = π(θ) exp

[
n

(
1
n

n∑
i=1

ln f(xi; θ)

)]

and so if θ̂n maximizes Ln(θ), we have by Laplace’s approximation∫ ∞

−∞
π(t)Ln(t) dt ≈ π(θ̂n)

(
2π

Hn(θ̂n)

)1/2

exp(Ln(θ̂n))

where
Hn(θ) = − d2

dθ2
lnLn(θ).
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Thus

π(θ|x) ≈
(

π(θ)
π(θ̂n)

) (
Hn(θ̂n)

2π

)1/2

exp
[
lnLn(θ)− lnLn(θ̂n)

]
.

Since the posterior is concentrated around θ̂n for large n, we need
only worry about values of θ close to θ̂n; if the prior density is
continuous everywhere then π(θ)/π(θ̂n) ≈ 1 for θ close to θ̂n. We
also have (under the regularity conditions of Chapter 5) that

exp
[
lnLn(θ)− lnLn(θ̂n)

]
≈ −1

2
(θ − θ̂n)Hn(θ̂n),

which leads to the final approximation

π(θ|x) ≈
(
Hn(θ̂n)

2π

)1/2

exp

[
−Hn(θ̂n)

2
(θ − θ̂n)2

]
.

This heuristic development suggests that the posterior density can
be approximated by a Normal density with mean θ̂n and variance
1/Hn(θ̂n) when n is sufficiently large; note that Hn(θ̂n) is simply
the observed information for θ (defined in Chapter 5) and that
1/Hn(θ̂n) is an estimate of the variance of the maximum likelihood
estimate θ̂n. Thus the interval who endpoints are θ̂n±zpHn(θ̂n)−1/2

is an approximate 100p% HPD interval for θ (where zp satisfies
Φ(zp) − Φ(−zp) = p); this is exactly the same as the approximate
100p% confidence interval for θ based on the MLE.

7.3 Hypothesis testing

Suppose that X = (X1, · · · , Xn) are random variables with joint
distribution density or frequency function f(x; θ) for some θ ∈ Θ.
Let Θ = Θ0∪Θ1 for two disjoint sets Θ0 and Θ1; given the outcome
of X, we would like to decide if θ lies in Θ0 or Θ1. In practice,
Θ0 is typically taken to be a lower dimensional sub-space of the
parameter space Θ. Thus θ ∈ Θ0 represents a simplification of the
model in the sense that the model contains fewer parameters.

EXAMPLE 7.10: Suppose that X1, · · · , Xm and Y1, · · · , Yn are
independent random variables where Xi ∼ N(µ1, σ

2) and Yi ∼
N(µ2, σ

2). The parameter space is then

Θ = {(µ1, µ2, σ) : −∞ < µ1, µ2 <∞, σ > 0}.
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In many applications, it is of interest to determine whether the Xi’s
and Yi’s have the same distribution (that is, µ1 = µ2), for example,
when the Xi’s and Yi’s represent measurements from two different
groups. In this case, we can represent Θ0 as

Θ0 = {(µ1, µ2, σ) : −∞ < µ1 = µ2 <∞, σ > 0}.
Note that the parameter space Θ is three-dimensional while Θ0 is
only two-dimensional. ✸

Given X = (X1, · · · , Xn), we need to find a rule (based on X)
that determines if we decide that θ lies in Θ0 or in Θ1. This
rule essentially is a two-valued function φ and (without loss of
generality) we will assume that φ can take the values 0 and 1;
if φ(X) = 0 then we will decide that θ ∈ Θ0 while if φ(X) = 1,
we will decide that θ ∈ Θ1. The function φ will be called a test
function. In many cases, φ will depend on X only through some
real-valued statistic T = T (X), which we will call the test statistic
for the test.

It is unlikely that any given test function will be perfect. Thus for
a given test function φ, we must examine the probability of making
an erroneous decision as θ varies over Θ. If θ ∈ Θ0 then an error
will occur if φ(X) = 1 and the probability of this error (called a
type I error) is

Pθ [φ(X) = 1] = Eθ [φ(X)] (θ ∈ Θ0).

Likewise if θ ∈ Θ1 then an error will occur if φ(X) = 0 and the
probability of this error (called a type II error) is

Pθ [φ(X) = 0] = 1− Eθ [φ(X)] (θ ∈ Θ1).

It is tempting to try to find a test function φ whose error
probabilities are uniformly small over the parameter space. While
in certain problems this is possible to do, it should be realized that
there is necessarily a trade-off between the probabilities of error
for θ ∈ Θ0 and θ ∈ Θ1. For example, let φ1 and φ2 be two test
functions and define

R1 = {x : φ1(x) = 1}
and

R2 = {(x) : φ2(x) = 1}
where R1 ⊂ R2; note that this implies that

Eθ [φ1(X)] ≤ Eθ [φ2(X)]
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for all θ ∈ Θ and so

1− Eθ [φ1(X)] ≥ 1− Eθ [φ2(X)] .

Hence by attempting to decrease the probability of error when
θ ∈ Θ0, we run the risk of increasing the probability of error for
θ ∈ Θ1.

The classic approach to testing is to specify a test function φ(X)
such that for some specified α > 0,

Eθ[φ(X)] ≤ α for all θ ∈ Θ0.

The hypothesis that θ belongs to Θ0 is called the null hypothesis
and will be denoted by H0; likewise, the hypothesis that θ lies in
Θ1 is called the alternative hypothesis and will be denoted by H1.
The constant α given above is called the level (or size) of the test;
if φ(X) = 1, we say that H0 is rejected at level α. The level of
the test is thus the maximum probability of “rejection” of the null
hypothesis H0 when H0 is true. This particular formulation gives us
a reasonably well-defined mathematical problem for finding a test
function φ: for a given level α, we would like to find a test function
φ so that Eθ[φ(X)] is maximized for θ ∈ Θ1.

For a given test function φ, we define

π(θ) = Eθ[φ(X)]

to be the power of the test at θ; for a specified level α, we require
π(θ) ≤ α for all θ ∈ Θ0 and so we are most interested in π(θ) for
θ ∈ Θ1.

The rationale for the general procedure given above is as follows.
Suppose that we test H0 versus H1 at level α where α is small and
suppose that, given data X = x, φ(x) = 1. If H0 is true then this
event is quite rare (it occurs with probability at most α) and so
this gives us some evidence to believe that H0 is false (and hence
that H1 is true). Of course, this “logic” assumes that the test is
chosen so that Pθ(φ(X) = 1) is larger when H1 is true. Conversely,
if φ(x) = 0 then the test is very much inconclusive; this may tell
us that H0 is true or, alternatively, that H1 is true but that the
test used does not have sufficient power to detect this. Since the
dimension of Θ0 is typically lower than that of Θ (and so the model
under H0 is simpler), this approach to testing protects us against
choosing unnecessarily complicated models (since the probability of
doing so is at most α when the simpler model holds) but, depending
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on the power of the test, may prevent us from identifying more
complicated models when such models are appropriate.

To get some idea of how to find “good” test functions, we
will consider the simple case where the joint density or frequency
function of X1, · · · , Xn is either f0 or f1 where both f0 and f1 are
known and depend on no unknown parameters. We will then test

H0 : f = f0 versus H1 : f = f1

at some specified level α; the null and alternative hypothesis are
called simple in this case as they both consist of a single density or
frequency function. The problem now becomes a straightforward
optimization problem: find a test function φ with level α to
maximize the power under H1. The following result, the Neyman-
Pearson Lemma, is important because it suggests an important
principle for finding “good” test functions.

THEOREM 7.2 (Neyman-Pearson Lemma) Suppose that
X = (X1, · · · , Xn) have joint density or frequency function f(x)
where f is one of f0 or f1 and suppose we test

H0 : f = f0 versus H1 : f = f1.

Then the test whose test function is

φ(X) =
{

1 if f1(X) ≥ kf0(X)
0 otherwise

(for some 0 < k < ∞) is a most powerful (MP) test of H0 versus
H1 at level

α = E0[φ(X)].

Proof. In this proof, we will let P0, P1 and E0, E1 denote probability
and expectation under H0 and H1. It suffices to show that if ψ is
any function with 0 ≤ ψ(x) ≤ 1 and

E0[ψ(X)] ≤ E0[φ(X)]

then
E1[ψ(X)] ≤ E1[φ(X)].

We will assume that f0 and f1 are density functions; the same proof
carries over to frequency functions with obvious modifications. First
of all, note that

f1(x)− kf0(x)
{ ≥ 0 if φ(x) = 1

< 0 if φ(x) = 0.
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Thus
ψ(x)(f1(x)− kf0(x)) ≤ φ(x)(f1(x)− kf0(x))

and so ∫
· · ·

∫
ψ(x)(f1(x)− kf0(x)) dx

≤
∫
· · ·

∫
φ(x)(f1(x)− kf0(x)) dx

or rearranging terms,∫
· · ·

∫
(ψ(x)− φ(x))f1(x) dx ≤ k

∫
· · ·

∫
(ψ(x)− φ(x))f0(x) dx.

The left-hand side above is simply E1[ψ(X)] − E1[φ(X)] and the
right-hand side is k(E0[ψ(X)]− E0[φ(X)]). Since

E0[ψ(X)]− E0[φ(X)] ≤ 0,

it follows that E1[ψ(X)] − E1[φ(X)] ≤ 0 and so φ(X) is the test
function of an MP test of H0 versus H1.

The Neyman-Pearson Lemma essentially states that an optimal
test statistic for testing H0 : f = f0 versus H1 : f = f1 is

T (X) =
f1(X)
f0(X)

and that for a given level α, we should reject the null hypothesis
H0 is T (X) ≥ k where k is chosen so that the test has level α.
However, note that the Neyman-Pearson Lemma as stated here
does not guarantee the existence of an MP α level test but merely
states that the test that rejects H0 for T (X) ≥ k will be an MP
test for some level α. Moreover, the Neyman-Pearson Lemma does
guarantee uniqueness of an MP test when one exists; indeed, there
may be infinitely many test functions having the same power as the
MP test function prescribed by the Neyman-Pearson Lemma.

A more general form of the Neyman-Pearson Lemma gives a
solution to the following optimization problem: Suppose we want
to maximize E1[φ(X)] subject to the constraints

E0[φ(X)] = α and 0 ≤ φ(X) ≤ 1.

The optimal φ is given by

φ(X) =


1 if f1(X) > kf0(X)
c if f1(X) = kf0(X)
0 if f1(X) < kf0(X)
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where k and 0 ≤ c ≤ 1 are chosen so that the constraints are
satisfied. The function φ described above need not be a test function
since it can possibly take values other than 0 and 1; however, in
the case where the statistic

T (X) =
f1(X)
f0(X)

is a continuous random variable (which implies that X1, · · · , Xn

are continuous random variables), we can take the optimal φ to be
either 0 or 1 for all possible values of X1, · · · , Xn and so an MP
test of H0 : f = f0 versus H1 : f = f1 exists for all levels α > 0.
Moreover, even if φ(X) given above is not a test function, it may
be possible to find a valid test function φ∗(X) such that

Ek[φ∗(X)] = Ek[φ(X)] for k = 0, 1

(see Example 7.12 below). However, for a given level α, an MP
test of H0 versus H1 need not exist if T (X) is discrete unless we
are willing to consider so-called randomized tests. (Randomized
tests are tests where, for some values of a test statistic, rejection or
acceptance of H0 is decided by some external random mechanism
that is independent of the data.)

EXAMPLE 7.11: Suppose that X1, · · · , Xn are i.i.d. Exponential
random variables with parameter λ that is either λ0 or λ1 (where
λ1 > λ0). We want to test

H0 : λ = λ0 versus H1 : λ = λ1

at level α. For a given λ, the joint density of X = (X1, · · · , Xn) is

f(x;λ) = λn exp

(
−λ

n∑
i=1

xi

)

and we will base our test on the statistic

T =
f(X;λ1)
f(X;λ0)

= (λ1/λ0)
n exp

[
(λ0 − λ1)

n∑
i=1

Xi

]
,

rejecting H0 if T ≥ k where k is chosen so that the test has level
α. Note, however, that T is a decreasing function of S =

∑n
i=1 Xi

(since λ0 − λ1 < 0) and so T ≥ k if, and only if, S ≤ k′ for some
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constant k′ (which will depend on k). We can choose k′ so that

Pλ0

[
n∑
i=1

Xi ≤ k′
]

= α.

For given values of λ0 and α, it is quite feasible to find k′ in this
problem. Under the null hypothesis, the test statistic S =

∑n
i=1 Xi

has a Gamma distribution with parameters n and λ0 and 2λ0S has
a χ2 distribution with 2n degrees of freedom. For example, if n = 5,
α = 0.01 and λ0 = 5 then the 0.01 quantile of a χ2 distribution with
10 degrees of freedom is 2.56 and so

k′ =
2.56
2× 5

= 0.256.

Thus we would reject H0 at the 1% level if S ≤ 0.256. ✸

EXAMPLE 7.12: Suppose that X1, · · · , Xn are i.i.d. Uniform
random variables on the interval [0, θ] where θ is either θ0 or θ1

(where θ0 > θ1). We want to test

H0 : θ = θ0 versus H1 : θ = θ1

at level α. The joint density of X = (X1, · · · , Xn) is

f(x; θ) =
1
θn

I(max(x1, · · · , xn) ≤ θ)

and an MP test of H0 versus H1 will be based on the test statistic

T =
f(X; θ1)
f(X; θ0)

= (θ0/θ1)
n I(X(n) ≤ θ1).

Note that T can take only two possible values, 0 or (θ0/θ1)n

depending on whether X(n) is greater than θ1 or not. It follows
then that the test that rejects H0 when X(n) ≤ θ1 will be an MP
test of H0 versus H1 with level

α = Pθ0

[
X(n) ≤ θ1

]
=

(
θ1

θ0

)n

and the power of this test under H1 is

Pθ1

[
X(n) ≤ θ1

]
= 1;

note that this test will also be the MP test of for any level
α > (θ1/θ0)n since its power is 1. If we want to find the MP
test for α < (θ1/θ0)n, the situation is more complicated since the

c© 2000 by Chapman & Hall/CRC



Neyman-Pearson Lemma does not tell us what to do. Nonetheless,
intuition suggests that the appropriate test statistic is X(n) (which
is sufficient for θ in this model) and that we should reject H0 for
X(n) ≤ k where

Pθ0

[
X(n) ≤ k

]
=

(
k

θ0

)n

= α.

Solving the equation above, we get k = θ0α
1/n and so the power of

this test is

Pθ1

[
X(n) ≤ θ0α

1/n
]

=

(
θ0α

1/n

θ1

)n

= α

(
θ0

θ1

)n

.

To show that this is the MP test for α < (θ1/θ0)n, we use the
more general form of the Neyman-Pearson Lemma; a function φ
that maximizes Eθ1 [φ(X)] subject to the constraints

Eθ0 [φ(X)] = α <

(
θ1

θ0

)n

and 0 ≤ φ(X) ≤ 1

is
φ(X) =

{
α(θ0/θ1)n if X(n) ≤ θ1

0 otherwise.
It is easy to verify that

Eθ1 [φ(X)] = α

(
θ0

θ1

)n

= Pθ1

[
X(n) ≤ θ0α

1/n
]

and so the test that rejects H0 if X(n) ≤ θ0α
1/n is an MP test for

level α < (θ1/θ0)n. ✸

Uniformly most powerful tests

The Neyman-Pearson Lemma gives us a simple criterion for
determining the test function of an MP test of a simple null
hypothesis when the alternative hypothesis is also simple. However,
as we noted before, this particular testing scenario is rarely
applicable in practice as the alternative hypothesis (and often the
null hypothesis) are usually composite.

Let X = (X1, · · · , Xn) be random variables with joint density or
frequency function f(x; θ) and suppose we want to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

at level α. Suppose that φ is a test function such that

Eθ[φ(X)] ≤ α for all θ ∈ Θ0
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and that φ is the MP α level test of

H ′
0 : θ = θ0 versus H ′

1 : θ = θ1

for some θ0 ∈ Θ0 and all θ1 ∈ Θ1; then the test function φ describes
the uniformly most powerful (UMP) α level test of H0 versus H1.

Unfortunately, UMP tests only exist for certain testing problems.
For example, if we want to test

H0 = θ = θ0 versus H1 : θ �= θ0

then UMP tests typically do not exist. The reason for this is quite
simple: in order for a given test to be UMP, it must be an MP
test of H ′

0 : θ = θ0 versus H ′
1 : θ = θ1 for any θ1 �= θ0. However,

the form of the MP test (given by the Neyman-Pearson Lemma)
typically differs for θ1 > θ0 and θ1 < θ0 as the following examples
indicate.

EXAMPLE 7.13: Let X be a Binomial random variable with
parameters n and θ and suppose we want to test

H0 : θ = θ0 versus H1 : θ �= θ0

at some level α. First consider testing

H ′
0 : θ = θ0 versus H ′

1 : θ = θ1

where θ1 �= θ0. The Neyman-Pearson Lemma suggests that the MP
test of H ′

0 versus H ′
1 will be based on the statistic

T =
f(X; θ1)
f(X; θ0)

=
(

1− θ0

1− θ1

)n (
θ1(1− θ0)
θ0(1− θ1)

)X

.

If θ1 > θ0, it is easy to verify that T is an increasing function of X;
hence, an MP test of H ′

0 versus H ′
1 will reject H ′

0 for large values
of X. On the other hand, if θ1 < θ0 then T is a decreasing function
of X and so an MP test will reject H ′

0 for small values of X. From
this, we can see that no UMP test of H0 versus H1 will exist. ✸

EXAMPLE 7.14: Let X1, · · · , Xn be i.i.d. Exponential random
variables with parameter λ and suppose that we want to test

H0 : λ ≤ λ0 versus H1 : λ > λ0

at level α. In Example 7.11, we saw that the MP α level test of

H ′
0 : λ = λ0 versus H ′

1 : λ = λ1
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rejects H ′
0 for

∑n
i=1 Xi ≤ k when λ1 > λ0 where k is determined by

Pλ0

[
n∑
i=1

Xi ≤ k

]
= α.

It is also easy to verify that if λ < λ0 then

Pλ

[
n∑
i=1

Xi ≤ k

]
< α.

Thus the test that rejects H0 when
∑n

i=1 Xi ≤ k is a level α test
and since it is an MP α level test of H ′

0 versus H ′
1 for every λ1 > λ0,

it is a UMP test of H0 versus H1. ✸

Examples 7.13 and 7.14 give us some insight as to when UMP
tests can exist; typically, we need the following conditions:
• θ is a real-valued parameter (with no other unknown parame-

ters), and
• the testing problem is “one-sided”; that is, we are testing

H0 : θ ≤ θ0 (θ ≥ θ0) versus H1 : θ > θ0 (θ < θ0)

for some specified value θ0. (In fact, UMP tests may also exist if
H1 : θL < θ < θU for some specified θL and θU .)
Suppose that X = (X1, · · · , Xn) are random variables with joint

density or frequency function depending on some real-valued θ and
suppose that we want to test

H0 : θ ≤ θ0 versus H1 : θ > θ0

at level α. We noted above that this testing setup is essentially
necessary for the existence of a UMP test; however, a UMP test
need not exist for a particular model. We would thus like to find
a sufficient condition for the existence of a UMP test of H0 versus
H1; this is guaranteed if the family {f(x; θ) : θ ∈ Θ} has a property
known as monotone likelihood ratio.

DEFINITION. A family of joint density (frequency) functions
{f(x; θ)} (where θ ∈ Θ ⊂ R) is said to have monotone likelihood
ratio if there exists a real-valued function T (x) such that for any
θ1 < θ2,

f(x; θ2)
f(x; θ1)
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is a non-decreasing function of T (x). (By the Factorization
Criterion, the statistic T (X) is necessarily sufficient for θ.)

If the family {f(x; θ)} has monotone likelihood ratio then the
test statistic for the UMP test is T (X); for example, if we test

H0 : θ ≤ θ0 versus H1 : θ > θ0

then the test that rejects H0 (that is, φ(X) = 1) if T (X) ≥ k will
be a UMP α level test where

α = Pθ0 [T (X) ≥ k] .

Similarly, for H0 : θ ≥ θ0, the test rejecting H0 if T (X) ≤ k is a
UMP test.

EXAMPLE 7.15: Suppose the joint density or frequency function
of X = (X1, · · · , Xn) is a one-parameter exponential family

f(x; θ) = exp [c(θ)T (x)− b(θ) + S(x)] for x ∈ A

and assume (with loss of generality) that c(θ) is strictly increasing
in θ. Then for θ1 < θ2, we have

f(x; θ2)
f(x; θ1)

= exp [(c(θ2)− c(θ1))T (x) + b(θ1)− b(θ2)] ,

which is an increasing function of T (x) since c(θ2)−c(θ1) > 0. Thus
this one-parameter exponential family has monotone likelihood
ratio and so if we test H0 : θ ≤ θ0 versus H1 : θ > θ0,
we would reject H0 for T (X) ≥ k where k is chosen so that
Pθ0 [T (X) ≥ k] = α. ✸

Other most powerful tests

How do we find “good” tests if a UMP test does not exist? One
approach is to find the most powerful test among some restricted
class of tests. One possible restriction that can be applied is
unbiasedness: a test with test function φ is said to be an unbiased
level α test if

Eθ [φ(X)] ≤ α for all θ ∈ Θ0

and
Eθ [φ(X)] ≥ α for all θ ∈ Θ1.

Essentially, unbiasedness of a test requires that the power of the
test for θ ∈ Θ1 is greater than the level of the test. This would
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seem to be a very reasonable criterion to expect of a test; however,
in many situations, unbiased tests do not exist. When they do,
it is sometimes possible to find uniformly most powerful unbiased
(UMPU) tests.

Suppose we want to test H0 : θ = θ0 versus H1 : θ �= θ0 at level α,
it may be possible to construct a UMPU test by combining UMP
tests of H ′

0 : θ ≤ θ0 and H ′′
0 : θ ≥ θ0. More precisely, suppose that

φ1(X) is a UMP level α1 test function of H ′
0 and φ2(X) is a UMP

level α2 test function of H ′′
0 such that α1+α2 = α. Then φ = φ1+φ2

will be a level α test function provided that

φ1(X) + φ2(X) ≤ 1

and by judiciously choosing α1 and α2, it may be possible to make φ
an unbiased α level test function; the resulting test will typically be
a UMPU test. The natural choice for α1 and α2 is α1 = α2 = α/2;
in general, however, this will not lead to an unbiased test as the
following example indicates.

EXAMPLE 7.16: Let X be a continuous random variable with
density function

f(x; θ) = θxθ−1 for 0 ≤ x ≤ 1

and suppose we want to test

H0 : θ = 1 and H1 : θ �= 1

at the 5% level. We will reject H0 if either X ≤ 0.025 or X ≥ 0.975;
clearly this is a 5% level test since

P1(X ≤ 0.025) = P1(X ≥ 0.975) = 0.025.

The power function is then

π(θ) =
∫ 0.025

0
θxθ−1 dx +

∫ 1

0.975
θxθ−1 dx

= 1 + 0.025θ − 0.975θ.

Evaluating π(θ) for θ close to 1 reveals that this test is not unbiased;
in fact, π(θ) < 0.05 for 1 < θ < 2. However, it is possible to find
an unbiased 5% level test of H0 versus H1. This test rejects H0 if
either X ≤ 0.008521 or if X ≥ 0.958521. The power functions for
both tests are shown in Figure 7.2. ✸
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Figure 7.2 The power functions of the test in Example 7.16; the power function
for the unbiased test is indicated by the dashed line.

In Example 7.16, the unbiased test has higher power for θ > 1 but
lower power for θ < 1. This illustrates an important point, namely
that in choosing an unbiased test, we are typically sacrificing power
in some region of the parameter space relative to other (biased)
tests.

The following example illustrates how to determine a UMPU test.

EXAMPLE 7.17: Let X1, · · · , Xn be i.i.d. Exponential random
variables with parameter λ and suppose we want to test

H0 : λ = λ0 versus H1 : λ �= λ0

at some level α. We know, of course, that we can find UMP tests
for the null hypotheses

H ′
0 : λ ≤ λ0 and H ′′

0 : λ ≥ λ0

using the test statistic T =
∑n

i=1 Xi; we will reject H ′
0 for T ≤ k1
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and H ′′
0 for T ≥ k2. If k1 < k2, we can define the test function

φ(T ) =
{

1 if T ≤ k1 or T ≥ k2

0 otherwise ,

which will give a level α test if

Pλ0 [k1 < T < k2] = 1− α.

We would now like to choose k1 and k2 to make this test unbiased.
The power of the test is given by

π(λ) = 1− Pλ [k1 < T < k2]

= 1−
∫ k2

k1

λnxn−1 exp(−λx)
(n− 1)!

dx

since T has a Gamma distribution with parameters n and λ. For
given k1 and k2, the power function π(λ) is differentiable with
derivative

π′(λ) =
∫ k2

k1

(λnx− nλn−1)xn−1 exp(−λx)
(n− 1)!

dx

and it is easy to see that the requirement of unbiasedness is
equivalent to requiring that π′(λ0) = 0. Thus k1 and k2 must satisfy
the equations

1− α =
1

(n− 1)!

∫ k2

k1

λn0x
n−1 exp(−λ0x) dx

and 0 =
1

(n− 1)!

∫ k2

k1

(λn0x− nλn−1
0 )xn−1 exp(−λ0x) dx.

(The equations given here for k1 and k2 are similar to the equations
needed to obtain the shortest confidence interval in Example 7.3.)
For example, if n = 5, λ0 = 3, and α = 0.05, we obtain k1 = 0.405
and k2 = 3.146. This test turns out to be the UMPU 5% level test
of H0 versus H1. ✸

UMPU tests also exist for certain tests in k-parameter exponen-
tial families. Suppose X = (X1, · · · , Xn) are random variables with
joint density or frequency function

f(x; θ,η) = exp

[
θT0(x) +

k−1∑
i=1

ηiTi(x)− d(θ,η) + S(x)

]
where θ is real-valued and η is a vector of “nuisance” parameters;
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we want to test

H0 : θ ≤ θ0 versus H1 : θ > θ0

for some specified value θ0 where the value of η is arbitrary. It
turns out that a UMPU α level test of H0 versus H1 will reject H0

if T1(X) ≥ c where

α = Pθ0 [T0(X) ≥ c|T1 = t1, · · · , Tk−1 = tk−1]

where t1, · · · , tk−1 are the observed values of T1, · · · , Tk−1; that is,
ti = Ti(x) where x is the observed value of X. Thus the test
function is based not on the marginal distribution of the statistic
T0 but rather the conditional distribution of T0 given the observed
values of the other sufficient statistics T1, · · · , Tk−1. See Lehmann
(1991) for more details.

In the case where θ is real-valued, it is often possible to find
locally most powerful (LMP) tests. For example, suppose that we
want to test

H0 : θ ≤ θ0 versus H1 : θ > θ0.

Our intuition tells us that if the true value of θ is sufficiently far
from θ0, any reasonable test of H0 versus H1 will have power close
to 1. Thus we should be concerned mainly about finding a test
whose power is as large as possible for values of θ close to θ0. Let
φ(X) be a test function and define the power function

π(θ) = Eθ [φ(X)] ;

we will require that π(θ0) = α. We would like to find φ so that π(θ)
is maximized for θ close to θ0. As a mathematical problem, this is
somewhat ambiguous; however, if θ is very close to θ0 then we have

π(θ) ≈ π(θ0) + π′(θ0)(θ − θ0)
= α + π′(θ0)(θ − θ0)

(provided, of course, that π(θ) is differentiable). This suggests that
we try to find a test function φ to maximize π′(θ0) subject to
the constraint π(θ0) = α. (In the case where H0 : θ ≥ θ0 and
H1 : θ < θ0, we would want to minimize π′(θ0).)

Suppose that f(x; θ) is the joint density function of continuous
random variables X = (X1, · · · , Xn). Then for a given test function
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φ, we have

π(θ) =
∫
· · ·

∫
φ(x)f(x; θ) dx

and if we can differentiate under the integral sign, we have

π(θ) =
∫
· · ·

∫
φ(x)

∂

∂θ
f(x; θ) dx

=
∫
· · ·

∫
φ(x)

(
∂

∂θ
ln f(x; θ)

)
f(x; θ) dx

= Eθ

[
φ(X)

(
∂

∂θ
ln f(X; θ)

)]
.

(The same result holds if X1, · · · , Xn are discrete provided we can
differentiate inside the summation sign.)

The development given above suggests that to find the form of
the LMP test we must solve the following optimization problem:
maximize

Eθ0 [φ(X)S(X; θ0)]

subject to the constraint

Eθ0 [φ(X)] = α

where
S(x; θ) =

∂

∂θ
ln f(x; θ).

The following result provides a solution to this problem.

PROPOSITION 7.3 Suppose that X = (X1, · · · , Xn) has joint
density or frequency function f(x; θ) and define the test function

φ(X) =
{

1 if S(X; θ0) ≥ k
0 otherwise

where k is such that Eθ0 [φ(X)] = α. Then φ(X) maximizes

Eθ0 [ψ(X)S(X; θ0)]

over all test functions ψ with Eθ0 [ψ(X)] = α.

Proof. This proof parallels the proof of the Neyman-Pearson Lem-
ma. Suppose ψ(x) is a function with 0 ≤ ψ(x) ≤ 1 for all x such
that Eθ0 [ψ(X)] = α. Note that

φ(X)− ψ(X)
{ ≥ 0 if S(X; θ0) ≥ k
≤ 0 if S(X; θ0) ≤ k
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and so
Eθ0 [(φ(X)− ψ(X))(S(X; θ0)− k)] ≥ 0.

Since Eθ0 [φ(X)− ψ(X)] = 0, it follows that

Eθ0 [φ(X)S(X; θ0)] ≥ Eθ0 [ψ(X)S(X; θ0)] ,

which completes the proof.
The test described in Proposition 7.3 is often called the score

test since it is based on the score function (see Chapter 5); we
will discuss a more general form of the score test in section 7.5.
In deriving this LMP test, we have been concerned about the
behaviour of the power function only for values of θ near θ0; it
is, in fact, conceivable that this LMP test function does not result
in a level α test since Eθ[φ(X)] may be greater than α for some
θ < θ0.

In the case where X1, · · · , Xn are i.i.d. with common density or
frequency function f(x; θ) then

S(X; θ) =
n∑
i=1

:′(Xi; θ)

where :′(x; θ) is the partial derivative with respect to θ of ln f(x; θ).
Subject to the regularity conditions given in Chapter 5, we have

Eθ0

[
:′(Xi; θ0)

]
= 0 and Varθ0

[
:′(Xi; θ0)

]
= I(θ)

and so, if n is sufficiently large, the distribution (under θ = θ0) of
the test statistic S(X; θ0) will be approximately Normal with mean
0 and variance nI(θ). Thus the critical values for the LMP test of
H0 : θ ≤ θ0 versus H1 : θ > θ0 can be determined approximately
from this result.

EXAMPLE 7.18: Let X1, · · · , Xn be i.i.d. random variables with
a Cauchy distribution with density

f(x; θ) =
1

π(1 + (x− θ)2

and suppose that we want to test

H0 : θ ≥ 0 versus H1 : θ < 0

at the 5% level. We then have

S(X; 0) =
n∑
i=1

2Xi

1 + X2
i
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and the LMP test of H0 versus H1 rejects H0 if S(X; 0) ≤ k where
k is chosen so that

P0 [S(X; 0) ≤ k] = 0.05.

The exact distribution is difficult to obtain; however, since each
of the summands of S(X; 0) has mean 0 and variance 1/2, the
distribution of S(X; 0) (for θ = 0) will be approximately Normal
with mean 0 and variance n/2 if n is sufficiently large. Thus we
will have k

√
2/n ≈ −1.645 and so we can take k = −1.645

√
n/2 to

obtain a test whose level is approximately 5%. ✸

7.4 Likelihood ratio tests

Our discussion of UMP and LMP tests has involved only one
parameter models since these type of optimal tests do not generally
exist for models with more than one parameter. It is therefore
desirable to develop a general purpose method for developing
reasonable test procedures for more general situations.

We return to our general hypothesis testing problem where
X = (X1, · · · , Xn) has a joint density or frequency function f(x; θ)
where θ ∈ Θ with Θ = Θ0 ∪Θ1; we wish to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Earlier in this chapter, we saw that the Neyman-Pearson Lemma
was useful in one-parameter problems for finding various optimal
tests based on the ratio of joint density (frequency) functions. In
the more general testing problem, we will use the Neyman-Pearson
paradigm along with maximum likelihood estimation to give us a
general purpose testing procedure.

DEFINITION. The likelihood ratio (LR) statistic Λ is defined to
be

Λ =
supθ∈Θ f(X; θ)
supθ∈Θ0

f(X; θ)
=

supθ∈Θ L(θ)
supθ∈Θ0

L(θ)

where L(θ) is the likelihood function. A likelihood ratio test of
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 will reject H0 for large values of
Λ.

In our definition of Λ, we take the supremum of L(θ) = f(X; θ)
over θ ∈ Θ rather than θ ∈ Θ1 in the numerator of Λ. We do
this mainly for convenience; as mentioned earlier, Θ0 is often a
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lower dimensional subspace of Θ, which makes the calculation of
the MLE under H0 typically no more difficult than the calculation
of the unrestricted MLE.

In order to use LR tests, we must know (either exactly or
approximately) the distribution of the statistic Λ when H0 is true.
In some cases, Λ is a function of some other statistic T whose
distribution is known; in such cases, we can use T (rather than
Λ) as our test statistic. In other cases, we can approximate the
distribution of Λ (or some function of Λ) by a standard distribution
such as the χ2 distribution.

EXAMPLE 7.19: Let X1, · · · , Xn be i.i.d. Normal random vari-
ables with mean µ and variance σ2 (both unknown) and suppose
that we want to test

H0 : µ = µ0 versus H1 : µ �= µ0.

In general, the MLEs of µ and σ2 are

µ̂ = X̄ and σ̂2 =
1
n

n∑
i=1

(Xi − X̄)2

while under H0 the MLE of σ2 is

σ̂2
0 =

1
n

n∑
i=1

(Xi − µ0)2.

Substituting the respective MLEs yields

Λ =

(
σ̂2

0

σ̂2

)n/2

and so the LR test will reject H0 when Λ ≥ k where k is chosen
so the level of the test is some specified α. The distribution of Λ is
not obvious; however, note that Λ is a monotone function of σ̂2

0/σ̂
2

and
σ̂2

0

σ̂2
=

∑n
i=1(Xi − µ0)2∑n
i=1(Xi − X̄)2

= 1 +
n(X̄ − µ0)2∑n
i=1(Xi − X̄)2

= 1 +
1

n− 1

(
n(X̄ − µ0)2

S2

)

= 1 +
T 2

n− 1
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where
S2 =

1
n− 1

n∑
i=1

(Xi − X̄)2

and
T =

√
n(X̄ − µ0)/S.

From this, we can conclude that Λ is a monotone function of T 2 and
we know (from Chapter 2) that, when H0 is true, T has Student’s
t distribution with (n− 1) degrees of freedom and so T 2 has an F
distribution with 1 and (n− 1) degrees of freedom. ✸

EXAMPLE 7.20: Let X1, · · · , Xm be i.i.d. Exponential random
variables with parameter λ and Y1, · · · , Yn be i.i.d. random variables
with parameter θ; we also assume that Xi’s are independent of the
Yi’s. Suppose we want to test

H0 : λ = θ versus H1 : λ �= θ

The (unrestricted) MLEs of λ and θ are

λ̂ = 1/X̄ and θ̂ = 1/Ȳ

while the MLEs under H0 are

λ̂0 = θ̂0 =

[
mX̄ + nȲ

n + m

]−1

.

Substituting these MLEs, we obtain the LR statistic

Λ =

(
m

m + n
+

n

m + n

Ȳ

X̄

)m (
n

m + n
+

m

m + n

X̄

Ȳ

)n

.

Clearly, Λ depends only on the statistic T = X̄/Ȳ and we can make
Λ large by making T large or T small. Moreover, it is quite easy to
see that, when H0 is true, T has an F distribution with 2m and 2n
degrees of freedom and so, for a given value of α, it is quite simple
to base a test of H0 versus H1 on the statistic T . ✸

Asymptotic distribution of the LR statistic

As we mentioned previously, we can often approximate the distri-
bution of the LR test statistic. In this section, we will assume that
Θ is an open subset of Rp and the H0 parameter space Θ0 is ei-
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ther a single point or an open subset of Rs where s < p. We will
concentrate on the case where X1, · · · , Xn are i.i.d. random vari-
ables although many of the results will hold under more general
conditions.

First of all, suppose that X1, · · · , Xn are i.i.d. random variables
with density or frequency function f(x; θ) where the parameter
space Θ is an open subset of the real line. We will consider the
testing

H0 : θ = θ0 and H1 : θ �= θ0.

In this case, the LR statistic is simply

Λn =
n∏
i=1

f(Xi; θ̂n)
f(Xi; θ0)

where θ̂n is the MLE of θ. Assuming the regularity conditions in
Chapter 5, we obtain the following result.

THEOREM 7.4 Suppose that X1, · · · , Xn are i.i.d. random vari-
ables with a density or frequency function satisfying conditions A1
to A6 in Chapter 5 with I(θ) = J(θ). If the MLE θ̂n satisfies√
n(θ̂n − θ) →d N(0, 1/I(θ) then the LR statistic Λn for testing

H0 : θ = θ0 satisfies

2 ln(Λn) →d V ∼ χ2(1)

when H0 is true.

Proof. Let :(x; θ) = ln f(x; θ) and :′(x; θ), :′′(x; θ) be its derivatives
with respect to θ. Under the conditions of the theorem,

√
n(θ̂n − θ0) →d N(0, 1/I(θ0))

when H0 is true. Taking logarithms and doing a Taylor series
expansion, we get

ln(Λn) =
n∑
i=1

[:(Xi; θ̂n)− :(Xi; θ0)]

= (θ0 − θ̂n)
n∑
i=1

:′(Xi; θ̂n)−
1
2
(θ̂n − θ0)2

n∑
i=1

:′′(Xi; θ∗n)

= −1
2
n(θ̂n − θ0)2

1
n

n∑
i=1

:′′(Xi; θ∗n)
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where θ∗n lies between θ0 and θ̂n. Now under assumptions A5 and
A6 of Chapter 5, it follows that when H0 is true

1
n

n∑
i=1

:′′(Xi; θ∗n) →p −Eθ0 [:
′′(Xi; θ0)] = I(θ0).

Since
n(θ̂n − θ0)2 →d

V

I(θ0)
the conclusion follows by applying Slutsky’s Theorem.

Henceforth, we will refer to both Λn and 2 ln(Λn) as LR statistics
depending on the situation; there is no real ambiguity in doing so
since they are equivalent from a hypothesis testing viewpoint.

Theorem 7.4 can be extended fairly easily to the multiparameter
case. Let θ = (θ1, · · · , θp) and consider testing

H0 : θ1 = θ10, · · · , θr = θr0

where r ≤ p for some specified θ10, · · · , θr0. The LR statistic is
defined by

Λn =
n∏
i=1

f(Xi; θ̂n)
f(Xi; θ̂n0)

where θ̂n0 is the MLE of θ under H0 (and thus whose first r
components are θ10, · · · , θr0). Again we will assume the regularity
conditions B1 to B6 in Chapter 5 to obtain the following theorem.

THEOREM 7.5 Suppose that X1, · · · , Xn are i.i.d. random vari-
ables with a density or frequency function satisfying conditions B1
to B6 in Chapter 5 with I(θ) = J(θ) where θ = (θ1, · · · , θp). If the
MLE θ̂n satisfies

√
n(θ̂n−θ) →d N(0, I−1(θ)) then the LR statistic

Λn for testing H0 : θ1 = θ10, · · · , θr = θr0 satisfies

2 ln(Λn) →d V ∼ χ2(r)

when H0 is true.

The proof of Theorem 7.5 will be left as an exercise. However,
note that when r = p, the proof of Theorem 7.4 can be easily
adapted to give a proof of Theorem 7.5. In the general case, the
result can be deduced from the fact that the log-likelihood function
can be approximated by a quadratic function in a neighbourhood of
the true parameter value; this quadratic approximation is discussed
briefly below.

Theorem 7.5 can be applied to testing null hypotheses of the
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form
H0 : g1(θ) = a1, · · · , gr(θ) = ar

for some real-valued functions g1, · · · , gr. To see this, define pa-
rameters φ1, · · · , φp such that φk = gk(θ) where g1, · · · , gr are as
given in H0 and gr+1, · · · , gp are defined so that the vector-valued
function g(θ) = (g1(θ), · · · , gp(θ)) is a one-to-one function. Then
provided that this function is differentiable, Theorem 7.5 can be
applied using the parameters φ1, · · · , φp.

EXAMPLE 7.21: Suppose that (X1, Y1), · · · , (Xn, Yn) are i.i.d.
pairs of continuous random variables with the joint density function
of (Xi, Yi) given by

f(x, y; θ, λ, α) =
2θλα

(θx + λy + α)3
for x, y > 0

where θ, λ, α > 0. The marginal densities of Xi and Yi are

fX(x; θ, α) =
θα

(θx + α)2
for x > 0

and fY (y;λ, α) =
λα

(λy + α)2
for y > 0,

which are equal if θ = λ. Thus, we may be interested in testing

H0 : θ = λ.

We can reparametrize in a number of ways. For example, we could
define η1 = θ−λ, η2 = θ, and η3 = α, or alternatively, η1 = θ/λ with
η2, η3 defined as before. With either reparametrization, we could
express H0 in terms of η1 and so we would expect our likelihood test
to have an asymptotic χ2 distribution with one degree of freedom.
✸

Other likelihood based tests

While LR tests are motivated by the Neyman-Pearson paradigm,
there are in fact other commonly used tests based on the likelihood
function.

Let X1, · · · , Xn be i.i.d. random variables with density or fre-
quency function f(x;θ) where θ = (θ1, · · · , θp) and suppose that
we want to test the null hypothesis

H0 : θ1 = θ10, · · · , θr = θr0.
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To make the notation more compact, we will set φ = (θ1, · · · , θr)
and τ = (θr+1, · · · , θp) so that θ = (φ, τ ); thus, H0 becomes

H0 : φ = φ0

where φ0 = (θ10, · · · , θr0).
The Wald test of H0 compares the (unrestricted) MLE of φ to

its value under the null hypothesis; if the distance between the two
is large, this might indicate that H0 is false and so our test should
reflect this. If φ̂n is the MLE (based on X1, · · · , Xn) then if H0 is
true, we have

√
n(φ̂n − φ0) →d Nr(0, C(φ0, τ ))

where the variance-covariance matrix C(φ0, τ ) can be obtained
from the Fisher information matrix

I(φ0, τ ) =
(

I11(φ0, τ ) I12(φ0, τ )
I21(φ0, τ ) I22(φ0, τ )

)
by

C(φ0, τ ) =
[
I11(φ0, τ )− I21(φ0, τ )I−1

22 (φ0, τ )I12(φ0, τ )
]−1

.

The Wald test statistic is

Wn = n(φ̂n − φ0)
T Ĉn(φ̂n − φ0)

where Ĉn is some estimator of C(φ0, τ ) that is consistent under
H0. There are several possibilities for Ĉn; for example, we could
set Ĉn = C(φ̂n, τ̂n) (or C(φ0, τ̂n)) or we could set Ĉn equal to
the observed information matrix. Under H0, Wn →d χ2(r) and we
reject H0 for large values of this statistic.

The score test (or Lagrange multiplier test as it is called by
econometricians) uses the fact that if the null hypothesis is false
then the gradient of the log-likelihood function should not be close
to the 0 vector. To be more precise, let Si(φ, τ ) be the gradient of
ln f(Xi;φ, τ ) with respect to φ. Then under H0, we have (subject
to the regularity conditions of Chapter 5),

1√
n

n∑
i=1

Si(φ0, τ̂n0) →d Nr(0, I11(φ0, τ ))

where τ̂n0 is the MLE of τ under H0. The score statistic is

Sn =
1
n

(
n∑
i=1

Si(φ0, τ̂n0)

)T

I−1
11 (φ0, τ̂n0)

(
n∑
i=1

Si(φ0, τ̂n0)

)
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Figure 7.3 The log-likelihood (multiplied by two and rescaled to have a maximum
of 0) in Example 7.22; for testing H0 : λ = 4, the LR statistic is the length of
the vertical line, the Wald statistic is proportional to the square of the length of
the horizontal line while the score statistic is proportional to the square of the
slope of the tangent line at λ = 4.

As for the Wald statistic, we reject H0 for large values of Sn and,
under H0, we have Sn →d χ

2(r).

EXAMPLE 7.22: We will give an illustration of the three tests
in a very simple setting. Suppose that X1, · · · , Xn are i.i.d. Poisson
random variables with mean λ and we want to test the null
hypothesis H0 : λ = λ0 versus the alternative hypothesis H1 : λ �=
λ0. For the Poisson distribution, we have I(λ) = 1/λ and the MLE
is λ̂n = X̄n. Therefore, the LR, Wald, and score statistics have the
following formulas:

2 ln(Λn) = 2n
(
X̄n ln(X̄n/λ0)− (X̄n − λ0)

)
Wn =

n(X̄n − λ0)2

λ0

Sn =
n(X̄n − λ0)2

λ0
.
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Note that Sn and Wn are the same in this case. Figure 7.3 shows
a graph of the (scaled) likelihood function for a sample of 100
observations. For the purpose of illustration, we take λ0 = 4 in
which case the value of the LR statistic (for these data) is 13.60
while the value for the score and Wald statistic is 14.44; using the
asymptotic χ2(1) null distribution, we would reject H0 at the 0.05
level for values greater than 3.84 and at the 0.01 level for values
greater than 6.63. ✸

Although both the Wald and the score statistics have the same
limiting distribution (under H0) as the LR statistic, there are
some practical differences in the use of these statistics. First,
suppose that we reparametrize the model by setting θ∗ = g(θ)
where g is a one-to-one transformation on Θ. In this case, the
LR statistic remains unchanged since the maxima (both restricted
and unrestricted) of the likelihood function remain unchanged. On
the other hand, the Wald and score statistics will not remain
invariant to reparametrization although the dependence on the
parametrization of the model becomes smaller as the sample size
increases. Second, both the LR and Wald statistics require the
computation of restricted and unrestricted MLEs; on the other
hand, the score statistic requires only computation of the restricted
MLE (that is, the MLE under H0). Thus the score statistic is
potentially simpler from a computational point of view and for
this reason, the score test is often used in deciding whether or not
parameters should be added to a model.

As mentioned above, the score test is often called the Lagrange
multiplier test, particularly in econometrics. The reason for this is
the following. Suppose that we want to maximize a log-likelihood
function lnL(θ) subject to the constraint g(θ) = 0 for some
function g. To solve this problem, we can introduce a vector of
Lagrange multipliers λ and maximize the function

h(θ,λ) = lnL(θ) + λTg(θ).

If (θ̂, λ̂) maximizes h(θ,λ) then λ̂ ≈ 0 implies that the constrained
maximum and unconstrained maximum of lnL(θ) are close; on the
other hand, if λ̂ is not close to the 0 vector then the two maxima
can be very different. This suggests that a test statistic can be based
on λ̂; in the problem considered above, this statistic is simply the
score statistic.
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EXAMPLE 7.23: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with shape parameter α and scale parameter λ.
We want to test

H0 : α = 1 versus H1 : α �= 1.

Under H0, note that the Xi’s have an Exponential distribution. For
this model, estimating both α and λ via maximum likelihood is non-
trivial (although not difficult) as there is no closed-form expression
for the MLEs (see Example 5.15); however, for fixed α, there is a
simple closed-form expression for the MLE of λ. Thus the score test
seems an attractive approach to testing H0. For α = 1, the MLE
of λ is λ̂n = 1/X̄n and so the score statistic is

Sn =
1

nψ′(1)

(
n∑
i=1

(
ln(Xi/X̄n)− ψ(1)

))2

where ψ(α) and ψ′(α) are the first and second derivatives of ln Γ(α)
with ψ(1) = −0.57722 and ψ′(1) = 1.64493; see Example 5.15 for
more details. The limiting distribution of Sn is χ2 with 1 degree of
freedom. ✸

In addition to having the same limiting distribution, the LR
statistic as well as the Wald and score statistics are asymptotically
equivalent (under the null hypothesis) in the sense that the
difference between any two of them tends in probability to 0 as n→
∞. This asymptotic equivalence is a consequence of the fact that the
log-likelihood function is a quadratic function in a neighbourhood
of the true parameter value (assuming the regularity conditions
of Theorem 7.5). More precisely, if lnLn(θ) is the log-likelihood
function and θ0 is the true value of the parameter then we have

Zn(u) = ln(Ln(θ0 + u/
√
n)/Ln(θ0))

= uTV n −
1
2
uT I(θ0)u + Rn(u)

where Rn(u) →p 0 for each u and V n →d Np(0, I(θ0)); Zn(u) is
maximized at u =

√
n(θ̂n − θ0) and the quadratic approximation

to Zn is maximized at u = I−1(θ0)V n. Thus if we are interested
in testing H0 : θ = θ0, the quadratic approximation to Zn suggests
the following approximations to our test statistics:

2 ln(Λn) = 2Zn(
√
n(θ̂n − θ0))
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≈ V T
n I

−1(θ0)V n

Wn = n(θ̂n − θ0)T I(θ0)(θ̂n − θ0)
= V T

n I
−1(θ0)V n

Sn = [∇Zn(0)]T I−1(θ0)[∇Zn(0)]
≈ V nI

−1(θ0)V n

where ∇Zn(0) is the gradient of Zn(u) at u = 0, or equivalently,
the score vector divided by

√
n. Thus V nI

−1(θ0)V n serves as an
approximation for each of 2 ln(Λn) (the LR statistic), Wn (the Wald
statistic), and Sn (the score statistic); note that V nI

−1(θ0)V n →d

χ2(p). Similarly approximations hold for these test statistics applied
to other null hypotheses considered in this section.

7.5 Other issues

P-values

Up to this point, we have assume a fixed level α when discussing
hypothesis tests. That is, given α, we define a test function φ; then
given data X = x, we reject the null hypothesis at level α if φ(x).

An alternative approach (which is more in line with current
practice) is to consider a family of test functions φα for 0 < α < 1
where the test function φα has level α. We will assume the test
functions {φα} satisfy the condition

φα1(x) = 1 implies φα2(x) = 1

for any α1 < α2. We then define the p-value (or observed
significance level) to be

p(x) = inf{α : φα(x) = 1}.
The p-value p(x) is the smallest value of α for which the null
hypothesis would be rejected at level α given X = x.

In the case where the hypothesis test is framed in terms of a single
test statistic T = T (X) such that φα(X) = 1 for T > kα then it is
straightforward to evaluate p-values. If G(x) is the null distribution
function of T , then given T (x) = t, the p-value is p(x) = 1−G(t).

EXAMPLE 7.24: Suppose that X1, · · · , Xm and Y1, · · · , Yn are
two samples of i.i.d. random variables with Xi ∼ N(µ1, σ

2) and
Yi ∼ N(µ2, σ

2). The LR test of the null hypothesis

H0 : µ1 = µ2
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(versus the alternative H1 = µ1 �= µ2) rejects H0 for large values of
the test statistic |T | where

T =
X̄ − Ȳ

S
√
m−1 + n−1

and S2 is the so-called “pooled” estimator of variance:

S2 =
1

m + n− 2

[
m∑
i=1

(Xi − X̄)2 +
n∑
i=1

(Yi − Ȳ )2
]
.

It is easy to verify that T ∼ T (m+n−2) under the null hypothesis.
Thus given T = t, the p-value is p(t) = 1 + G(−|t|)−G(|t|) where
G(x) is the distribution function of the t distribution. However, if
the alternative hypothesis is H1 : µ1 > µ2, we would typically reject
H0 for large values of T . In this case, given T = t, the p-value is
p(t) = 1−G(t). ✸

The p-value is often used as a measure of evidence against the
null hypothesis: the smaller p(x), the more evidence against the null
hypothesis. While this use of p-values is quite common in statistical
practice, its use as a measure of evidence is quite controversial. In
particular, it is difficult to calibrate p-values as measures of evidence
(Goodman, 1999a).

P-values are often (erroneously) interpreted as the probability
(given the observed data) that the null hypothesis is true. However,
if we put a prior distribution on the parameter space then it
may be possible to compute such a probability (from a Bayesian
perspective) using the posterior distribution. Some care is required
in interpreting these probabilities though; for example, the posterior
probability that the null hypothesis is true necessarily depends
on the prior probability of the null hypothesis. As a Bayesian
alternative to p-values, some authors have proposed using Bayes
factors, which essentially measure the change in the odds of the null
hypothesis from the prior to the posterior; see, for example, Kass
and Raftery (1995), and DiCiccio et al (1997). It is often argued that
Bayes factors are more easily intepretable than p-values (Goodman,
1999b) although this view is not universally shared.

We can also view p-values, in their own right, as test statistics.
Suppose that we want to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1
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using a family of tests whose test functions are {φα}. Suppose that
X = (X1, · · · , Xn) are continuous random variables and that, for
some θ0 ∈ Θ0,

Eθ0 [φα(X)] = α

for all 0 < α < 1. Then if the p-value p(X) has a continuous
distribution, it follows that

Pθ0 [p(X) ≤ x] = x

for 0 < x < 1; that is, p(X) has a Uniform distribution on [0, 1]
when θ0 is the true value of the parameter. (Note that, for given
θ ∈ Θ0, we have

Pθ [p(X) ≤ x] ≥ x

for 0 < x < 1.)
The fact that p(X) is uniformly distributed under H0 can be

useful in practice. For example, suppose that we have p-values
P1, · · · , Pk from k independent tests of the same null hypothesis.
Assuming that the Pi’s are uniformly distributed when the null
hypothesis is true, we can combine the p-values using the test
statistic

T = −2
k∑
i=1

ln(Pi);

under the null hypothesis, T has a χ2 with 2k degrees of freedom.
This simple approach to meta-analysis (that is, combining results
of different studies) is due to R.A. Fisher.

Obtaining confidence regions from hypothesis tests

Our discussion of confidence intervals and regions gave essentially
no theoretical guidance on how to choose a “good” confidence
procedure; in contrast, for hypothesis testing, the Neyman-Pearson
Lemma provides a useful paradigm for deriving “good” hypothesis
tests in various situations. In fact, there turns out to be a very
close relationship between confidence intervals (or regions) and
hypothesis tests; we can exploit this relationship to turn “good”
hypothesis tests into “good” confidence procedures.

Suppose that R(X) is an exact 100p% confidence region for a
parameter θ and we want to test the null hypothesis

H0 : θ = θ0 versus H1 : θ �= θ0.
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Define the test function

φ(X) =
{

1 if θ0 /∈ R(X)
0 if θ0 ∈ R(X).

It is easy to verify that the size of this test is

Eθ0 [φ(X)] = 1− Pθ0 [θ0 ∈ R(X)]
≤ 1− p.

Thus we can use a 100p% confidence region to construct a test of
H0 whose level is at most 1 − p. On the other hand, suppose that
we have α-level tests of H0 for each θ0 ∈ Θ; define φ(X;θ0) to be
the test function for a given θ0. Now define

R∗(X) = {θ0 : φ(X; θ0) = 0} ;

the coverage of R∗(X) is

Pθ [θ ∈ R∗(X)] = Pθ [φ(X;θ) = 0]
≥ 1− α.

Thus we can construct a (possibly conservative) 100p% confidence
region for θ by considering a family of α = 1 − p level tests and
defining the confidence region to be the set of θ’s for which we
cannot reject the null hypothesis at level α.

This “duality” between hypothesis tests and confidence intervals
or regions can be very useful in practice. For example, suppose that
X1, · · · , Xn are i.i.d. random variables with density or frequency
function f(x;θ) and we want to find a confidence interval for a
single parameter (call it φ) in θ. Writing θ = (φ, τ ), the LR statistic
for H0 : φ = φ0 is

2 ln(Λn) = 2
n∑
i=1

ln[f(Xi; φ̂n, τ̂n)/f(Xi;φ0, τ̂n(φ0))]

where τ̂n(φ0) is the MLE of τ under H0 (that is, assuming
that φ = φ0 is known). According to Theorem 7.5, under H0,
2 ln(Λn) →d χ

2(1) and H0 is rejected for large values of the statistic
2 ln(Λn). Thus if kp is the p quantile of a χ2(1) distribution, an
approximate 100p% confidence interval for φ is

R(X) = {φ : g(X;φ) ≤ kp}
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where g(X;φ) is the “likelihood ratio” pivot:

g(X;φ) = 2
n∑
i=1

ln[f(Xi; φ̂n, τ̂n)/f(Xi;φ, τ̂n(φ))].

Note that g(X;φ) ≥ 0 with g(X; φ̂n) = 0.

EXAMPLE 7.25: Suppose that X1, · · · , Xn are i.i.d. Gamma
random variables with shape parameter α and scale parameter
λ. We will derive an approximate 95% confidence interval for α
based on the LR test procedure. First of all, we start with the
log-likelihood function

lnL(α, λ) = nα ln(λ) + (α− 1)
n∑
i=1

ln(Xi)− λ
n∑
i=1

Xi − n ln Γ(α).

The LR test of H0 : α = α0 compares the maximized likelihood with
α = α0 to the unrestricted maximized likelihood; if α is assumed
known then the MLE of λ is λ̂(α) = α/X̄. Substituting λ̂(α) for λ
in the log-likelihood, we obtain the profile log-likelihood

lnLp(α) = lnL(α, λ̂(α))

= nα
[
ln(α/X̄)− 1

]
+ (α− 1)

n∑
i=1

ln(Xi)− n ln Γ(α).

The profile log-likelihood is maximized at α̂, which is the MLE of
α; to obtain a confidence interval for α we look at the approximate
pivot

g(X;α) = 2 ln[Lp(α̂)/Lp(α)].

We know that, for a given α, g(X;α) is approximately χ2 dis-
tributed with 1 degree of freedom; thus an approximate 95% confi-
dence interval for α is

R(X) = {α : g(X;α) ≤ 3.841} .

For a sample of 50 i.i.d. Gamma random variables, a graph of
g(X;α) and the approximate 95% confidence interval for α are
shown in Figure 7.4. ✸

A similar approach can be followed to obtain confidence intervals
(or, indeed, confidence regions) from the Wald and score tests.
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Figure 7.4 The profile likelihood pivot in Example 7.25 and an approximate 95%
confidence for α.

Confidence intervals and tests based on non-parametric likelihood

Suppose that X1, · · · , Xn are i.i.d. random variables with unknown
distribution function F . In section 5.6, we defined a notion of
non-parametric maximum likelihood estimation and noted that
the empirical distribution function was the non-parametric MLE
of F under this formulation. We will indicate here how the non-
parametric likelihood function can be used to obtain a confidence
interval for a functional parameter θ(F ) or to test a null hypothesis
of the form H0 : θ(F ) = θ0. The idea is to extend the idea of LR
tests to the non-parametric setting.

We will consider the hypothesis testing problem first. According
to our discussion in section 5.6, we consider only distributions
putting all their probability mass at the points X1, · · · , Xn. For
a given vector of probabilities p = (p1, · · · , pn), we define Fp to be
the (discrete) distribution with probability pi at Xi (i = 1, · · · , n).
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The non-parametric (or empirical) log-likelihood function is

lnL(p) =
n∑
i=1

ln(pi)

and so to implement the LR test procedure, we must consider
the unrestricted MLEs of p1, · · · , pn (which are p̂i = 1/n for
i = 1, · · · , n) as well as the restricted MLEs assuming that the null
hypothesis is true; the restricted MLEs maximize lnL(p) subject
to the constraints p1 + · · · + pn = 1 and θ(Fp) = θ0. If p̂0 is this
restricted MLE of p then the LR test statistic is given by

ln(Λn) = −
n∑
i=1

ln(np̂i0);

as before, we would reject H0 for large values of ln(Λn) (or,
equivalently, Λn).

EXAMPLE 7.26: Suppose that θ(F ) =
∫
x dF (x) = E(Xi).

Under H0 : θ(F ) = θ0, the non-parametric MLEs of p1, · · · , pn
can be obtained by maximizing lnL(p) subject to the constraints

p1 + · · ·+ pn = 1
p1X1 + · · ·+ pnXn = θ0.

The MLEs (under H0) can be determined by introducing two
Lagrange multipliers, λ1 and λ2, and maximizing

n∑
i=1

ln(pi) + λ1(p1 + · · ·+ pn − 1) + λ2(p1X1 + · · ·+ pnXn − θ0)

with respect to p1, · · · , pn, λ1 and λ2. After differentiating and
setting the partial derivatives to 0, we obtain

p̂i =
1

n− λ2(Xi − θ0)

where λ2 is defined so that the constraints on the pi’s are satisfied.
✸

The limiting null distribution of the LR test statistic is not clear;
we do not have the standard conditions for this statistic to have
a limiting χ2 distribution. Nonetheless, if θ(F ) is a sufficiently
“smooth” functional parameter then the null distribution 2 ln(Λn)
will be approximately χ2 with 1 degree of freedom for large n. For

c© 2000 by Chapman & Hall/CRC



example, the following result can be found in Owen (1988) for the
case where θ(F ) =

∫
g(x) dF (x).

THEOREM 7.6 Suppose that θ(F ) =
∫
g(x) dF (x) and we are

testing H0 : θ(F ) = θ0. If
∫
|g(x)|3 dF (x) <∞ then

2 ln(Λn) →d χ
2(1)

if H0 is true.

Similar results can be given for other functional parameters θ(F );
see Owen (1988) for details.

We can use the result of Theorem 7.6 to derive approximate
confidence intervals for functional parameters θ(F ) satisfying its
conditions. For example, suppose that θ(F ) =

∫
x dF (x) and define

g(X; θ) = −2
n∑
i=1

ln(np̂i(θ))

where p̂(θ) maximizes the non-parametric likelihood subject to the
constraint n∑

i=1

piXi = θ.

Then g(X; θ(F )) is an approximate pivot for θ(F ) and hence we
can define an approximate 100p% confidence interval for θ(F ) to
be

R(X) = {θ : g(X; θ) ≤ kp}
where kp is the p quantile of a χ2 distribution with 1 degree of
freedom.

7.6 Problems and complements

7.1: Suppose that X1, · · · , Xn are i.i.d. Normal random variables
with unknown mean µ and variance σ2.
(a) Using the pivot (n− 1)S2/σ2 where

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2,

we can obtain a 95% confidence interval [k1S
2, k2S

2] for some
constants k1 and k2. Find expressions for k1 and k2 if this
confidence interval has minimum length. Evaluate k1 and k2

when n = 10.
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(b) When n is sufficiently large, we can approximate the
distribution of the pivot by a Normal distribution (why?). Find
approximations for k1 and k2 that are valid for large n.

7.2: Suppose that X1, · · · , Xn are i.i.d. Exponential random vari-
ables with parameter λ.
(a) Show that 2λXi has a χ2 distribution with 2 degrees of
freedom and hence that 2λ

∑n
i=1 Xi has a χ2 distribution with

2n degrees of freedom.
(b) Suppose that n = 5. Give a 90% confidence interval for θ
using the result of part (a).

(c) Let θ̂ be the MLE of θ. Find a function g such that
the distribution of

√
n(g(θ̂) − g(θ)) is approximately standard

Normal and use this to give an approximate 90% confidence
interval for θ valid for large n.

7.3: Suppose that X1, · · · , Xn are i.i.d. continuous random vari-
ables with median θ.
(a) What is the distribution of

∑n
i=1 I(Xi ≤ θ)?

(b) Let X(1) < · · · < X(n) be the order statistics of X1, · · · , Xn.
Show that the interval [X(�), X(u)] is a 100p% confidence
interval for θ and find an expression for p in terms of : and
u. (Hint: use the random variable in part (a) as a pivot for θ.)
(c) Suppose that for large n, we set

: =
⌊
n

2
− 0.98√

n

⌋
and u =

⌈
n

2
+

0.98√
n

⌉
.

Show that the confidence interval [X(�), X(u)] has coverage
approximately 95%. ( "x# is the largest integer less than or
equal to x while $x% is the smallest integer greater than or
equal to x.)

7.4: Suppose that X1, · · · , Xm, Y1, · · · , Yn are independent Expo-
nential random variables with Xi ∼ Exp(λ) and Yi ∼ Exp(θλ).
(a) Find the MLEs of λ and θ.

(b) Let θ̂m,n be the MLE of θ. Find an expression for an
approximate standard error of θ̂m,n. (Hint: assume m and n
are “large” and use asymptotic theory.)
(c) Show that θ

∑n
i=1 Yi/

∑m
i=1 Xi is a pivot for θ. What is

the distribution of this pivot? (Hint: Find the distributions of
2λθ

∑
Yi and 2λ

∑
Xi.)
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(d) Using part (c), show how to construct a 95% confidence
interval for θ. Give the upper and lower confidence limits for
m = 5 and n = 10.

7.5: Suppose that X1, · · · , Xn are i.i.d. Uniform random variables
on [0, θ] and let X(1), · · · , X(n) be the order statistics.
(a) Show that for any r, X(r)/θ is a pivot for θ.
(b) Use part (a) to derive a 95% confidence interval for θ based
on X(r). Give the exact upper and lower confidence limits when
n = 10 and r = 5.

7.6: Suppose that X1, · · · , Xn are i.i.d. nonnegative random vari-
ables whose hazard function is

λ(x) =
{

λ1 for x ≤ x0

λ2 for x > x0

where λ1, λ2 are unknown parameters and x0 is a known
constant.
(a) Consider testing H0 : λ1/λ2 = r versus H0 : λ1/λ2 �= r for
some specified r > 0. Find the form of the LR test of H0 versus
H1.
(b) Use the result of (a) to find an approximate 95% confidence
interval for λ1/λ2.

7.7: Suppose that X1, X2, · · · are i.i.d. Normal random variables
with mean µ and variance σ2, both unknown. With a fixed
sample size, it is not possible to find a fixed length 100p%
confidence interval for µ. However, it is possible to construct
a fixed length confidence interval by allowing a random sample
size. Suppose that 2d is the desired length of the confidence
interval. Let n0 be a fixed integer with n0 ≥ 2 and define

X̄0 =
1
n0

n0∑
i=1

Xi and S2
0 =

1
n0 − 1

n0∑
i=1

(Xi − X̄0)2.

Now given S2
0 , define a random integer N to be the smallest

integer greater than n0 and greater than or equal to [S0tα/d]2

where α = (1 − p)/2 and tα is the 1 − α quantile of a t-
distribution with n0 − 1 degrees of freedom). Sample N − n0

additional random variables and let X̄ = N−1 ∑N
i=1 Xi.

(a) Show that
√
N(X̄ − µ)/S0 has a t-distribution with n0 − 1

degrees of freedom.
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(b) Use the result of part (a) to construct a 100p% confidence
interval for µ and show that this interval has length at most
2d.

7.8: Suppose that X1, · · · , Xn are i.i.d. random variables with Cau-
chy density

f(x; θ) =
1
π

1
1 + (x− θ)2

.

(a) Let θ̃n be the median of X1, · · · , Xn. It can be shown that√
n(θ̃n − θ) →d N(0, σ2). Find the value of σ2 and use this

result to construct an approximate 95% confidence interval for
θ.
(b) Find an approximate 95% confidence interval for θ using
the maximum likelihood estimator. (You may assume that the
MLE is consistent.)
(c) Which of these two (approximate) confidence intervals is
narrower?

7.9: Suppose that X1, · · · , Xn are i.i.d. random variables with
density function

f(x;µ) = exp[−λ(x− µ)] for x ≥ µ.

Let X(1) = min(X1, · · · , Xn).
(a) Show that

S(λ) = 2λ
n∑
i=1

(Xi −X(1)) ∼ χ2(2(n− 1))

and hence is a pivot for λ. (Hint: Note that the distribution of
Xi −X(1) does not depend on µ and see Problem 2.26.)
(b) Describe how to use the pivot in (a) to give an exact 95%
confidence interval for λ.
(c) Give an approximate 95% confidence interval for λ based
on S(λ) for large n.

7.10: Smith (1988) discusses Bayesian methods for estimating
the population size in multiple mark/recapture experiments
(see Example 2.13). In such experiments, we assume a fixed
population size N . Initially (stage 0), n0 items are sampled
(captured) without replacement and marked. Then at stage i
(i = 1, · · · , k), ni items are sampled and the number of marked
items mi is observed; any unmarked items are marked before
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being returned to the population. Thus the total number of
marked items in the population at stage i is

Mi =
i−1∑
j=0

(nj −mj) where m0 = 0.

The conditional distribution of the number of marked items
at stage i (given Mi, which depends on m1, · · · ,mi−1) is
Hypergeometric with frequency function

f(mi|Mi, N) =

(
Mi

mi

)(
N −Mi

ni −mi

)/(
N

ni

)
.

(a) To make the problem somewhat more analytically tractable,
we can approximate the Hypergeometric (conditional) frequen-
cy function f(mi|Mi, N) by the Poisson approximation

f(mi|Mi, N) ≈ exp(−Mi/N)(Mi/N)mi

mi!
.

Justify this approximation; specifically, what assumptions are
being made about Mi and N in making this approximation.
(b) Using the Poisson approximation in (a), we can now pretend
that N is a “continuous” rather than discrete parameter. Set
ω = 1/N and assume the following prior density for ω:

π(ω) = 2(1− ω) for 0 ≤ ω ≤ 1

For the data given in Table 7.1, find the posterior density of N
(not ω) and find the 95% HPD interval for N .
(d) In this paper, we treat ω (or equivalently N) as a continuous
parameter even though it is discrete. Given a prior frequency
function π(N) for N , give an expression for the posterior
frequency function.

7.11: Consider a random sample of n individuals who are classified
into one of three groups with probabilities θ2, 2θ(1 − θ), and
(1 − θ)2. If Y1, Y2, Y3 are the numbers in each group then
Y = (Y1, Y2, Y3) has a Multinomial distribution:

f(y; θ) =
n!

y1!y2!y3!
θ2y1 [2θ(1− θ)]y2 (1− θ)2y3

for y1, y2, y3 ≥ 0; y1 +y2 +y3 = n where 0 < θ < 1. (This model
is the Hardy-Weinberg equilibrium model from genetics.)
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Table 7.1 Data for Problem 7.10; ni is the number of fish caught in sample i
and mi is the number of marked fish caught.

i ni mi

0 10 0
1 27 0
2 17 0
3 7 0
4 1 0
5 5 0
6 6 2
7 15 1
8 9 5
9 18 5

10 16 4
11 5 2
12 7 2
12 19 3

(a) Find the maximum likelihood estimator of θ and give the
asymptotic distribution of

√
n(θ̂n − θ) as n→∞.

(b) Consider testing H0 : θ = θ0 versus H1 : θ > θ0. Suppose
that for some k

Pθ0 [2Y1 + Y2 ≥ k] = α

Then the test that rejects H0 when 2Y1+Y2 ≥ k is a UMP level
α test of H0 versus H1.

(c) Suppose n is large and α = 0.05. Find an approximate value
for k in the UMP test in part (b). (Hint: Approximate distribu-
tion of 2Y1 + Y2 by a Normal distribution; the approximation
will depend on n and θ0.)

(d) Suppose that θ0 = 1/2 in part (b). How large must n so that
a 0.05 level test has power at least 0.80 when θ = 0.6? (Hint: Use
the approximation in (c) to evaluate k and then approximate
the distribution of 2Y1 + Y2 by a Normal distribution when
θ = 0.6.)

7.12: Suppose that X1, · · · , Xn are i.i.d. random variables with
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density function

f(x; θ) = θxθ−1 for 0 ≤ x ≤ 1

where θ > 0.
(a) Show that the UMP level α test of H0 : θ ≤ 1 versus
H1 : θ > 1 rejects H0 for

T =
n∑
i=1

ln(Xi) ≥ k.

What is the distribution of T under H0?
(b) Suppose α = 0.05 and n = 50. Find either an exact or an
approximate value for k.
(c) Suppose we use the following test statistic for testing H0

versus H1:

S =
n∑
i=1

sin(πXi/2).

We reject H0 when S ≥ k. If α = 0.05, find an approximate
value for k (assuming n is reasonably large). (Hint: Approxi-
mate the distribution of S when θ = 1 using the CLT.)
(d) Suppose that θ = 2. Determine how large (approximately)
n should be so that the test in part (c) has power 0.90. How
large (approximately) must n be for the UMP test of part (a)?
(Hint: Find the mean and variance of S and T when θ = 2 and
apply the CLT.)

7.13: Suppose that X ∼ Bin(m, θ) and Y ∼ Bin(n, φ) are
independent random variables and consider testing

H0 : θ ≥ φ versus H1 : θ < φ.

(a) Show that the joint frequency function of X and Y can be
written in the form

f(x, y; θ, φ)

=
(
θ(1− φ)
φ(1− θ)

)x (
φ

1− φ

)x+y

exp [d(θ, φ) + S(x, y)]

and that H0 is equivalent to

H0 : ln
(
θ(1− φ)
φ(1− θ)

)
≥ 0.
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(b) The UMPU test of H0 versus H1 rejects H1 at level α if
X ≥ k where k is determined from the conditional distribution
of X given X + Y = z (assuming that θ = φ). Show that this
conditional distribution is Hypergeometric. (This conditional
test is called Fisher’s exact test.)
(c) Show that the conditional frequency function of X given
X + Y = z is given by

P (X = x|X + Y = z)

=

(
m

x

)(
n

z − x

)
ψx

/ ∑
s

(
m

s

)(
n

z − s

)
ψs

where the summation extends over s from max(0, z − n) to
min(m, z) and

ψ =
θ(1− φ)
φ(1− θ)

.

(This is called a non-central Hypergeometric distribution.)

7.14: Let X1, · · · , Xm be i.i.d. Poisson random variables with
parameter λ and Y1, · · · , Yn be i.i.d. Poisson random variables
(independent of the Xi’s) with parameter µ. Suppose we want
to test

H0 : µ = λ versus H1 : µ �= λ

at level α.
(a) Find the LR statistic Λ = Λm,n for testing H0. Assuming
that m,n → ∞, show that the null distribution of 2 ln(Λm,n)
tends to a χ2 distribution with 1 degree of freedom.
(b) An alternative approach to testing in this problem is a
conditional test. Define S = X1+· · ·+Xm and T = Y1+· · ·+Yn.
Show that the conditional distribution of S given S + T = y is
Binomial and give the values of the parameters.
(c) Let φ = µ/λ. Using the conditional distribution in (b), show
that the MP conditional test of

H ′
0 : φ = φ0 versus H ′

1 : φ = φ1

rejects H ′
0 for large (small) values of S if φ1 > φ0 (φ1 < φ0).

(d) Use the result of (c) to give a reasonable conditional test of
H0 versus H1 in (a).

7.15: Suppose that X1, · · · , X10 are i.i.d. Uniform random variables
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on [0, θ] and consider testing

H0 : θ = 1 versus H1 : θ �= 1

at the 5% level. Consider a test that rejects H0 if X(10) < a or
X(10) > b where a < b ≤ 1.
(a) Show that a and b must satisfy the equation

b10 − a10 = 0.95.

(b) Does an unbiased test of H0 versus H1 of this form exist? If
so, find a and b to make the test unbiased. (Hint: evaluate the
power function and note that it must be minimized at θ = 1 in
order for the test to be unbiased.)

7.16: Let Xn = (X1, · · · , Xn) and suppose that we are testing
H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. A sequence of α level test
functions {φn} is consistent for testing H0 versus H1,

Eθ[φn(Xn)] → 1

for all θ ∈ Θ1.
(a) Let X1, · · · , Xn be i.i.d. random variables with density or
frequency function f(x; θ) and suppose that we test H0 : θ = θ0

versus H1 : θ = θ1. Show that the sequence of MP α level tests
is consistent.
(b) Let X1, · · · , Xn be i.i.d. random variables with density
or frequency function f(x; θ) and suppose we want to test
H0 : θ = θ0 versus H1 : θ �= θ0 using the LR test statistic

Tn =
n∑
i=1

ln[f(Xi; θ̂n)/f(Xi; θ0)]

where θ̂n is the MLE of θ and H0 is rejected for large values of
Tn. If Tn/n →p 0 under H0, show that the sequence of tests is
consistent.

7.17: Suppose that X = (X1, · · · , Xn) are continuous random
variables with joint density f(x) where f = f0 or f = f1 are the
two possibilities for f . Based on X, we want to decide between
f0 and f1 using a non-Neyman-Pearson approach. Let φ(X) be
an arbitrary test function where f0 is chosen if φ = 0 and f1

is chosen if φ = 1. Let E0(T ) and E1(T ) be expectations of a
statistic T = T (X) assuming the true joint densities are f0 and
f1 respectively.
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(a) Show that the test function φ that minimizes

αE0[φ(X)] + (1− α)E1[1− φ(X)]

(where 0 < α < 1 is a known constant) has the form

φ(X) = 1 if
f1(X)
f0(X)

≥ k

and 0 otherwise. Specify the value of k.
(b) Suppose that X1, · · · , Xn are i.i.d. continuous random
variables with common density f where f = f0 or f = f1

(f0 �= f1). Let φn(X) be the optimal test function (for some α)
based on X1, · · · , Xn as described in part (a). Show that

lim
n→∞

(αE0[φn(X)] + (1− α)E1[1− φn(X)]) = 0.

(Hint: Use the facts that

E0[ln(f1(Xi)/f0(Xi))] < 0
and E1[ln(f1(X1)/f0(X1))] > 0

and apply the WLLN.)
7.18: Suppose that X = (X1, · · · , Xn) are continuous random

variables with joint density f(x; θ) where θ is a real-valued
parameter. We want to test

H0 : θ = θ0 versus H1 : θ �= θ0

at level α. For any test function φ(X), define the power function

π(θ) = Eθ[φ(X)]

and assume that π(θ) may be differentiated twice under the
integral sign so that, for example,

π′(θ) =
∫
· · ·

∫
φ(x)

∂

∂θ
f(x; θ) dx.

(a) Show that the test function maximizing π′′(θ0) subject to
the constraints π′(θ0) = 0 and π(θ0) = α satisfies

φ(X) = 1 if :′′(X; θ0) + [:′(X; θ0)]2 + k1:
′(X; θ0) ≥ k2

and φ(X) = 0 otherwise where k1, k2 are constants so that
the constraints are satisfied and :′, :′′ are the first two partial
derivatives of ln f with respect to θ.
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(b) Suppose that X1, · · · , Xn are i.i.d. random variables. For
large n, argue that the “locally most powerful unbiased” test
described in part (a) can be approximated by the test function
satisfying

φ∗(X) = 1 if

(
1√
n

n∑
i=1

∂

∂θ
ln f(Xi; θ0)

)2

≥ k

and 0 otherwise. (Hint: Divide the test statistic in part (a) by
n and consider its behaviour as n→∞.)
(c) Suppose that X1, · · · , X100 are i.i.d. Exponential random
variables with parameter λ and we test

H0 : λ = 2 versus H1 : λ �= 2

at the 5% level. Use the result of (b) to approximate the locally
most powerful test, explicitly evaluating all constants.

7.19: Consider a simple classification problem. An individual
belongs to exactly one of k populations. Each population has
a known density fi(x) (i = 1, · · · , k) and it is known that a
proportion pi belong to population i (p1 + · · ·+ pk = 1). Given
disjoint sets R1, · · · , Rk, a general classification rule is

classify as population i if x ∈ Ri (i = 1, · · · , k).

The total probability of correct classification is

C(R1, · · · , Rk) =
k∑
i=1

pi

∫
Ri

fi(x) dx.

We would like to find the classification rule (that is, the sets
R1, · · · , Rk) that maximizes the total probability of correct
classification.
(a) Suppose that k = 2. Show that the optimal classification
rule has

R1 =
{
x :

f1(x)
f2(x)

≥ p1

p2

}
R2 =

{
x :

f1(x)
f2(x)

<
p1

p2

}
.

(b) Suppose that f1 and f2 are Normal densities with different
means but equal variances. Find the optimal classification rule
using the result of part (a) (that is, find the regions R1 and
R2).
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(c) Find the form of the optimal classification rule for general
k.

7.20: Let X1, · · · , Xn and Y1, · · · , Yn be independent random vari-
ables where Xi is Exponential with parameter λiθ and Yi is
Exponential with parameter λi. Suppose that we wish to test
H0 : θ = 1 versus H1 : θ �= 1 at the 5% level.
(a) Show that the LR test of H0 versus H1 rejects H0 when

Tn =
n∑
i=1

(
ln(θ̂n)− 2 ln

(
θ̂nRi + 1
Ri + 1

))
≥ k

where Ri = Xi/Yi and θ̂n satisfies

n

θ̂n
− 2

n∑
i=1

Ri

θ̂nRi + 1
= 0.

(b) Find the limiting distribution of the statistic Tn as n→∞
when θ = 1. (Note that the standard result cannot be applied
here since the dimension of the parameter space is not fixed but
growing with n.)

7.21: A heuristic (but almost rigorous) proof of Theorem 7.5 can
be given by using the fact the the log-likelihood function
is approximately quadratic in a neighbourhood of the true
parameter value. Suppose that we have i.i.d. random variables
X1, · · · , Xn with density or frequency function f(x;θ) where
θ = (θ1, · · · , θp), define

Zn(u) = ln(Ln(θ + u/
√
n)/Ln(θ))

= uTV n −
1
2
uT I(θ)u + Rn(u)

where Rn(u) →p 0 for each u and V n →d Np(0, I(θ)).
(a) Suppose we want to test the null hypothesis

H0 : θ1 = θ10, · · · , θ0 = θr0.

Show that, if H0 is true, the LR statistic is

2 ln(Λn) = 2
[
Zn(Ûn)− Zn(Ûn0)

]
where Ûn maximizes Zn(u) and Ûn0 maximizes Zn(u) subject
to the constraint that u1 = · · · = ur = 0.
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(b) Suppose that Zn(u) is exactly quadratic (that is, Rn(u) =
0). Show that

Ûn = I−1(θ)V n

Ûn0 =

(
0

I−1
22 (θ)V n2

)

where V n and I(θ) are expressed as

V n =
(

V n1

V n2

)
I(θ) =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
.

(c) Assuming that nothing is lost asymptotically in using the
quadratic approximation, deduce Theorem 7.5 from parts (a)
and (b).

7.22: Suppose that X1, · · · , Xn are independent Exponential ran-
dom variables with parameters λ1, · · · , λn, respectively. We
want to test the null hypothesis

H0 : λ1 = · · · = λn

versus the alternative hypothesis that at least two of the λi’s
are different.
(a) Derive the LR test of H0. If Λn is the LR test statistic, show
that 2 ln(Λn) →p ∞ under H0.
(b) Find bn such that [ln(Λn)−bn]/

√
n converges in distribution

to a Normal distribution.
7.23: Suppose that X1, · · · , Xn are independent Exponential ran-

dom variables with E(Xi) = βti where t1, · · · , tn are known
positive constants and β is an unknown parameter.
(a) Show that the MLE of β is

β̂n =
1
n

n∑
i=1

Xi/ti.

(b) Show that √
n(β̂ − β) →d N(0, β2).

(Hint: note that X1/t1, · · · , Xn/tn are i.i.d. random variables.)
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(c) Suppose we want to test

H0 : β = 1 versus H1 : β �= 1.

Show that the LR test of H0 versus H1 rejects H0 for large
values of

Tn = n(β̂n − ln(β̂n)− 1)

where β̂n is defined as in part (a).
(d) Show that when H0 is true, 2Tn →d χ

2(1).
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CHAPTER 8

Linear and Generalized Linear
Models

8.1 Linear models

Linear models include an extremely wide class of models and are
possibly the most widely used models in applied statistics. The
reasons for this popularity are obvious - linear models are simple
in form, easy to interpret, and (under appropriate assumptions)
statistical inference for linear models is remarkably elegant.

In this chapter, we will mainly apply some of the concepts
developed in earlier chapters to the linear model; we will not go into
any particular depth on the theory of linear (and generalized linear)
models as there are numerous texts that do this in some depth; see,
for example, Seber (1977) as well as Sen and Srivastava (1990) for
more detailed treatment of linear model theory and practice.

The general form of the linear model is

Yi = β0 + β1xi1 + · · ·+ βpxip + εi (i = 1, · · · , n)

= xT
i β + εi

where xi = (1, xi1, · · · , xip)T is a vector of known constants
(called covariates or predictors), β = (β0, β1, · · · , βp)T is a vector
of unknown parameters, and ε1, · · · , εn are i.i.d. Normal random
variables with mean 0 and unknown variance σ2. Alternatively, we
can say that Y1, · · · , Yn are independent Normal random variables
with E(Yi) = xT

i β and Var(Yi) = σ2. (It is possible to write
the linear model without the intercept β0 and none of the theory
developed in this chapter is contingent on the presence of β0 in the
model. However, the intercept is almost always included in practice;
unless there is a substantive reason to delete it from the model, it
may be dangerous to do so.)

Linear models include simple and multiple regression models
(where the xi’s are typically vectors of covariates) as well as fixed
effects analysis of variance (ANOVA) models.
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EXAMPLE 8.1: Consider a single factor ANOVA model where
we have k treatments and ni observations for treatment i:

Yij = µ + αi + εij (i = 1, · · · , k; j = 1, · · · , ni).

This can be written in the form Yij = xT
ijβ + εij with β =

(µ, α1, · · · , αk)T and

x1j = (1, 1, 0, · · · , 0)T

x2j = (1, 0, 1, 0, · · · , 0)T

...
...

...
xkj = (1, 0, · · · , 0, 1)T .

Note that the parametrization as given above is not identifiable;
typically, we put some constraint on the αi’s (for example, α1 = 0
or α1 + · · ·+ αk = 0) to yield an identifiable parametrization. ✸

8.2 Estimation in linear models

Under the assumptions given in the previous section, namely
that the Yi’s are independent random variables with Normal
distributions, we can easily derive the MLEs of the unknown
parameters β0, β1, · · · , βp and σ2. Given Y1 = y1, · · · , Yn = yn, the
log-likelihood function is

lnL(β, σ) = −n ln(σ)− 1
2σ2

n∑
i=1

(yi − xT
i β)2 − n

2
ln(2π).

Differentiating with respect to the unknown parameters, we obtain

∂

∂β
lnL(β, σ) =

1
σ2

n∑
i=1

(yi − xT
i β)xi

∂

∂σ
lnL(β, σ) = −n

σ
+

1
σ3

n∑
i=1

(yi − xT
i β)2.

Setting these derivatives to 0, it follows that the MLE of β satisfies
the so-called normal equations

n∑
i=1

(Yi − xT
i β̂)xi = 0
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while the MLE of σ2 is

σ̂2 =
1
n

n∑
i=1

(Yi − xT
i β̂)2.

The MLE of β is, in fact, a least squares estimator. That is, β̂
minimizes n∑

i=1

(Yi − xT
i β)2.

This fact, along with the fact that the Yi’s are Normal random
variables, allows us to exploit the geometrical properties of the
multivariate Normal distribution to derive the properties of the
estimators β̂ and σ̂2. To do this, it is convenient to write the linear
model in matrix form.

Define random vectors Y = (Y1, · · · , Yn)T and ε = (ε1, · · · , εn)T
as well as the matrix

X =


1 x11 · · · x1p

1 x21 · · · x2p
...

...
. . .

...
1 xn1 · · · xnp

 =


xT

1

xT
2
...

xT
n

 ;

X is called the design matrix. We can then rewrite the linear model
as

Y = Xβ + ε

so that Y has a multivariate Normal distribution with mean vector
Xβ and variance-covariance matrix σ2I.

Using the matrix formulation of the linear model, we can rewrite
the normal equations (which determine β̂) as

n∑
i=1

Yixi =
n∑
i=1

xix
T
i β̂

or
XTY = (XTX)β̂.

Hence if (XTX)−1 exists (as is the case if the parametrization is
identifiable) then

β̂ = (XTX)−1XTY .

Likewise, the MLE of σ2 is given by the formula

σ̂2 =
1
n

n∑
i=1

(Yi − xT
i β̂)2
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=
1
n

∥∥∥Y −Xβ̂
∥∥∥2

=
1
n

∥∥∥Y −X(XTX)−1XTY
∥∥∥2

=
1
n
‖(I −H)Y ‖

where H = X(XTX)−1XT is a projection matrix onto the space
spanned by the columns of X. The matrix H is often called the
“hat” matrix since the “fitted values” of Y , Ŷ = Xβ̂, are obtained
via the equation Ŷ = HY .

The following properties of β̂ and σ̂2 now follow easily from
multivariate Normal theory.

PROPOSITION 8.1 Assume (XTX)−1 exists. Then
(a) β̂ ∼ Np+1(β, σ2(XTX)−1);
(b) nσ̂2/σ2 ∼ χ2(n− p− 1);
(c) β̂ and σ̂2 are independent.

Proof. (a) Recall that Y ∼ Nn(Xβ, σ2I) and

β̂ = (XTX)−1XTY = AY .

Hence β̂ ∼ Np+1(AXβ, σ2AAT ) with

AXβ = (XTX)−1XTXβ = β

AAT = (XTX)−1XTX(XTX)−1 = (XTX)−1.

(b) Let H = X(XTX)−1XT and note that

Hβ̂ = HY

= H(Xβ + ε)
= Xβ + Hε

since Xβ lies in the column space of X onto which H projects.
Thus

n
σ̂2

σ2
=

1
σ2

‖(I −H)Y ‖2

=
1
σ2

‖(I −H)ε‖2

=
1
σ2

εT (I −H)ε.

The rank of H is (p + 1) so that the rank of I −H is (n− p− 1);
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thus 1
σ2

εT (I −H)ε ∼ χ2(n− p− 1).

(c) To show that β̂ and σ̂2 are independent it suffices to show that
β̂ and Y −Xβ̂ are independent. Note that

β̂ = (XTX)−1XTY = AY

and
Y −Xβ̂ = (I −H)Y = BY .

It suffices then to show that AB equals a matrix of 0’s:

AB = (XTX)−1XT (I −H)
= (XTX)−1XT − (XTX)−1XTH

= (XTX)−1XT − (XTX)−1XT

= 0

since XTH = (HX)T = XT .

Of course, the result of Proposition 8.1 assumes i.i.d. normally
distributed errors. However, if we remove the assumption of
normality of the errors, we still have

E(β̂) = β and Cov(β̂) = σ2(XTX)−1.

In fact, E(β̂) = β if Cov(ε) = σ2C for any C.

EXAMPLE 8.2: Consider a simple linear regression model

Yi = β0 + β1xi + εi (i = 1, · · · , n)

where εi ∼ N(0, σ2). The design matrix in this case is

X =


1 x1

1 x2
...

...
1 xn


and

XTX =
(

n
∑n

i=1 xi∑n
i=1 xi

∑n
i=1 x

2
i

)
.

The least squares estimators of β0 and β1 are

β̂1 =
∑n

i=1(xi − x̄)2Yi∑n
i=1(xi − x̄)2

β̂0 = Ȳ − β̂1x̄.
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The distributions of β̂0 and β̂1 can be obtained from Proposition
8.1; in particular, we have

β̂1 ∼ N

(
β1,

σ2∑n
i=1(xi − x̄)2

)
.

Note that the variance of β̂1 effectively decreases as the xi’s become
more dispersed. ✸

8.3 Hypothesis testing in linear models

Again consider the linear model

Yi = β0 + β1xi1 + · · ·+ βpxip + εi (i = 1, · · · , n)

= xT
i β + εi.

Suppose that we want to test the null hypothesis

H0 : βr+1 = βr+2 = · · · = βp = 0

against the alternative hypothesis that all parameters are unre-
stricted. We will consider the likelihood ratio (LR) test procedure.

To implement the LR test, we need to find the MLEs under H0 as
well as the unrestricted MLEs. We first define the “reduced” design
matrix

Xr =


1 x11 · · · x1r

1 x21 · · · x2r
...

...
. . .

...
1 xn1 · · · xnr

 .

Then the MLEs of β are

β̂r = (XT
r Xr)−1XT

r Y (under H0)

β̂ = (XTX)−1XTY (unrestricted)

while the MLEs of σ2 are

σ̂2
r =

1
n

∥∥∥Y −Xrβ̂r

∥∥∥2

=
1
n

Y T (I −Hr)Y (under H0)

σ̂2 =
1
n

∥∥∥Y −Xβ̂
∥∥∥2

=
1
n

Y T (I −H)Y (unrestricted)
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where H and Hr are projection matrices:

H = X(XTX)−1XT and Hr = Xr(XT
r Xr)−1XT

r .

Now substituting into the log-likelihood function, we get

lnL(β̂r, σ̂
2
r ) = −n

2
ln

(
Y T (I −Hr)Y

)
+ constant

lnL(β̂, σ̂2) = −n

2
ln

(
Y T (I −H)Y

)
+ constant

where the constant term is the same for both likelihoods.
The LR statistic for testing H0 is now

Λ =
L(β̂, σ̂2)
L(β̂r, σ̂

2
r )

=

(
Y T (I −Hr)Y
Y T (I −H)Y

)n/2

=
(

RSSr
RSS

)n/2

where RSSr = Y T (I − Hr)Y and RSS = Y T (I − H)Y are
the residual sums of squares for the reduced and full models
respectively.

The LR criterion suggests that we should reject the null hypoth-
esis for large values of the LR statistic Λ; since Λ is an increasing
function of RSSr/RSS, this is equivalent to rejecting for large val-
ues of RSSr/RSS or (equivalently) (RSSr −RSS)/RSS. In fact, the
test statistic we will use to test H0 is

F =
(RSSr − RSS)/(p− r)

RSS/(n− p− 1)
.

PROPOSITION 8.2 Under the null hypothesis

H0 : βr+1 = · · · = βp = 0

the test statistic F has an F distribution with (p − r), (n − p − 1)
degrees of freedom.

Proof. We need to show that (RSSr − RSS)/σ2 ∼ χ2(p − r) and
RSS/σ2 ∼ χ2(n − p − 1) as well as the independence of the two
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random variables. Note that we proved that RSS/σ2 ∼ χ2(n−p−1)
in Proposition 8.1.

To show that (RSSr − RSS)/σ2 ∼ χ2(p− r), we note that

RSSr − RSS = Y T (H −Hr)Y
= εT (H −Hr)ε

since Y = Xrβr + ε and HXr = HrXr = Xr. Next note that
H − Hr is a projection matrix; clearly H − Hr is symmetric and
(H −Hr)2 = H −Hr since HHr = HrH = Hr. Thus

1
σ2

(RSSr − RSS) ∼ χ2(q)

where q = trace(H−Hr) = p− r. Finally, to show independence, it
suffices to show that (H −Hr)Y is independent of (I −H)Y . This
holds since (H −Hr)(I −H) = 0.

EXAMPLE 8.3: Consider a single factor ANOVA model

Yij = µ + αi + εi (i = 1, · · · , k; j = 1, · · · , ni)

where k is the number of treatment groups. To make the parametri-
zation identifiable, we will set α1 = 0 so that β = (µ, α2, · · · , αk).
Suppose we want to test the null hypothesis of no treatment effect:

H0 : α1 = α2 = · · · = αk = 0

Under H0, the MLE of µ is µ̂r = Ȳ while the unrestricted MLEs
are

µ̂ = Ȳ1

=
1
n1

n1∑
j=1

Yij

and α̂i = Ȳi − Ȳ1 for i ≥ 2.

The residual sums of squares for the restricted and unrestricted
models are

RSSr =
k∑
i=1

ni∑
j=1

(Yij − Ȳ )2

RSS =
k∑
i=1

ni∑
j=1

(Yij − Ȳi)2
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and so it follows (after some algebra) that

RSSr − RSS =
k∑
i=1

ni(Ȳi − Ȳ )2.

Thus the F statistic for testing H0 is

F =
∑k

i=1 ni(Ȳi − Ȳ )2/(k − 1)∑k
i=1

∑ni
j=1(Yij − Ȳi)2/(n− k)

where n = n1 + · · ·+ nk; under H0, F ∼ F(k − 1, n− k). ✸

Proposition 8.2 can be extended to F tests of the null hypothesis

H0 : Aβ = c

where A is an s × (p + 1) matrix with rank s and c is a vector of
length s. By introducing a vector of Lagrange multipliers λ, the
least squares estimator of β under H0 can be determined to be

β̂r = β̂ + (XTX)−1AT
[
A(XTX)−1AT

]−1
(c−Aβ̂)

where β̂ is the least squares estimator under the full model. Setting
RSSr = ‖Y −Xβ̂r‖2, it can be shown that if H0 is true then

F =
(RSSr − RSS)/s
RSS/(n− p− 1)

∼ F(s, n− p− 1)

See Problem 8.8 for details.

Power of the F test

We showed above that the LR test of the null hypothesis H0 :
βr+1 = · · · = βp = 0 reduces to a test whose test statistic
has an F distribution under the null hypothesis. As with any
hypothesis testing procedure, the power of this test will depend
on the distribution of the test statistic when H0 does not hold.
For most test statistics, the distribution of the test statistic is
often quite difficult to determine (even approximately) when H0

is false. However, it turns out to be straightforward to determine
the distribution of the F statistic in general. To do this, we need
to define the non-central χ2 and non-central F distributions.

DEFINITION. Let X1, · · · , Xn be independent Normal random

c© 2000 by Chapman & Hall/CRC



variables with E(Xi) = µi and Var(Xi) = 1 and define

V =
n∑
i=1

X2
i .

Then V has a non-central χ2 distribution with n degrees of
freedom and non-centrality parameter

θ2 =
n∑
i=1

µ2
i

(V ∼ χ2(n; θ2)). The density function of V is

fV (x) =
∞∑
k=0

g2k+n(x)
exp(−θ2/2)(θ2/2)k

k!

where g2k+n is the density function of a (central) χ2 distribution
with 2k + n degrees of freedom.

Figure 8.1 shows the densities of central and non-central χ2

distributions with 10 degrees of freedom.

DEFINITION. Let V and W be independent random variables
with V ∼ χ2(n; θ2) and W ∼ χ2(m), and define

U =
V/n

W/m
.

Then U has a non-central F distribution with n,m degrees of
freedom and non-centrality parameter θ2 (U ∼ F(n,m; θ2)). The
density function of U is

fU (x) =
∞∑
k=0

h2k+n,m(x)
exp(−θ2/2)(θ2/2)k

k!

where h2k+n,m is the density function of a (central) F distribution
with 2k + n,m degrees of freedom.

THEOREM 8.3 Let X ∼ Nn(µ, I). If H is a projection matrix
with tr(H) = p then

XTHX ∼ χ2(p;µTHµ).

Proof. First of all, note that XTHX = ‖HX‖2 and that HX ∼
Nn(Hµ, H). Now take an orthogonal matrix O such that OH is
a diagonal matrix with p 1’s and n − p 0’s on the diagonal. The
conclusion now follows since ‖HX‖2 = ‖OHX‖2.
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Figure 8.1 Densities of the central and non-central χ2 distributions with 10
degrees of freedom; the solid line is the χ2(10) density, the dotted line is the
χ2(10; 2) density and the dashed line is the χ2(10; 4) density.

How do non-central distributions arise in the context of the linear
model? The easiest way to see this is to look at the numerator of
the F statistic for testing the adequacy of a reduced model. From
before we have

RSS = Y T (I −H)Y
RSSr = Y T (I −Hr)Y

and so

RSSr − RSS = Y T (H −Hr)Y .

Note that
1
σ2

Y T (I −H)Y ∼ χ2(n− p− 1)

even under the alternative hypothesis. On the other hand,

1
σ2

Y T (H −Hr)Y ∼ χ2(p− r; θ2)
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where

θ2 =
1
σ2

βTXT (H −Hr)Xβ

=
1
σ2

[
βTXTHXβ − βTXTHrXβ

]
=

1
σ2

[
‖Xβ‖2 − ‖HrXβ‖2

]
.

Thus

F =
(RSSr − RSS)/(p− r)

RSS/(n− p− 1)
∼ F(p− r, n− p− 1; θ2)

where θ2 is defined above.
It can be shown that, for fixed values of p− r and n− p− 1, the

power of the F test is an increasing function of the non-centrality
parameter θ2.

EXAMPLE 8.4: Consider the simple linear regression model

Yi = β0 + β1xi + εi (i = 1, · · · , n)

where we will assume (for simplicity) that
∑n

i=1 xi = 0. We want
to test the null hypothesis

H0 : β1 = 0 versus H1 : β1 �= 0.

In this case, the full and reduced design matrices are

X =


1 x1

1 x2
...

...
1 xn

 and Xr =


1
1
...
1

 .

The projection matrix Hr is simply

Hr =

 1/n · · · 1/n
...

. . .
...

1/n · · · 1/n


and so

HrXβ =

 1/n · · · 1/n
...

. . .
...

1/n · · · 1/n


 β0 + β1x1

...
β0 + β1xn
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=

 β0
...
β0


since

∑n
i=1 xi = 0; thus ‖HrXβ‖2 = nβ2

0 . Likewise,

‖Xβ‖2 =
n∑
i=1

(β0 + β1xi)2

= nβ2
0 + β2

1

n∑
i=1

x2
i .

Thus the non-centrality parameter for the distribution of the F
statistics for testing H0 is

θ2 =
β2

1

σ2

n∑
i=1

x2
i ;

more generally, if
∑n

i=1 xi �= 0 then

θ2 =
β2

1

σ2

n∑
i=1

(xi − x̄)2.

Given that the power of the F test increases as the non-centrality
parameter increases, the form of θ2 makes sense from an intuitive
point of view; for fixed σ2, the power increases as |β1| increases
while for fixed β1, the power decreases as σ2 increases. Also note
that the power increases as the xi’s become more spread out; this
is a potentially important point from a design perspective. ✸

EXAMPLE 8.5: Consider a single factor ANOVA model

Yij = µ + αi + εi (i = 1, · · · , k; j = 1, · · · , ni)

where to make the parametrization identifiable, we assume (as in
Example 8.1) that α1 = 0. The form of the F test of H0 : α1 = · · · =
αk = 0 was given in Example 8.3. To evaluate the non-centrality
parameter of the F statistic, we first need to evaluate ‖HrXβ‖2 for
this model; as in Example 8.4, Hr is an n×n matrix whose entries
are all 1/n (where n = n1 + · · ·nk) and so

‖HrXβ‖2 = n

 1
n

k∑
i=1

ni∑
j=1

(µ + αi)

2
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= n

(
µ +

1
n

k∑
i=1

niαi

)2

.

Thus the non-centrality parameter for the F statistic is

θ2 =
1
σ2

 k∑
i=1

ni∑
j=1

(µ + αi)2 − n

(
µ +

1
n

k∑
i=1

niαi

)2


=
1
σ2

 k∑
i=1

niα
2
i −

1
n

(
k∑
i=1

niαi

)2
 .

Note that this non-centrality parameter is proportional to the
variance of a probability distribution putting probability mass of
ni/n at the point αi (for i = 1, · · · , k); hence, the more dispersed
the αi’s the greater the non-centrality parameter and hence the
power of the F test. ✸

8.4 Non-normal errors

To this point, we have assumed normally distributed errors in the
linear model. It is interesting to consider how much of the preceding
theory remains valid under i.i.d. finite variance (but non-normal
errors). Clearly, all the preceding results about distribution theory
for estimators and test statistics will not hold in the more general
setting; these results are very much dependent on the errors (and
hence the responses Yi) being normally distributed.

However, many of the results from the previous section do carry
over to the case of finite variance i.i.d. errors. For example, for
normally distributed errors, we have

β̂ ∼ Np+1

(
β, σ2(XTX)−1

)
while in general, we can say

E(β̂) = β and Cov(β̂) = σ2(XTX)−1.

Likewise, the MLE σ̂2 will remain a biased estimator of σ2 while
RSS/(n− p− 1) will be an unbiased estimator of σ2.

There is also an optimality result for the least squares estimator
of β that holds for finite variance i.i.d. errors. Consider the linear
model

Yi = xT
i β + εi (i = 1, · · · , n)
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and define a parameter

θ =
p∑

j=0

ajβj = aTβ

where a0, a1, · · · , ap are some (known) constants. We want to
consider unbiased estimators of θ of the form

θ̂ =
n∑
i=1

ciYi = cTY ;

such estimators are called linear estimators of θ (since they are
linear in the Yi’s).
THEOREM 8.4 (Gauss-Markov Theorem) Assume that the
design matrix has full rank and let β̂ = (XTX)−1XTY be the least
squares estimator of β. Then

θ̂ = aT β̂

has the minimum variance of all linear, unbiased estimators of
θ = aTβ. (The estimator θ̂ is often called the best linear unbiased
estimator (BLUE) of θ.)
Proof. For any c, E(cTY ) = cTXβ. Thus if E(cTY ) = aTβ for
all β, it follows that aT = cTX. It suffices then to show that if
aT = cTX then

Var(cTY ) ≥ Var(aT β̂).

Note that Var(cTY ) = σ2cTc while Var(aT β̂) = σ2cTHc where
H = X(XTX)−1XT . Thus

Var(cTY )−Var(aT β̂) = σ2
(
cTc− cTHc

)
= σ2

(
cT (I −H)c

)
≥ 0

since I −H is a projection matrix and hence positive definite.
At first glance, the conclusion of the Gauss-Markov Theorem

seems to be very strong. However, notice that the class of estimators
considered in the Gauss-Markov (namely linear, unbiased estima-
tors) is very small. If one considers biased estimators (for example,
ridge estimators; see Hoerl and Kennard (1970) and Problem 8.9)
then it may be possible to achieve a smaller mean square error.
Moreover, for non-normal error distributions, it is often possible to
find better estimators of θ = aTβ using non-linear estimators of β.
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Some large sample theory

In Proposition 8.1, we showed that the least squares estimator of
β is exactly normally distributed when the errors are normally
distributed. In this section, we will show that the least squares
estimator has an asymptotic Normal distribution under appropriate
conditions on the design.

Consider the linear model

Yi = xT
i β + εi (i = 1, · · · , n)

where ε1, · · · , εn are i.i.d. random variables with mean 0 and
variance σ2. Define the least squares estimator

β̂n = (XT
nXn)−1XT

n Y n

where the subscript n has been added to make explicit the
dependence on the sample size. Since Y n = Xnβ + εn, it follows
that

β̂n − β = (XT
nXn)−1XT

n εn.

To obtain a limiting distribution, we need to normalize β̂n − β
by multiplying it by a sequence of constants or matrices. Define
a symmetric matrix An to be a “square root” of XT

nXn; that is,
A2
n = XT

nXn. We will consider the limiting distribution of

An(β̂n − β) = A−1
n XT

n εn.

Note that Cov(An(β̂n − β)) = σ2I.

THEOREM 8.5 Suppose that

max
1≤i≤n

xT
i (XT

nXn)−1xi → 0

as n→∞. Then

An(β̂n − β) →d Np+1(0, σ2I).

Proof. The idea here is to use the Cramér-Wold device together
with the CLT for weighted sums of i.i.d. random variables. By the
Cramér-Wold device, it suffices to show that

aTA−1
n XT

n εn →d N(0, σ2aTa)

for all vectors a. Note that

aTA−1
n XT

n εn =
n∑
i=1

cniεi = cTnεn
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where
cni = aTA−1

n xi.

By the CLT for weighted sums, it suffices to show that

max
1≤i≤n

c2ni∑n
k=1 c

2
nk

→ 0.

First of all, we have

c2ni ≤ (aTa)(xT
i A

−2
n xi)

= (aTa)(xT
i (XT

nXn)−1xi)

and also
n∑

k=1

c2nk = cTncn = aTA−1
n (XT

nXn)A−1
n a

= aTa.

Thus
max1≤i≤n c2ni∑n

k=1 c
2
nk

≤ max
1≤i≤n

xT
i (XT

nXn)−1xi → 0

by hypothesis.

What is the practical interpretation of the condition

max
1≤i≤n

xT
i (XT

nXn)−1xi → 0?

If we define Hn = Xn(XT
nXn)−1XT

n to be the “hat” matrix then
hni = xT

i (XT
nXn)−1xi is the i-th diagonal element of Hn; since Hn

is a projection matrix, the sum of the hni’s is (p+1). The condition
above implies that the hni’s tend uniformly to 0 as n → ∞; since
there are n diagonal elements and their sum must be (p + 1), this
does not seem to be a terribly stringent condition to fulfill. In
regression analysis, the diagonal elements hni can be interpreted
as describing the potential influence of the point xi on the estimate
of β; the larger hni, the greater the potential influence (or leverage)
of xi. Thus in practical terms, we can interpret the condition above
to mean that the leverages of all the xi’s are small. If this is the
case and n is sufficient large then β̂n is approximately Normal with
mean β and variance-covariance matrix σ2(XT

nXn)−1.

EXAMPLE 8.6: Consider a simple linear regression model

Yi = β0 + β1xi + εi (i = 1, · · · , n).
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For this model, it can be shown that the diagonals of the “hat”
matrix are

hni =
1
n

+
(xi − x̄)2∑n
k=1(xk − x̄)2

.

We will consider two simple design scenarios. First of all, suppose
that xi = i for i = 1, · · · , n. Then

hni =
1
n

+
(i− (n + 1)/2)2

(n3 − n)/12

and so
max
1≤i≤n

hni = hnn =
1
n

+
6(n− 1)
n(n + 1)

,

which tends to 0 as n→∞; thus asymptotic normality holds. Next
suppose that xi = 2i for i = 1, · · · , n. In this case, x̄ = 2(2n − 1)/n
and n∑

i=1

(xi − x̄)2 =
4n+1 − 4

3
− 4n+1 + 4− 2n+3

n
.

Thus we have
max
1≤i≤n

hni = hnn

with hnn → 3/4 as n → ∞. For this design (or, more correctly,
sequence of designs), we will not have asymptotic normality. ✸

Other estimation methods

Perhaps not surprisingly (given the popularity of the linear model in
practice), a vast number of alternatives to least squares estimation
have been proposed. Most of these alternative estimation methods
are motivated by the fact that least squares estimation is not
particularly robust to deviations from its nominal assumptions;
for example, a single observation (xi, Yi) can have effectively an
unbounded influence on the value of the least squares estimator.
We will briefly outline some of the alternatives to least squares
estimation here. Figure 8.2 shows how the least squares line can be
affected by a small number of points.

The simplest alternatives to least squares estimation replace the
“sum of squares” objective function by an objective function that
penalizes large deviations less severely. For example, we might
define β̂ to minimize

n∑
i=1

ρ(Yi − xT
i β)
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Figure 8.2 Estimated regression lines; the solid line is the least squares line, the
dotted line is the L1 line and the dashed line is the LMS line. Notice how the
least squares line is pulled more towards the 10 “outlying” observations than are
the other two lines.

where ρ(x) is a function with ρ(x)/x2 → 0 as x → ±∞; typically,
ρ(x) →∞ as x→ ±∞ although ρ(x) could be a bounded function.
Such estimators are referred to as M -estimators where the “M”
is an allusion to the fact that these estimators could be viewed as
MLEs were the errors to come from the appropriate distribution.
In many cases, the function ρ depends on a scale parameter σ (so
that ρ = ρσ) that must also be estimated.

In the case where ρ is a convex function, we can prove an
analogous result to Theorem 8.5.

THEOREM 8.6 Suppose that ρ is a convex function with

ρ(x) =
∫ x

0
ψ(t) dt

where ψ is a non-decreasing function with E[ψ(εi)] = 0, E[ψ2(εi)]
finite and λ(t) = E[ψ(ε1 + t)−ψ(εi)] is differentiable at t = 0 with
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derivative λ′(0) > 0. Suppose also that

max
1≤i≤n

xT
i (XT

nXn)−1xi → 0

as n→∞. Then

An(β̂n − β) →d Np+1(0, γ2I)

where

γ2 =
E[ψ2(εi)]
[λ′(0)]2

.

A proof of this result is sketched in Problem 8.10. Note that
when there is an intercept in the model then the assumption that
E[ψ(εi)] = 0 is no restriction since we can always redefine the
intercept so this condition holds. When ρ is twice differentiable
then typically we have λ′(0) = E[ψ′(εi)] where ψ′ is the derivative
of ψ, or equivalently, the second derivative of ρ; since ρ is convex,
ψ′(x) ≥ 0. If ρ(x) = |x| (in which case, we have L1-estimators)
then ψ(x) = I(x ≥ 0) − I(x ≤ 0) and so λ(t) = 1 − 2F (−t); if
F ′(0) = f(0) > 0 then λ′(0) = 2f(0).
M -estimators are generally robust against non-normality of the

errors, particularly heavy-tailed error distributions where M -esti-
mators can be more efficient than least squares estimators. How-
ever, M -estimators are less robust against more general outliers,
for example, situations similar to that illustrated in Figure 8.2.
Numerous (more robust) alternatives have been proposed, such as
GM -estimators (Krasker and Welsch, 1982), which bound the influ-
ence that any observation can have, and the least median of squares
(LMS) estimator of Rousseeuw (1984), for which β̂ minimizes

median
{
|Yi − xT

i β| : 1 ≤ i ≤ n
}

over β. The LMS estimator has a breakdown point (roughly
defined to be the fraction of “bad” observations needed to drive
an estimator to the boundary of the parameter space; see Donoho
and Huber (1983)) of 50%; the breakdown point of M -estimators
is effectively 0. However, while the LMS estimator is quite robust,
it is extremely inefficient when the classical model (with Normal
errors) is true; see Kim and Pollard (1990) for details.
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8.5 Generalized linear models

Generalized linear models represent a generalization of classical
linear models (where the response is nominally assumed to be
normally distributed) to situations where the response has a non-
normal distribution, for example, a Binomial, Poisson or Gamma
distribution. The standard reference for generalized linear models
is the book by McCullagh and Nelder (1989).

In classical linear models theory (as described in sections 8.2
and 8.3), we are given responses Y1, · · · , Yn that we assume to be
normally distributed with means µ1, · · · , µn and constant variance
σ2 where

µi = β0 + β1xi1 + · · ·+ βpxip

= xT
i β;

β = (β0, β1, · · · , βp)T are unknown parameters and xi1, · · · , xip
are known constants (for i = 1, · · · , n). Thus µi = E(Yi) is a
linear function of the parameter vector β and Var(Yi) is a constant
(typically unknown). From this specification, it is possible to find
the likelihood function for β and σ2; the MLE of β turns out to be
the least squares estimator.

It is possible to generalize the notion of linear models to non-
normal response variables. Let Y1, · · · , Yn be independent random
variables from some family of distributions with means µ1, · · · , µn
and variances σ2

1, · · · , σ2
n where σ2

i ∝ V (µi); it will be shown that
this property holds for random variables belonging to a certain class
of distributions that includes one-parameter exponential families.
Given covariates xi (i = 1, · · · , n), we will assume that some
function of µi is a linear function of xi; that is,

g(µi) = xT
i β

for some strictly increasing function g, which is called the link
function. The classical (considered in sections 8.1 to 8.3) linear
model has g(µ) = µ and V (µ) = σ2, a constant. The following two
examples illustrate possible models for discrete responses.

EXAMPLE 8.7: (Poisson regression) Assume that Y1, · · · , Yn are
independent Poisson random variables. For the Poisson distribu-
tion, it is well-known that the variance is equal to the mean so
V (µ) = µ. The standard Poisson regression model uses a logarith-
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mic link function; that is,

ln(µi) = xT
i β

where µi = E(Yi). (This is often called a log-linear Poisson model.)
One advantage of the logarithmic link is the fact that the function
ln(x) maps the interval (0,∞) onto the entire real line. ✸

EXAMPLE 8.8: (Binary regression) Here we assume that Y1,
· · · , Yn are independent random variables taking the values 0 and
1 with

P (Yi = 1) = θi and P (Yi = 0) = 1− θi.

In this case, µi = E(Yi) = θi and Var(Yi) = θi(1 − θi) so that
V (µ) = µ(1 − µ). The most commonly used link function is the
logistic or logit link

g(µ) = ln
(

µ

1− µ

)
;

the model g(µ) = xT
i β is called a logistic regression model. Other

commonly used link functions include the so-called probit link

g(µ) = Φ−1(µ)

(where Φ−1 is the inverse of the standard Normal distribution
function) and the complementary log-log link

g(µ) = ln(− ln(1− µ)).

Note that these three link functions map the interval (0, 1) onto
the entire real line; in each case, g is the inverse of the distribution
function of a continuous random variable. ✸

Likelihood functions and estimation

We will now assume that Y1, · · · , Yn have density or frequency
functions that belong to a one-parameter exponential family,
possibly enriched by an additional scale parameter. In particular,
we will assume that the density (frequency) function of Yi is

f(y; θi, φ) = exp
[
θiy − b(θi)

φ
+ c(y, φ)

]
for y ∈ A

where θi and φ are parameters, and the set A does not depend
on θi or φ. When φ is known, this family of density (frequency)
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functions is an exponential family; when φ is unknown, this family
may or may not be an exponential family. In any event, if Yi has
the distribution given above, it can be shown that

E(Yi) = b′(θi)

and
Var(Yi) = φ b′′(θi)

where b′ and b′′ are the first two derivatives of b. If b′ is a one-to-
one function (either strictly increasing or strictly decreasing) then
θi can be uniquely determined from µi = E(Yi) and so it follows
that

Var(Yi) = φV (µi).

We will refer to the function V as the variance function as it gives
the variance of any Yi up to a constant multiple that depends on
the parameter φ.

We now assume that Y = (Y1, · · · , Yn) are independent random
variables with the density (frequency) function of Yi given above
where

g(µi) = g(b′(θi)) = xT
i β.

Given Y = y, the log-likelihood function of β is simply

lnL(β, φ) =
n∑
i=1

[
θi(β)yi − b(θi(β))

φ
+ c(yi, φ)

]
.

The MLE of β can be determined by maximizing the log-likelihood
function given above; differentiating the log-likelihood with respect
to the elements of β, we obtain the following equations for the MLE
β̂:

n∑
i=1

Yi − µi(β̂)
g′(µi(β̂)V (µi(β̂))

xi = 0

where µi(β) = g−1(xT
i β).

There are two points to be made regarding the maximum likeli-
hood estimator of β. The first point is the fact that this estimator
remains the same regardless of whether the scale parameter φ is
known or unknown. The second, and more interesting, point is that
the estimating equations depend only on the distribution of the Yi’s
via the link function g and the “variance function” V , which ex-
presses the relationship (up to a constant multiple) between the
variance and mean of the response. This fact suggests the possibil-
ity of formulating generalized linear models by specifying only the
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relationship between the variance and mean of the response and not
the distribution of the response itself. This will be pursued below.

The link function plays a very important role in the formulation
of a generalized linear model. Frequently, the link function g is
chosen so that g(µi) = θi in which case the log-likelihood function
becomes

lnL(β, φ) =
n∑
i=1

[
yix

T
i β − b(xT

i β)
φ

+ c(yi, φ)

]
.

In this case, the family of distributions of Y are a (p+1)-parameter
exponential family if φ is known; the link g is called the natural or
canonical link function.

EXAMPLE 8.9: Suppose that Y1, · · · , Yn are independent Ex-
ponential random variables with means µi > 0. In this case, the
density of Yi is

f(y;µi) = exp[−y/µi − ln(µi)] for y ≥ 0

and so the natural link function is g(µ) = −1/µ. Note that the
range of this link function is not the entire real line (unlike the link
functions in Examples 8.7 and 8.8); this fact makes the use of the
natural link function somewhat undesirable in practice and the link
function g(µ) = ln(µ) is usually preferred in practice. ✸

The natural link functions in the Poisson and binary regression
models are the log and logistic links respectively (see Examples
8.7 and 8.8). Despite its name, there is no really compelling
practical reason to prefer the natural link to any other link function.
(Nonetheless, there are some theoretical advantages to using the
natural link which relate to the fact that joint distribution of Y is
an exponential family.)

Inference for generalized linear models

In the classical linear model, the assumption of normality makes
it possible to give exact sampling distributions of parameter
estimators and test statistics. Except in special cases, this is not
true for most generalized linear models.

There are several options available for approximating sampling
distributions. For example, computer intensive approaches such
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as Monte Carlo simulation and resampling (for example, the
bootstrap; see Efron and Tibshirani (1993)) may be used in general.
If the sample size is sufficiently large, it is often possible to
approximate the joint distribution of the MLEs by a multivariate
Normal distribution. In particular, under regularity conditions on
the design (analogous to those in Theorems 8.5 and 8.6), it can be
shown that the MLE β̂ is approximately multivariate Normal with
mean vector β and variance-covariance matrix φ(XTW (µ)X)−1

where X is an n×(p+1) matrix whose i-th row is xT
i and W (µ) is a

diagonal matrix whose i-th diagonal element is [V (µi)]−1[g′(µi)]−2.
An estimator of the variance-covariance matrix of β̂ can be obtained
by substituting the estimators of β and φ:

Ĉov(β̂) = φ̂
(
XTW (µ̂)X

)−1

where µ̂ depends on β̂. Given Ĉov(β̂), estimated standard errors
of the parameter estimates will be the square roots of the diagonal
elements of Ĉov(β̂).

Likewise, hypothesis tests and confidence intervals are typically
based on the asymptotic normality of the MLEs; for example, we
can often adapt the likelihood testing theory outlined in section 7.4
to obtain χ2 approximations for the null distributions of likelihood
based test statistics, such as the LR and score tests. Some care
should be exercised in using these approximations though.

Numerical computation of parameter estimates

The MLE of β are the solutions of the estimating equations given
above. Unfortunately, no explicit representation of these estimators
exists and hence maximum likelihood estimates must generally
be obtained using some iterative numerical method such as the
Newton-Raphson or Fisher scoring algorithm. It can be shown that
the Fisher scoring algorithm is equivalent to solving a sequence
of weighted least squares problems. In the case where the natural
link is used, the Fisher scoring algorithm coincides exactly with the
Newton-Raphson algorithm since the model is a (p+ 1)-parameter
exponential family.

We assume a generalized linear model with link function g(µ) and
variance function V (µ) with g(µi) = xT

i β for i = 1, · · · , n. Recall
that the Fisher scoring algorithm iteratively updates the estimate of
β using the score function (that is, the gradient of the log-likelihood
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function) and the expected Fisher information matrix evaluated at

the previous estimate of β. Let β̂
(k)

be the estimate of β after k
iterations of the algorithm and

µ̂
(k)
i = g−1

(
xT
i β̂

(k)
)
.

Then the (k + 1) iterate in the Fisher scoring algorithm is defined
to be

β̂
(k+1)

= β̂
(k)

+ H−1
(

β̂
(k)

)
S

(
β̂

(k)
)

where

H(β) =
n∑
i=1

xix
T
i

V (µi(β))[g′(µi(β))]2

is the expected Fisher information matrix (evaluated at β) and

S(β) =
n∑
i=1

yi − µi(β)
V (µi(β))g′(µi(β))

xi

is the score function. Rearranging the expression for β̂
(k+1)

, we get

β̂
(k+1)

= (XTW (k)X)−1XTW (k)z(k)

where X is the matrix whose i-th row is xT
i , W (k) is a diagonal

matrix whose i-th diagonal element is

w
(k)
i =

1

V
(
µ̂

(k)
i

) [
g′

(
µ̂

(k)
i

)]2

and z(k) is a vector whose i-th element is

z
(k)
i = g

(
µ̂

(k)
i

)
+ g′

(
µ̂

(k)
i

) (
yi − µ̂

(k)
i

)
= xT

i β̂
(k)

+ g′
(
µ̂

(k)
i

) (
yi − µ̂

(k)
i

)
.

This formulation of the Fisher scoring algorithm suggests that the
sequence of estimates {β̂(k)} is simply a sequence of weighted least

squares estimates; that is, β̂
(k+1)

minimizes the weighted least
squares objective function

n∑
i=1

w
(k)
i (z(k)

i − xT
i β)2
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over all β; for this reason, the Fisher scoring algorithm described
above is often called iteratively reweighted least squares. One
attractive feature of this algorithm is that it can be implemented
quite easily using a weighted least squares algorithm.

8.6 Quasi-Likelihood models

We noted earlier that the estimating equations defining MLE of β
depended on the distribution of the Yi’s only on the link function
g and the variance function V (where Var(Yi) = φV (µi)). This fact
suggests that it may be possible to estimate β in the model

g(µi) = xT
i β (i = 1, · · · , n)

merely by specifying the relationship between the variance and
mean of the Yi’s.

Suppose that Y1, · · · , Yn are independent random variables with
µi = E(Yi) where g(µi) = xT

i β and Var(Yi) = φV (µi) for
i = 1, · · · , n; the variance function V (µ) is a known function and
φ is a “dispersion” parameter whose value may be unknown. Note
that we are not specifying the distribution of the Yi’s, only the
relationship between the mean and variance.

To estimate β, we will introduce the quasi-likelihood function
(Wedderburn, 1974). Define a function ψ(µ; y) so that

∂

∂µ
ψ(µ; y) =

(y − µ)
V (µ)

.

Then given Y = y, we define the quasi-likelihood function (or
perhaps more correctly, the quasi-log-likelihood function) by

Q(β) =
n∑
i=1

ψ(µi; yi)

where, of course, µi depends on β via the relationship g(µi) = xT
i β.

Parameter estimates may now be obtained by maximizing the
quasi-likelihood function. Taking partial derivatives of Q(β) with
respect to β, we get the same estimating equations for β̂ as before:

n∑
i=1

Yi − µ̂i
g′(µ̂i)V (µ̂i)

xi = 0.

The estimate β̂ can be computed numerically as before by using
the reweighted least squares algorithm given above.
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EXAMPLE 8.10: Suppose that V (µ) = µ. Then the function
ψ(µ; y) satisfies

∂

∂µ
ψ(µ; y) =

(y − µ)
µ

,

which gives
ψ(µ; y) = y ln(µ)− µ + c(y)

(where c(y) is an arbitrary function of y). Note that the logarithm
of the Poisson frequency function with mean µ is y ln(µ)−µ−ln(y!),
which has the form given above; this makes sense since the mean
and the variance are equal for the Poisson distribution. ✸

EXAMPLE 8.11: Suppose that V (µ) = µ2(1−µ)2 for 0 < µ < 1.
Then

∂

∂µ
ψ(µ; y) =

(y − µ)
µ2(1− µ)2

,

which gives

ψ(µ; y) = (2y − 1) ln
(

µ

1− µ

)
− y

µ
− 1− y

1− µ
+ c(y).

This particular variance function can be useful when the data
are continuous proportions; however, the function ψ(µ; y) is not
equal to the logarithm of any known density or frequency function.
See Wedderburn (1974) for an application that uses this variance
function. ✸

EXAMPLE 8.12: Suppose that V (µ) = µ + αµ2 where α > 0 is
a known constant. In this case,

ψ(µ; y) = y ln(µ)− (y + 1/α) ln(1 + αµ) + c(y).

The logarithm of the Negative Binomial frequency function

f(y;µ) =
Γ(y + 1/α)
y!Γ(1/α)

(αµ)y

(1 + αµ)y+1/α
for y = 0, 1, 2, · · ·

has the same form as ψ(µ; y). However, typically α is an unknown
parameter and so quasi-likelihood estimation is not equivalent
to maximum likelihood estimation in this case. More details of
regression models for Negative Binomial data can be found in Dean
and Lawless (1989); these models are often used as an alternative
to Poisson regression models. ✸
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It should be noted that quasi-likelihood will not generally provide
the most efficient estimation of β unless the quasi-likelihood
function is the true log-likelihood function of the data. However,
more or less correct inference for β can still be carried out
using the quasi-likelihood estimator of β. In particular, β̂ will
be approximately multivariate Normal with mean vector β and
variance-covariance matrix φ(XTW (µ)X)−1 where X and W (µ)
are as previously defined.

The following example illustrates how we can obtain more
efficient estimates if the error distribution is known.

EXAMPLE 8.13: Consider an ordinary linear regression model
where µi = xT

i β and V (µi) is constant. It is easy to see that
maximum quasi-likelihood estimator of β is simply the least squares
estimator. However, suppose that the density of Yi were given by

f(y;µi, σ) =
exp[(y − µi)/σ]

σ (1 + exp[(y − µi)/σ])2
.

Then the MLEs of β and σ satisfy the equations

n∑
i=1

(
1− 2 exp[(Yi − xT

i β̂)/σ̂)]
1 + exp[(Yi − xT

i β̂)/σ̂)]

)
xi = 0

and

n

σ̂
+

n∑
i=1

(
1− 2 exp[(Yi − xT

i β̂)/σ̂)]
1 + exp[(Yi − xT

i β̂)/σ̂)]

)
(Yi − xT

i β̂) = 0.

In this case, the MLE β̂ will be approximately multivariate Normal
with mean vector β and variance-covariance matrix 3σ2(XTX)−1

while the least squares estimator will be approximately multivari-
ate Normal with mean vector β and variance-covariance matrix
3.2899σ2(XTX)−1 since Var(Yi) = 1

3π
2σ2 = 3.2899σ2. ✸

Estimation of the dispersion parameter

So far, we have not discussed the estimation of the dispersion
parameter φ if it is unknown. When the distribution of the Yi’s
is specified then φ can be estimated using maximum likelihood
estimation. In the quasi-likelihood setting, if Var(Yi) = φV (µi),
there are several approaches to estimating φ; perhaps the simplest
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approach is to use the fact that

φ =
E[(Yi − µi)2]

V (µi)

for i = 1, · · · , n. This suggests that φ can be estimated by the
method of moments estimator

φ̂ =
1
n∗

n∑
i=1

(Yi − µ̂i)2

V (µ̂i)

where µ̂i depends on the maximum likelihood or maximum quasi-
likelihood estimator β̂ and n∗ is either the sample size n or the
“residual degrees of freedom”, n− p− 1. An alternative estimator
of φ is

φ̃ =
1
n∗

n∑
i=1

(ψ(Yi;Yi)− ψ(µ̂i;Yi)) .

While the origin of φ̃ as an estimator of φ is far from clear, the
connection between φ̂ and φ̃ can be seen by making a Taylor series
expansion of ψ(µ;Yi) around µ = µ̂i:

ψ(Yi;Yi) = ψ(µ̂i;Yi) +
∂

∂µ
ψ(µ̂i;Yi)(Yi − µ̂i) + · · ·

= ψ(µ̂i;Yi) +
(Yi − µ̂i)2

V (µ̂i)
+ · · · .

Thus

φ̃ =
1
n∗

n∑
i=1

(ψ(Yi;Yi)− ψ(µ̂i;Yi))

=
1
n∗

n∑
i=1

(Yi − µ̂i)2

V (µ̂i)
+ · · ·

= φ̂ + · · · ,

which suggests that φ̂ ≈ φ̃ provided that the remainder terms in
the Taylor series expansion are negligible.

8.7 Problems and complements

8.1: Suppose that Y = Xβ + ε where ε ∼ Nn(0, σ2I) and X is
n× (p + 1). Let β̂ be the least squares estimator of β.
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(a) Show that

S2 =
‖Y −Xβ̂‖2

n− p− 1
is an unbiased estimator of σ2.
(b) Suppose that the random variables in ε are uncorrelated
with common variance σ2. Show that S2 is an unbiased
estimator of σ2.
(c) Suppose that (XTX)−1 can be written as

(XTX)−1 =


c00 c01 c02 · · · c0p
c10 c11 c12 · · · c1p
c20 c21 c22 · · · c2p
...

...
. . . . . .

...
cp0 cp1 cp2 · · · cpp

 .

Show that
β̂j − βj
S
√
cjj

∼ T (n− p− 1)

for j = 0, 1, · · · , p.
8.2: Suppose that Y = Xβ + ε where ε ∼ Nn(0, σ2C) for some

known non-singular matrix C.
(a) Show that the MLE of β is

β̂ = (XTC−1X)−1XTC−1Y .

(This estimator is called the generalized least squares estimator
of β.)

(b) Find the (exact) distribution of β̂.
(c) Find the distribution of the (ordinary) least squares estima-
tor of β for this model. Compare its distribution to that of the
generalized least squares estimator.

8.3: Consider the linear model

Yi = β0 + β1xi1 + · · ·+ βpxip + εi (i = 1, · · · , n)

where for j = 1, · · · , p, we have
n∑
i=1

xji = 0.

(a) Show that the least squares estimator of β0 is β̂0 = Ȳ .
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(b) Suppose that, in addition, we have

n∑
i=1

xjixki = 0

for 1 ≤ j �= k ≤ p. Show that the least squares estimator of βj
is

β̂j =
∑n

i=1 xjiYi∑n
i=1 x

2
ji

.

8.4: Consider the linear model

Y1i = α1 + β1x1i + ε1i for i = 1, · · · , n

and
Y2i = α2 + β2x2i + ε2i for i = 1, · · · , n

where the εji’s are independent N(0, σ2) random variables.
Define the response vector Y = (Y11, · · · , Y1n, Y21, · · · , Y2n)T

and the parameter vector γ = (α1, α2, β1, β2)T .
(a) The linear model above can be written as Y = Xγ + ε.
Give the design matrix X for this model.
(b) Suppose we wish to test the null hypothesis H0 : β1 = β2

versus the alternatve hypothesis H1 : β1 �= β2. Let RSS0

and RSS1 be the residual sums of squares under H0 and H1

respectively and give the F statistic for testing H0 in terms of
RSS0 and RSS1. What is the distribution of this statistic under
H0? What is the distribution of the test statistic under H1?

8.5: Suppose that Y = θ + ε where θ satisfies Aθ = 0 for some
known q × n matrix A having rank q. Define θ̂ to minimize
‖Y − θ‖2 subject to Aθ = 0. Show that

θ̂ = (I −AT (AAT )−1A)Y .

8.6: Consider the linear model

Y = X1β + X2γ + ε

where ε ∼ Nn(0, σ2I); we will also assume that the columns of
X2 are linearly independent of the columns of X1 to guarantee
identifiability of the model. Suppose that β is estimated using
only X1:

β̂ = X1(XT
1 X1)−1XT

1 Y .
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(a) Show that

E(β̂) = β + (XT
1 X1)−1XT

1 X2γ.

When would β̂ be unbiased?
(b) Assume X1 has q columns and define

S2 =
Y T (I −H1)Y

n− q
.

Show that E(S2) ≥ σ2 with equality if, and only if, γ = 0.
8.7: (a) Suppose that U ∼ χ2(1; θ2

1) and V ∼ χ2(1; θ2
2) where

θ2
1 > θ2

2. Show that U is stochastically greater than V . (Hint:
Let X ∼ N(0, 1) and show that P (|X + θ| > x) is an increasing
function of θ for each x.)
(b) Suppose that Un ∼ χ2(n; θ2

1) and Vn ∼ χ2(1; θ2
2) where

θ2
1 > θ2

2. Show that Un is stochastically greater than Vn.
8.8: Consider the linear model Y = Xβ + ε and suppose we want

to test the null hypothesis

H0 : Aβ = c

where A is an s× (p + 1) matrix with rank s and c is a vector
of length s.
(a) Show that the least squares estimator of β under H0 is given
by

β̂r = β̂ + (XTX)−1AT
[
A(XTX)−1AT

]−1
(c−Aβ̂)

where β̂ is the least squares estimator under the full model.
(Hint: Let λ be a vector of Lagrange multipliers and minimize
the objective function

g(β,λ) = ‖Y −Xβ‖2 + λT (Aβ − c)

over both β and λ.
(b) Let RSSr be the residual sum of squares under H0. Show
that

RSSr − RSS = (Aβ̂ − c)T
[
A(XTX)−1AT

]−1
(Aβ̂ − c).

(c) Show that
1
σ2

(RSSr − RSS) ∼ χ2(s)
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when H0 is true. (Hint: Note that when H0 is true Aβ̂ ∼
Ns(c, σ2A(XTX)−1AT ).)
(d) Show that

F =
(RSSr − RSS)/s
RSS/(n− p− 1)

∼ F(s, n− p− 1)

when H0 is true.
(e) Suppose that H0 is false so that Aβ = a �= c. Find the
distribution of the F statistic in part (d). (Hint: Note that
Aβ − c ∼ Ns(a− c, σ2A(XTX)−1AT ).)

8.9: Suppose that Y = Xβ + ε where ε ∼ Nn(0, σ2I) and define
the ridge estimator (Hoerl and Kennard, 1970) β̂λ to minimize

‖Y −Xβ‖2 + λ‖β‖2

for some λ > 0. (Typically in practice, the columns of X are
centred and scaled, and Y is centred.)
(a) Show that

β̂λ = (XTX + λI)−1XTY

= (I + λ(XTX)−1)−1β̂

where β̂ is the least squares estimator of β. Conclude that β̂λ

is a biased estimator of β.
(b) Consider estimating θ = aTβ for some known a �= 0. Show
that

MSEθ(aT β̂λ) ≤ MSEθ(aT β̂)
for some λ > 0.

8.10: In this problem, we will sketch a proof of Theorem 8.6. We
start by defining the function

Zn(u) =
n∑
i=1

[
ρ(εi − xT

i A
−1
n u)− ρ(εi)

]
,

which is a convex function since ρ(x) is convex. Note that Zn(u)
is minimized at u =

√
n(β̂n − β); thus if

(Zn(u1), · · · , Zn(uk)) →d (Z(u1), · · · , Z(uk))

where Z(u) is uniquely minimized then
√
n(β̂n − β) converges

in distribution to the minimizer of Z (Davis et al, 1992).
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(a) Let vni = xT
i A

−1
n u for a given u. Show that

Zn(u) = −
n∑
i=1

xT
i A

−1
n uψ(εi)

+
n∑
i=1

∫ vni

0
[ψ(εi)− ψ(εi − t)] dt

= Zn1(u) + Zn2(u).

(b) Show that

(Zn1(u1), · · · , Zn1(uk)) →d

(
uT

1 W , · · · ,uT
k W

)
where

W ∼ Np+1

(
0, E[ψ2(ε1)]I

)
.

(c) Show that as n→∞,

E[Zn2(u)] → λ(0)
2

uTu

and Var[Zn2(u)] → 0.

(d) Deduce from parts (b) and (c) that

(Zn(u1), · · · , Zn(uk)) →d (Z(u1), · · · , Z(uk))

where Z(u) = uTW + λ(0)uTu/2.
(e) Show that Z(u) in (d) is minimized at u = −W /λ(0).

8.11: Suppose that Yi = xT
i β + εi (i = 1, · · · , n) where the εi’s are

i.i.d. with mean 0 and finite variance. Consider the F statistic
(call it Fn) for testing

H0 : βr+1 = · · · = βp = 0

where β = (β0, · · · , βp)T .
(a) Under H0 and assuming the conditions of Theorem 8.5 on
the xi’s, show that

(p− r)Fn →d χ
2(p− r).

(b) If H0 is not true, what happens to (p − r)Fn as n → ∞?
(Hint: Look at the “non-centrality” of Fn when H0 is not true.)

8.12: Consider the linear regression model

Yi = xT
i β + εi (i = 1, · · · , n)
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where ε1, · · · , εn are i.i.d. random variables with density func-
tion

f(x) =
λ

2
exp (−λ|x|)

and λ > 0 is an unknown parameter. (This distribution is
sometimes called the Laplace distribution.)
(a) Show that the MLE of β minimizes the function

g(β) =
n∑
i=1

|Yi − xT
i β|.

This estimator is called the L1 estimator of β.
(b) Because the absolute value function is not differentiable at
0, numerical methods based on derivatives will not work for this
problem; however, linear programming algorithms (such as the
simplex algorithm or interior point algorithms) can be used to
find estimate of β. Consider the following linear programming
problem:

minimize
n∑
i=1

(e+
i + e−i )

subject to the constraints

xT
i β + e+

i − e−i = Yi for i = 1, · · · , n
e+
i ≥ 0 for i = 1, · · · , n
e−i ≥ 0 for i = 1, · · · , n

(The unknowns in this problem are β as well as the e+
i ’s

and the e−i ’s.) Show that if β̂ is a solution to this linear
programming problem then it also minimizes g(β) in part
(a). (See Portnoy and Koenker (1997) for more discussion of
computational methods for L1 estimation.)

8.13: Consider the linear regression model

Yi = xT
i β + εi (i = 1, · · · , n)

where ε1, · · · , εn are i.i.d. Exponential random variables with
unknown parameter λ.
(a) Show that the density function of Yi is

fi(y) = λ exp[−λ(y − xT
i β)] for y ≥ xT

i β.

(b) Show that the MLE of β for this model maximizes the
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function
g(u) =

n∑
i=1

xT
i u

subject to the constraints

Yi ≥ xT
i u for i = 1, · · · , n.

(c) Suppose that Yi = βxi + εi (i = 1, · · · , n) where ε1, · · · , εn
i.i.d. Exponential random variables with parameter λ and xi >
0 for all i. If β̂n is the MLE of β, show that β̂n − β has
an Exponential distribution with parameter λ

∑n
i=1 xi. (Hint:

Show that β̂n = min1≤i≤n Yi/xi.)
8.14: Suppose that Y has a density or frequency function of the

form
f(y; θ, φ) = exp

[
θy − b(θ)

φ
+ c(y, φ)

]
for y ∈ A, which is independent of the parameters θ and φ.
(a) Show that Eθ(Y ) = b′(θ).
(b) Show that Varθ(Y ) = φb′′(θ).

8.15: Suppose that Y has a density or frequency function of the
form

f(y; θ, φ) = exp
[
θy − b(θ)

φ
+ c(y, φ)

]
for y ∈ A, which is independent of the parameters θ and φ.
This is an alternative to the general family of distributions
considered in Problem 8.14. and is particularly appropriate for
discrete distributions.
(a) Show that the Negative Binomial distribution of Example
8.12 has this form.
(b) Show that Eθ(Y ) = φ−1b′(θ) and Varθ(Y ) = φ−1b′′(θ).

8.16: The Inverse Gaussian distribution is a continuous distribu-
tion whose density function is

f(y; δ, σ) =
1

σ
√

2πy3
exp

[
1

2σ2y
(1− δy)2

]
for y > 0.
(a) If Y has the density function above, show that E(Y ) = 1/δ
and Var(Y ) = σ2/δ3. (Thus Var(Y ) = σ2[E(Y )]3.)
(b) Suppose that Y1, · · · , Yn are independent Inverse Gaussian
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random variables with E(Yi) = µi and ln(µi) = xT
i β where

β is unknown. Outline the iteratively reweighted least squares
algorithm for computing maximum likelihood estimate of β.
(c) Find an expression for the MLE of σ2.

8.17: Lambert (1992) describes an approach to regression mod-
elling of count data using a zero-inflated Poisson distribution.
That is, the response variables {Yi} are nonnegative integer-
valued random variables with the frequency function of Yi given
by

P (Yi = y) =
{

θi + (1− θi) exp(−λi) for y = 0
(1− θi) exp(−λi)λ

y
i /y! for y = 1, 2, · · ·

where θi and λi depend on some covariates; in particular, it is
assumed that

ln
(

θi
1− θi

)
= xT

i β

ln(λi) = xT
i φ.

where xi (i = 1, · · · , n) are covariates and β, φ are vectors of
unknown parameters.
(a) The zero-inflated Poisson model can viewed as a mixture of a
Poisson distribution and a distribution concentrated at 0. That
is, let Zi be a Bernoulli random variable with P (Zi = 1) = θi
such that P (Yi = 0|Zi = 0) = 1 and given Zi = 1, Yi is Poisson
distributed with mean λi. Show that

P (Zi = 0|Yi = y) =
{

θi/[θi + (1− θi) exp(−λi)] for y = 0
0 for y ≥ 1

(b) Suppose that we could observe (Y1, Z1), · · · , (Yn, Zn) where
the Zi’s are defined in part (a). Show that the MLE of β
depends only on the Zi’s
(c) Use the “complete data” likelihood in part (b) to describe
an EM algorithm for computing maximum likelihood estimates
of β and φ.
(d) In the spirit of the zero-inflated Poisson model, consider the
following simple zero-inflated Binomial model: for i = 1, · · · , n,
Y1, · · · , Yn are independent random variables with

P (Yi = 0) = φ + (1− φ)(1− θi)m
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Table 8.1 Data for Problem 8.17; for each observation m = 6.

xi yi xi yi xi yi xi yi

0.3 0 0.6 0 1.0 0 1.1 0
2.2 1 2.2 0 2.4 0 2.5 0
3.0 4 3.2 0 3.4 4 5.8 5
6.2 0 6.5 5 7.1 4 7.6 6
7.7 4 8.2 4 8.6 4 9.8 0

P (Yi = y) = (1− θ)

(
m

y

)
θyi (1− θi)m−y for y = 1, · · · ,m

where 0 < φ < 1 and

ln
(

θi
1− θi

)
= β0 + β1xi

for some covariates x1, · · · , xn.
Derive an EM algorithm for estimating φ and β and use it
to estimate the parameters for the data in Table 8.1; for each
observation, m = 6. with m = 6:
(e) Carry out a likelihood ratio test for H0 : β1 = 0 versus
H1 : β1 �= 0. (Assume that the standard χ2 approximation can
be applied.)

8.18: Suppose that Y1, · · · , Yn are independent Bernoulli random
variables with parameters θi = P (Yi = 1) (i = 1, · · · , n) and
assume the logistic regression model (see Example 8.8)

ln
(

θi
1− θi

)
= β0 + β1xi1 + · · ·+ βpxip.

In many epidemiological studies, the data are sampled retro-
spectively; that is, there is an additional (unobservable) vari-
able that determines whether or not an individual is sampled
and the sampling probability may depend on the value of Yi.
Let Zi be a Bernoulli random variable with Zi = 1 if individual
i is sampled and 0 otherwise and suppose that

P (Zi = 1|Yi = 0) = p0 and P (Zi = 1|Yi = 1) = p1

where p0 and p1 are constant for i = 1, · · · , n.
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(a) Assuming the logistic regression model, show that

P (Yi = 1|Zi = 1) =
p1θi

p1θi + p0(1− θi)
.

(b) Let φi = P (Yi = 1|Zi = 1). Show that

ln
(

φi
1− φi

)
= β∗

0 + β1xi1 + · · ·+ βpxip

where β∗
0 = β0 + ln(p1/p0). This indicates that β1, · · · , βp may

still be estimated under retrospective sampling.
8.19: Consider finding a quasi-likelihood function based on the

variance function V (µ) = µr for some specified r > 0.
(a) Find the function ψ(µ; y) for V (µ).
(b) Show that

ψ(µ; y) =
∂

∂µ
ln f(y;µ)

for some density or frequency function f(y;µ) when r = 1, 2, 3.
8.20: The Multinomial logit model is sometimes useful when a

response is discrete-valued and takes more than two possible
values. Given a covariate vector xi, we assume that Y i has the
following Multinomial distribution (see Problem 2.28):

Pθ(Y i = y) = θy11i × · · · × θyr
ri

where y1 + · · ·+ yr = 1 and

ln
(
θki
θ1i

)
= xT

i βk for k = 2, · · · , r

(a) Show that

θki =
exp(xT

i βk)
1 + exp(xT

i β2) + · · ·+ exp(xT
i βr)

for k = 2, · · · , r with

θ1i =
1

1 + exp(xT
i β2) + · · ·+ exp(xT

i βr)
.

(b) Suppose that we model the components of Y i as indepen-
dent Poisson random variables with means λ1i, · · · , λr1 with

ln(λki) = ψi + xT
i βk (k = 1, · · · , r).
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Show that the MLEs of β1, · · · ,βr for the Poisson model are
the same as those for the Multinomial logit model.
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CHAPTER 9

Goodness-of-Fit

9.1 Introduction

Up to this point, we have assumed a particular statistical model
for given observations. For example, given i.i.d. random variables
X1, · · · , Xn, we have assumed that they have a common density (fre-
quency) function f(x; θ) where only the parameter θ is unknown;
that is, we have assumed the form of the distribution up to the value
of an unknown parameter, which allows us to focus our energies on
inference for this parameter.

However, there are many situation where we want to test
whether a particular distribution “fits” our observed data. In some
cases, these tests are informal; for example, in linear regression
modeling, a statistician usually examines diagnostic plots (or other
procedures) that allow him to determine whether the particular
model assumptions (for example, normality and/or independence
of the errors) are satisfied. However, in other cases where the form
of the model has more significance, statisticians tend to rely more
on formal hypothesis testing methods. We will concentrate on these
methods in this chapter.

Roughly speaking, we can put goodness-of-fit tests into two class-
es. The first class of tests divides the range of the data into disjoint
“bins”; the number of observations falling in each bin is compared
to the expected number under the hypothesized distribution. These
tests can be used for both discrete and continuous distribution
although they are most natural for discrete distributions as the
definition of the bins tends to be less arbitrary for discrete
distributions than it is for continuous distributions.

The second class of tests are used almost exclusively for testing
continuous distributions. For these tests, we compare an empirical
distribution function of the data to the hypothesized distribution
function; the test statistic for these tests is based either on some
measure of distance being the two distributions or on a measure of
“correlation” between the distributions.
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9.2 Tests based on the Multinomial distribution

Suppose that we observe i.i.d. random variables X1, · · · , Xn from
an unknown distribution (which may be continuous or discrete).
Our immediate goal is to find a test of the null hypothesis

H0 : the Xi’s have density (frequency) function f(x; θ)

where the alternative hypothesis is

H1 : the Xi’s have an arbitrary distribution.

The parameter θ above may be known or unknown; if it is unknown,
we will assume that it is finite dimensional.

Let S be a set such that P (Xi ∈ S) = 1. Then define disjoint sets
A1, · · · , Ak such that

S =
k⋃

j=1

Aj .

The idea now is to count the number of Xi’s that fall into each of
the sets A1, · · · , Ak; we can define random variables

Yj =
n∑
i=1

I(Xi ∈ Aj) (j = 1, · · · , k).

In practice, the number of sets k is chosen to be much sample than
the sample size n. Because the Xi’s are i.i.d., the random vector
Y = (Y1, · · · , Yk) has a Multinomial distribution (see Problem
2.28):

P (Y = y) =
n!

y1!× · · · × yk!

k∏
j=1

φ
yj

j

where φj = P (Xi ∈ Aj) for j = 1, · · · , k.
Now we assume that the Xi’s have a density or frequency function

f(x;θ) where θ = (θ1, · · · , θp) is unknown. In this case, we can
express the φj ’s more precisely in terms of the parameter θ:

φj = Pθ(Xi ∈ Aj) = pj(θ) (j = 1, · · · , k).

Thus if we are interested in testing the null hypothesis that the
Xi’s have density (frequency) function f(x;θ) for some θ ∈ Θ, we
can express this null hypothesis in terms of the parameters of the
Multinomial random vector Y :

H0 : φj = pj(θ) (j = 1, · · · , n) for some θ ∈ Θ.
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EXAMPLE 9.1: Let X1, · · · , Xn be i.i.d. random variables with
density function

f(x; θ) = θxθ−1 for 0 ≤ x ≤ 1

where θ > 0 is unknown. We can take S = [0, 1] and define
(arbitrarily) A1 = [0, 1/4], A2 = (1/4, 1/2], A3 = (1/2, 3/4],
A4 = (3/4, 1]. Integrating the density, we get

pj(θ) =
∫ j/4

(j−1)/4
θxθ−1 dx =

(
j

4

)θ

−
(
j − 1

4

)θ

for j = 1, · · · , 4. Defining Y1, · · · , Y4 to be the counts as above, we
have

Pθ(Y1 = y1, · · · , Y4 = y4)

=
n!

y1!y2!y3!y4!

4∏
j=1

[(
j

4

)θ

−
(
j − 1

4

)θ
]yj

.

Viewing this joint frequency function as a function of θ (given
bY = y), we have a likelihood function for θ based on the counts
Y1, · · · , Y4. ✸

At this point, we should note that in going from the original data
X = (X1, · · · , Xn) to the counts Y = (Y1, · · · , Yk), we do typically
lose information in that Y = Y (X) is typically neither sufficient
for θ (when H0 is true) nor in any nonparametric sense (when H0 is
false). This is an inevitable consequence of goodness-of-fit testing,
particularly for continuous distributions. However, if X is discrete
with S = {x1, · · · , xk} (a finite set) then we could define Aj = {xj}
and Y is still sufficient for θ (although not necessarily minimal
sufficient).

We noted in Example 9.1 that the joint frequency function of Y
under the null hypothesis can be interpreted as a likelihood function
for the unknown parameter θ. In fact, this is generally true if one
regards the probabilities φ = (φ1, · · · , φk) as unknown parameters.
This suggests that we can carry out a likelihood ratio (LR) test of
the null hypothesis by comparing the maximized H0 likelihood (that
is, maximizing over θ) to the “unrestricted” maximized likelihood
(that is, maximizing over φ subject to φj ≥ 0 (for j = 1, · · · , k) and
φ1 + · · ·+ φk = 1).
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In principle, the LR test is quite simple. Given Y = y, define the
log-likelihoods

lnL1(φ) =
k∑

j=1

yj ln(φj) + ln
(

n!
y1!× · · · × yk!

)
and

lnL0(θ) =
k∑

j=1

yj ln(pj(θ)) + ln
(

n!
y1!× · · · × yk!

)
.

The maximum likelihood estimator of φ is φ̂ = Y /n while the
maximum likelihood estimator of θ satisfies the equation

k∑
j=1

Yj

pj(θ̂)
p′j(θ̂) = 0

where p′j(θ) is the derivative or gradient of pj with respect to θ. If
Λ is the LR statistic, we have

ln(Λ) = lnL1(φ̂)− lnL0(θ̂)

=
k∑

j=1

Yj ln

(
Yj

npj(θ̂)

)
;

the null hypothesis will be rejected for large values of Λ (or
equivalently ln(Λ)). Of course, to implement the LR test, we need
to know the distribution of Λ under the null hypothesis; given this
null distribution, we can determine the “rejection region” for Λ to
make it (at least approximately) an α level test or, alternatively,
compute a p-value for the test.

In Chapter 7, we showed that, under i.i.d. sampling, we could
approximate the null distribution of 2 ln(Λ) by a χ2 distribution.
It is quite easy to see that this theory also applies to this situation
since Y can be viewed as a sum of n independent Multinomial
random vectors. Given this fact, we can apply the standard
asymptotic theory for LR tests; in doing so, we are assuming that
n (the sample size) tends to infinity while k (the number of bins)
as well as p (the dimension of θ) remain fixed.

The asymptotic theory for the MLE of θ under the Multinomial
model is quite simple if notationally somewhat cumbersome. If
Y n ∼ Mult(n,p(θ)) then

Cov(Y n) = nC(θ)
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where C(θ) is a k×k matrix whose diagonal elements are Cii(θ) =
pi(θ)(1 − pi(θ)) and whose off-diagonal elements are Cij(θ) =
−pi(θ)pj(θ); C(θ) will have rank k−1 provided that 0 < pj(θ) < 1
for j = 1, · · · , k. If P (θ) is a k × p matrix whose j-th row is the
gradient of ln(pj(θ) then under mild regularity conditions, the MLE
of θ, θ̂n satisfies

√
n(θ̂n − θ) →d Np(0, I(θ)−1)

where
I(θ) = P (θ)TC(θ)P (θ).

The inverse of I(θ) exists provided that p ≤ k − 1 and P (θ) has
rank p.

THEOREM 9.1 Suppose that Y n ∼ Mult(n, p1(θ), · · · , pk(θ))
where p1, · · · , pk are twice continuously differentiable functions on
Θ, an open subset of Rp where p ≤ k − 2. Define

ln(Λn) =
k∑

j=1

Ynj ln

(
Ynj

npj(θ̂n)

)
.

If
√
n(θ̂n − θ) →d Np(0, I(θ)−1) then

2 ln(Λn) →d χ
2(k − 1− p).

Theorem 9.1 can be viewed as a special case of Theorem 7.5
applied to Multinomial distributions. It is important to note that
θ̂n is the MLE of θ under the Multinomial model and not the MLE
under the original model; however, the difference between these two
MLEs is typically not large.

An alternative statistic to the LR statistic is Pearson’s χ2

statistic:

K2
n =

k∑
j=1

(Ynj − npj(θ̂n))2

npj(θ̂n)
.

This statistic turns out to be closely related to the LR statistic.
Note that K2

n compares the “observed” number of observations
falling in bin j (Ynj) to the (estimated) “expected” number of
observations under the null hypothesis (npj(θ̂n)). As with the LR
statistic, we will reject the null hypothesis for large values of K2

n.

THEOREM 9.2 Assume the same conditions on Y n and θ̂n as
in Theorem 9.1. Then

K2
n − 2 ln(Λn) →p 0
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and so
K2
n →d χ

2(k − 1− p).
Proof. It follows from the CLT and the asymptotic normality of the
MLE θ̂n that for each j,

√
n

(
Ynj
n

− pj(θ)
)

→d N(0, pj(θ)(1− pj(θ)))
√
n(pj(θ̂n)− pj(θ)) →d N(0, p′j(θ)T I(θ)−1p′j(θ))

where p′j(θ) is the gradient of pj(θ) (which we assume here to be a
column vector). Thus

Ynj
n

− pj(θ̂n) →p 0

n

∣∣∣∣Ynjn − pj(θ̂n)
∣∣∣∣r →p 0

for any r > 2. A Taylor series expansion gives

ln(Ynj/n)− ln(pj(θ̂n)) =
1

pj(θ̂n)

(
Ynj
n

− pj(θ̂n)
)

− 1
2p2

j (θ̂n)

(
Ynj
n

− pj(θ̂n)
)2

+
1

3p3
j (θ

∗
n)

(
Ynj
n

− pj(θ̂n)
)3

where θ∗
n lies on the line segment joining Ynj and θ̂n. We also have

2 ln(Λn) = 2n
k∑

j=1

(
Ynj
n

− pj(θ̂n)
)

ln

(
Ynj

npj(θ̂n)

)

+2n
k∑

j=1

pj(θ̂n) ln

(
Ynj

npj(θ̂n)

)
.

Now substituting the Taylor series expansion above for ln(Ynj/n)−
ln(pj(θ̂n)), it follows that 2 ln(Λn) − K2

n →p 0 and so Kn →d

χ2(k − 1− p).

Theorem 9.2 suggests that Pearson’s χ2 statistic should be nearly
identical to the LR statistic when the null hypothesis is true (at
least if n is sufficiently large). In fact, even when the null hypothesis
does not hold, the two statistics can still be very close; the following
example illustrates this.
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Table 9.1 Frequency of goals in First Division matches and “expected” frequency
under Poisson model in Example 9.2

Goals 0 1 2 3 4 ≥ 5

Frequency 252 344 180 104 28 16

Expected 248.9 326.5 214.1 93.6 30.7 10.2

EXAMPLE 9.2: Consider the data on goals scored in soccer
(football) games given in Example 5.25; the complete data are
summarized in Table 5.6. We want to test the hypothesis that the
number of goals scored in a game follows a Poisson distribution.
Because there are relatively few games in which more than 6 goals
were scored, we will consider the games with 5 or more goals scored
as a single bin.

If we set Yj to be the number of games in which j goals
were scored for j = 0, · · · , 4 and Y5 to be the number of games
in which 5 or more goals were scored then (Y0, · · · , Y5) has a
Multinomial distribution where the probabilities p0(λ), · · · , p5(λ)
under the Poisson model are

pj(λ) =
exp(−λ)λj

j!
(j = 0, · · · , 4)

p5(λ) = 1−
4∑

j=0

pj(λ).

Given the data in Table 9.1, we can determine the maximum
likelihood estimate of λ numerically (a closed-form solution does
not exist); for these data, λ̂ = 1.3118. The expected frequencies in
Table 9.1 are obtained simply 924 pj(λ̂) for j = 0, · · · , 5. We then
obtain

2 ln(Λ) = 2
5∑

j=0

yj ln

(
yj

924 pj(λ̂)

)
= 10.87

K2 =
5∑

j=0

(yj − 924 pj(λ̂))2

924 pj(λ̂)
= 11.09.

Under the null hypothesis (Poisson model), both statistics should
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be approximately χ2(4) distributed as there are six bins and
the Poisson model has one unknown parameter. Using the χ2(4)
distribution, we obtain (approximate) p-values of 0.028 (LR test)
and 0.026 (Pearson’s χ2 test). The small p-values suggest that the
Poisson model may not be appropriate; however, a comparison of
the observed and “expected” frequencies suggests that the Poisson
model may not be that bad. ✸

Log-linear models

Log-linear models describe the structure of dependence or asso-
ciation in data that has been cross-classified according to several
discrete or categorical variables. More precisely, suppose we take a
random sample from a population where each member of the pop-
ulation is described by some attributes, each of which take a finite
number of values or levels. Then for each combination of levels, we
count the number of individuals in the sample having this combi-
nation of levels. One simple goal is to determine if the variables
are independent or, failing that, to determine the structure of the
dependence (or association) between the variables.

To simplify the discussion, we will restrict ourselves to the
situation where three categorical variables (which we will call U , V ,
and W ) are measured for each individual, and we will assume that
these have, respectively, u, v, and w possible values or levels. (All
of the discussion below can be extended to four or more variables
without difficulty.) Define

θijk = P (U = i, V = j,W = k)

for i = 1, · · · , u, j = 1, · · · , v, and k = 1, · · · , w. Define Yijk to
be the number of individuals in the sample with U = i, V = j,
and W = k; then the random vector Y = (Y111, · · · , Yuvw) has
a Multinomial distribution with probabilities θijk (i = 1, · · · , u;
j = 1, · · · , v; k = 1, · · · , w). It follows that the MLE of θijk is

θ̂ijk =
Yijk
n

.

This general model (where the θijk’s are unconstrained) is often
called the saturated model since there are as many parameters as
there are observations.

The goal in log-linear modeling is to find a simpler model for the
probabilities θijk’s; note that under the saturated model described
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above, the dimension of the parameter space is effectively uvw− 1.
Simplifications of the general model result from expressing the θijk’s
in terms of marginal probabilities. For example, we can define

θij+ = P (U = i, V = j)

=
w∑
k=1

θijk

θ+j+ = P (V = j)

=
u∑
i=1

w∑
k=1

θijk

where a + in the subscript indicates that we have summed over
that index. Given these probabilities, we can define a number of
possible models that describe the dependence structure between
the variables U , V and W ; some of these are:

θijk = θi++θ+j+θ++k

(mutual independence of U , V and W )
θijk = θi++θ+jk

((V,W ) is independent of U)

θijk =
θi+kθ+jk

θ++k

(U and V are conditionally independent given W ).

These models for θijk are called log-linear models since ln(θijk) can
expressed as a sum of terms; for example, in the model where U
and V are conditionally independent given W , we can write

ln(θijk) = ln(θi+k) + ln(θ+jk)− ln(θ++k)
= αik + βjk + γk.

Generally, we can write a log-linear model as

ln(θijk) = xT
ijkβ

where xijk is typically a vector of 0’s and 1’s (depending on the
structure of the log-linear model) and β is a vector of unknown
parameters. To insure identifiability, we must assume that the
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design matrix

X =

 xT
111
...

xuvw


has rank equal to the length of the parameter vector β. Note,
however, that since the θijk’s are probabilities, we must also impose
the constraint

u∑
i=1

v∑
j=1

w∑
k=1

θijk =
u∑
i=1

v∑
j=1

w∑
k=1

exp(xT
ijkβ) = 1.

Because of this constraint, the effective number of parameters in
the log-linear model is one less than the length of β. Given Y = y,
the log-likelihood function for β is

lnL(β) =
u∑
i=1

v∑
j=1

w∑
k=1

yijk(xT
ijkβ)

subject to the constraint
u∑
i=1

v∑
j=1

w∑
k=1

exp(xT
ijkβ) = 1.

Maximum likelihood estimates can be computed using either the
iterative proportional fitting algorithm or the Newton-Raphson
algorithm; see Agresti (1990) and Fienberg (1980) for details.

Given the MLE β̂, we can define the expected count Ŷijk =
n exp(xT

ijkβ̂). To test the null hypothesis

H0 : θijk = exp(xT
ijkβ) versus H1 : θijk’s unspecified

we can use either the LR test or Pearson’s χ2 test whose test
statistics are;

2 ln(Λn) = 2
u∑
i=1

v∑
j=1

w∑
k=1

Yijk ln(Yijk/Ŷijk)

K2
n =

u∑
i=1

v∑
j=1

w∑
k=1

(Yijk − Ŷijk)2

Ŷijk
.

If n is sufficiently large then the null distributions of both statistics
is χ2 with (uvw − p) where p is the length of β. (As before, an
informal rule-of-thumb says that n is large enough to apply the χ2

approximation if mini,j,k Ŷijk ≥ 5.)
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EXAMPLE 9.3: Suppose that we want to test the null hypothesis
that U , V , and W are independent. This hypothesis can be
expressed via the log-linear model

ln(θijk) = µ + αi + βj + γk

(for i = 1, · · · , u, j = 1, · · · , v, and k = 1, · · · , w) where, to make the
model identifiable, we assume that α1 = β1 = γ1 = 0; the number
of parameters in this model is p = 1 + (u− 1) + (v− 1) + (w− 1) =
u+v+w−2 although due to the constraint on the θijk’s the effective
number of parameters is p−1. The expected counts Ŷijk have a very
simple form in this model:

Ŷijk = n

(
Yi++

n

) (
Y+j+

n

) (
Y++k

n

)
where as before the + in the subscript indicates that summation
over the corresponding index. Thus under the null hypothesis, both
the LR statistic and Pearson’s χ2 statistic have χ2 distributions
with (uvw − u− v − w + 2) degrees of freedom. ✸

We can also use LR and Pearson’s χ2 tests to compare nested
log-linear models; see Agresti (1990) for more details.

9.3 Smooth goodness-of-fit tests

Suppose that X1, · · · , Xn are i.i.d. continuous random variables
with unknown distribution function F . We want to test the null
hypothesis

H0 : F = Fθ

where Fθ may depend on some unknown parameters.
To start, we will consider a somewhat simpler testing problem in

which Fθ = F0 is a fixed continuous distribution function and does
not depend on any unknown parameters. Admittedly, this is not a
very useful problem in practice since we would like to test whether
the Xi’s come from a particular family of distributions; however,
this simplication is very useful in illustrating the general principles
used in constructing “smooth” goodness-of-fit tests. D’Agostino
and Stephens (1986) gives a comprehensive survey of smooth
goodness-of-fit tests.

Given the fixed continuous distribution F0, define Yi = F0(Xi)
(i = 1, · · · , n). Since F0 is continuous, the Yi’s have a Uniform
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distribution on [0, 1] if the distribution function of the Xi’s is F0

(that is, H0 is true; on the other hand, if H0 is false (that is,
F0 is not the distribution function of the Xi’s) then the Yi’s will
not have a Uniform distribution although their distribution will be
concentrated on the interval [0, 1]. Therefore (at least in this simple
problem), we can assume that the distribution function F of the
Xi’s is concentrated on [0, 1] and the null hypothesis becomes

H0 : F (x) = x for 0 ≤ x ≤ 1.

Our test statistics for testing H0 will be based on the empirical
distribution function

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x),

which was earlier used to define substitution principle estimators.
Recall that

sup
0≤x≤1

|F̂n(x)− F (x)| →p 0

as n → ∞ and so this suggests that a reason test statistic should
compare the empirical distribution function F̂n to the Uniform
distribution function in some way, for example,

sup
0≤x≤1

|F̂n(x)− x| or
∫ 1

0
(F̂n(x)− x)2 dx.

As one might imagine, the null distributions of such test statistics
are quite complicated to determine. However, it is fairly straightfor-
ward to determine the asymptotic null distributions (as n → ∞).
To do this, we need to take a closer look at the limiting distribution
of Bn(x) =

√
n(F̂n(x) − x) as a random function on the interval

[0, 1]. While the mathematics of this is somewhat beyond the scope
of this book, it is fairly easy to give a heuristic development of the
limiting distribution of Bn.

We will limit our discussion to the limiting distribution of Bn at
a finite number of points. By the Multivariate CLT, we have for
0 ≤ x1 < x2 < · · · < xk ≤ 1,

Bn(x1)
Bn(x2)

...
Bn(xk)

 →d Nk(0, C)
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Figure 9.1 A simulated realization of a Brownian bridge process.

where the variance-covariance matrix C has (i, j) element

C(i, j) = Cov(I(X1 ≤ xi), I(X1 ≤ xj))
= E[I(X1 ≤ xi)I(X1 ≤ xj)]

−E[I(X1 ≤ xi)]EI(X1 ≤ xj)]
= min(xi, xj)− xixj .

The trick now is to find a random function (or stochastic process)
B on [0, 1] such that the random vector (B(x1), · · · , B(xk)) has the
limiting distribution given above (for any finite number of points
x1, · · · , xk). Such a random function exists and is called a Brownian
bridge. A simulated realization of a Brownian bridge is given in
Figure 9.1.

Now define the test statistics

Kn =
√
n sup

0≤x≤1
|F̂n(x)− x| = sup

0≤x≤1
|Bn(x)|,
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(which is called the Kolmogorov-Smirnov statistic),

W 2
n = n

∫ 1

0
(F̂n(x)− x)2 dx =

∫ 1

0
B2
n(x) dx,

(which is called the Cramér-von Mises statistic), and

A2
n = n

∫ 1

0

(F̂n(x)− x)2

x(1− x)
dx =

∫ 1

0

B2
n(x)

x(1− x)
dx

(which is called the Anderson-Darling statistic). Note that each test
statistic can be written as φ(Bn) for some φ; the “convergence” of
Bn to B suggests that φ(Bn) →d φ(B) and, in fact, this can be
proved rigorously. Thus we have, for example, for the Kolmogorov-
Smirnov statistic

Kn →d sup
0≤x≤1

|B(x)| = K

where

P (K > x) = 2
∞∑
j=1

(−1)j+1 exp(−2j2x2).

Likewise, representations of the limiting distributions of the Cra-
mér-von Mises and Anderson-Darling statistics can be obtained;
both limiting random variables can be represented as an infinite
weighted sum of independent χ2 random variables with 1 degree
of freedom. If Z1, Z2, · · · are independent N(0, 1) random variables
then

W 2
n →d

∞∑
j=1

Z2
j

j2π2

A2
n →d

∞∑
j=1

Z2
j

j(j + 1)
.

The limiting distribution functions of W 2
n and A2

n can be obtained
by first obtaining the characteristic function of the limiting distri-
bution and then inverting the characteristic function.

Both the Cramér-von Mises and the Anderson-Darling tests
are quite powerful for alternatives that are close to the Uniform
distribution and tend to be better for these alternatives (in terms
of power) than the Kolmogorov-Smirnov test. However, in practice,
we are typically interested in detecting larger departures from the
Uniform distribution and, in such cases, all three tests perform well.
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Figure 9.2 Normal probability plot with normally distributed data.

Tests based on probability plots

Suppose that X1, · · · , Xn are i.i.d. continuous random variables
with distribution function F and we want to test the null hypothesis

H0 : F (x) = F0

(
x− µ

σ

)
where µ and σ > 0 are unknown parameters.

There is a simple ad hoc approach to checking the validity of H0

which involves plotting the order statistics X(1), · · · , X(n) against
values of the inverse of F0; these plots are known as probability
plots (or quantile-quantile plots). The idea behind probability plots
is quite simple. If H0 is true and n is reasonably large then we have

X(i) ≈ µ + σE0(X(i)) (i = 1, · · · , n)

where E0(X(i)) is the expected value of the order statistic X(i)

under sampling from F0. Thus if H0 is true and we plot X(i) versus
E0(X(i)) for i = 1, · · · , n, we should expect to see these points
falling close to a line whose slope is σ and whose y-intercept is µ.
However, if the Xi’s do not come from the family of distributions
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Figure 9.3 Normal probability plot with non-normally distributed data.

in H0 then we would expect to see some curvature (or other non-
linearity) in the points. In practice, E0(X(i)) is typically not easy to
evaluate but may be approximated; two common approximations
for E0(X(i)) are F−1

0 ((i− 1/2)/n) and F−1
0 (i/(n + 1)).

Two Normal probability plots are given in Figures 9.2 and 9.3 for
sample sizes of n = 50; Figure 9.2 shows a Normal probability plot
with normally distributed data while Figure 9.3 shows a Normal
probability plot for non-normal (in fact, Exponential) data.

While probability plots are typically used merely as informal
“eyeball” tests of distributional assumptions, we can use them to
carry out formal goodness-of-fit tests. The standard approach to
goodness-of-fit testing based on probability plots is to use as a
test statistic an estimator of the correlation between the order
statistics and their expected values (or suitable approximations
thereof) under i.i.d. sampling from the distribution function F0;
for example, see Lockhart and Stephens (1998). Given vectors x

c© 2000 by Chapman & Hall/CRC



and y of length n, define

r(x,y) =
∑n

i=1(xi − x̄)(yi − ȳ)

(
∑n

i=1(xi − x̄)2)1/2 (
∑n

i=1(yi − ȳ)2)1/2

to be the correlation between x and y. Now given

Xn =
(
X(1), · · · , X(n)

)
and

E(Xn) = (E0(X(1)), · · · , E0(X(n)))
(where, as before, E0 denotes expected value under sampling from
F0), we define the test statistic

Rn = r(Xn, E0(Xn)).

(Alternatively, we can replace E0(X(i)) by one of the approxima-
tions given above.) We can then use Rn as a test statistic to test
the null hypothesis

H0 : F (x) = F0

(
x− µ

σ

)
for some µ and σ.

It is easy to see that the null distribution of Rn is independent
of the unknown parameters µ and σ. Moreover, since both Xn

and E0(Xn) have non-decreasing elements, the correlation Rn

is necessarily nonnegative; when H0 is true, this correlation is
typically close to 1. The null distribution of Rn can (for any n)
be approximated quite well by Monte Carlo sampling; it suffices to
generate independent random variables from F0. It is also possible
to derive the asymptotic distribution of Rn, which will depend on
F0; the derivation of these limiting distributions turns out to be
quite difficult from a technical point of view.

In the next two examples, we will give the limiting distribution
for Rn in the case of the extreme value distributions and Normal
distributions.

EXAMPLE 9.4: Suppose that

F0(x) = exp[− exp(−x)];

F0 is called a type I extreme value distribution. If X1, · · · , Xn are
i.i.d. with distribution function F (x) = F ((x− µ)/σ), we have

n(1−R2
n)− ln(n)

2
√

ln(n)
→d N(0, 1).
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Thus for n sufficiently large, the null distribution of R2
n is approxi-

mately Normal with mean 1− ln(n)/n and variance 4 ln(n)/n2. ✸

EXAMPLE 9.5: Suppose that F0 is the standard Normal distri-
bution. A correlation test related to the statistic Rn was proposed
by Shapiro and Francia (1972). However, another correlation-type
test was proposed earlier by Shapiro and Wilk (1965); the so-called
Shapiro-Wilk test takes into account the correlation between the
order statistics in defining the correlation. Interestingly, the lim-
iting behaviour of both test statistics is more or less identical, if
somewhat bizarre. Defining

an =
1

(n + 1)3

n∑
i=1

i(n + 1− i)
φ2(Φ−1(i/(n + 1)))

− 3
2

(where φ is the density function and Φ−1 is the quantile function
of a standard Normal distribution), we have

n(1−R2
n)− an →d

∞∑
k=1

1
k + 2

(Z2
k − 1)

where Z1, Z2, · · · are i.i.d. standard Normal random variables.
This limiting distribution is sufficiently complicated that it is
probably easier to simply approximate the distribution of Rn using
simulation! ✸

The power of correlation tests based on probability plots seems to
vary according to the family of distributions being tested under the
null hypothesis. The general rule-of-thumb seems to be (Lockhart
and Stephens, 1998) that correlation tests work quite well for
“short-tailed” distributions (such as the Normal) but less well
for longer-tailed distributions such as the type I extreme value
distribution of Example 9.4. As before, these power considerations
are for alternatives that are close to the null; for gross departures
from the null hypothesis, correlation tests are adequate although
the same information is usually available from the corresponding
probability plot.
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Table 9.2 Data for Problem 9.1.

3.5 7.9 8.5 9.2 11.4 17.4 20.8 21.2
21.4 22.5 25.3 25.7 25.9 26.2 26.6 27.8
28.7 30.1 30.2 30.9 35.0 36.0 39.0 39.0
39.6 43.2 44.8 47.7 57.5 62.5 72.8 83.1
96.6 106.6 115.3 118.1 152.5 169.2 202.2 831.0

9.4 Problems and complements

9.1: The distribution of personal incomes is sometimes modelled
by a distribution whose density function is

f(x;α, θ) =
α

θ

(
1 +

x

θ

)−(α+1)

for x ≥ 0

for some unknown parameters α > 0 and θ > 0. The data
given in Table 9.2 are a random sample of incomes (in 1000s
of dollars) as declared on income tax forms. Thinking of these
data as outcomes of i.i.d. random variables X1, · · · , X40, define

Y1 =
40∑
i=1

I(Xi ≤ 25), Y2 =
40∑
i=1

I(25 < Xi ≤ 40),

Y3 =
40∑
i=1

I(40 < Xi ≤ 90) and Y4 =
40∑
i=1

I(Xi > 90).

(a) What is the likelihood function for the parameters α and θ
based on (Y1, · · · , Y4)?
(b) Find the maximum likelihood estimates of α and θ based
on the observed values of (Y1, · · · , Y4) in the sample.
(c) Test the null hypothesis that the density of the data is
f(x;α, θ) for some α and θ using both the LR statistic and
Pearson’s χ2 statistic. Compute approximate p-values for both
test statistics.

9.2: Consider testing goodness-of-fit for the Zeta distribution with
frequency function is

f(x;α) =
x−(α+1)

ζ(α + 1)
for x = 1, 2, 3, · · ·
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Table 9.3 Data for Problem 9.2.

Observation 1 2 3 4 5 6 7

Frequency 128 30 12 6 3 1 1

where α > 0 and

ζ(p) =
∞∑
k=1

k−p

is the Zeta function.
(a) Let X1, · · · , Xn be i.i.d. Zeta random variables. Define

Yj =
n∑
i=1

I(Xi = j) for j = 1, · · · , k

Yk+1 =
n∑
i=1

I(Xi ≥ k + 1)

Find an expression for the MLE of α based on Y1, · · · , Yk+1.
(b) Let α̂n be the MLE in part (a). Find the limiting distribu-
tion of

√
n(α̂n − α). (Note that this limiting distribution will

be different than the limiting distribution of the MLE based on
the Xi’s.)
(c) Carry out the Pearson χ2 and LR goodness-of-fit tests for
the Zeta distribution using Y1, · · · , Y4. What are the (approxi-
mate) p-values for the two test statistics?

9.3: Consider Theorem 9.2 where now we assume that θ̂n is some
estimator (not necessarily the MLE from the Multinomial mo-
del) with √

n(θ̂n − θ) →d Np(0, C(θ)).

(a) Show that K2
n − 2 ln(Λn) →p 0 (under the null hypothesis).

(b) What can be said about the limiting distribution of 2 ln(Λn)
under this more general assumption on θ̂n?

9.4: Consider the general log-linear model for Multinomial proba-
bilities in a three-way cross-classification

ln(θijk) = xT
ijkβ.
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for i = 1, · · · , u, j = 1, · · · , v, and k = 1, · · · , w.
(a) Let zijk = xijk − x111. Show that the log-linear model can
be rewritten as a Multinomial logit model (see Problem 8.20)

ln
(
θijk
θ111

)
= zTijkβ

and hence

θijk =
exp(zTijkβ)

zT111β + · · ·+ zTuvwβ
.

(b) Using the result of Problem 8.20, suggest a Poisson log-
linear model that can be used to estimate the parameter β in
the log-linear model.

9.5: Suppose that X1, · · · , Xn are i.i.d. continuous random vari-
ables whose range is the interval (0, 1). To test the null hypoth-
esis that the Xi’s are uniformly distributed, we can use the
statistic

Vn =

(
1√
n

n∑
i=1

sin(2πXi)

)2

+

(
1√
n

n∑
i=1

cos(2πXi)

)2

.

(a) Suppose that the Xi’s are Uniform random variables on
[0, 1]. Show that as n→∞,(

1√
n

n∑
i=1

sin(2πXi),
1√
n

n∑
i=1

cos(2πXi)

)
→d (Z1, Z2)

where Z1 and Z2 are independent N(0, σ2) random variables.
Find the value of σ2.
(b) Find the asymptotic distribution of Vn when the Xi’s are
uniformly distributed.
(c) Suppose that either E[sin(2πXi)] or E[cos(2πXi)] (or both)
are non-zero. Show that Vn →p ∞ in the sense that P (Vn ≤
M) → 0 for any M > 0. (Hint: Use the WLLN.)
(d) Suppose that {vn,α} is such that

P (Vn > vn,α) = α

when the Xi’s are uniformly distributed. If the Xi’s satisfy the
condition given in part (c), show that

lim
n→∞

P (Vn > vn,α) = 1

for any α > 0.
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9.6: Suppose that (X1, Y1), · · · , (Xn, Yn) are i.i.d. random variables
such that X2

i + Y 2
i = 1 with probability 1; thus (X1, Y1),

· · · , (Xn, Yn) represent an i.i.d. sample from a distribution on
the unit circle C = {(x, y) : x2+y2 = 1}. In this problem, we are
interested in testing if this distribution is Uniform on the unit
circle. To do this, we define new random variables Φ1, · · · ,Φn

on the interval [0, 1] so that

Xi = cos(2πΦi) and Yi = sin(2πΦi);

then the distribution of (Xi, Yi) is Uniform on the unit circle if,
and only if, the distribution of Φi is Uniform on [0, 1].

(a) If F̂n(x) is the empirical distribution of Φ1, · · · ,Φn, and
Bn(x) =

√
n(F̂n(x)−x), we can define Watson’s statistic to be

U2
n =

∫ 1

0
B2
n(x) dx−

(∫ 1

0
Bn(x)

)2

.

Using the heuristic approach of section 9.3, show that

Un →d

∫
B2(x) dx−

(∫ 1

0
B(x)

)2

where B(x) is a Brownian bridge process.
(b) The definition of Φ1, · · · ,Φn above is dependent on the
orientation of the coordinate system; for example, for any given
θ, we could define Φ1, · · · ,Φn on [0, 1] so that

Xi = cos(2πΦi + θ) and Yi = sin(2πΦi + θ)

Now define U2
n as in (a) using the (new) Φi’s. Show that U2

n is
independent of θ.
(c) Consider using the test statistic

Vn =

(
1√
n

n∑
i=1

sin(2πΦi)

)2

+

(
1√
n

n∑
i=1

cos(2πΦi)

)2

as in Problem 9.5. Show that Vn is independent of θ.
(d) Consider using either the Kolmogorov-Smirnov, Anderson-
Darling or Cramér-von Mises tests for testing uniformity on the
unit circle. Show that none of these tests is independent of θ.
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9.7: A Brownian Bridge process can be represented by the infinite
series

B(x) =
√

2
π

∞∑
k=1

sin(πkx)
k

Zk

where Z1, Z2, · · · are i.i.d. Normal random variables with mean
0 and variance 1.

(a) Assuming that expected values can be taken inside infinite
summations, show that

E[B(x)B(y)] = min(x, y)− x y

for 0 ≤ x, y ≤ 1.

(b) Define

W 2 =
∫ 1

0
B2(x) dx

using the infinite series representation of B(x). Show that the
distribution of W 2 is simply the limiting distributions of the
Cramér-von Mises statistic.

9.8: Consider the representation of the Brownian bridge B(x) in
Problem 9.7.

(a) Show that

∫ 1

0
B(x) dx =

23/2

π2

∞∑
k=1

Z2k−1

(2k − 1)2

(b) Let B̄ =
∫ 1
0 B(x) dx. Show that

∫
B2(x) dx−

(∫ 1

0
B(x)

)2

=
∫ 1

0
[B(x)− B̄]2 dx.

(c) Use parts (a) and (b) to show that the limiting distribution
of Watson’s statistic U2

n in Problem 9.6 is the distribution of
the random variable

U2 =
∞∑
k=1

Z2k−1 + Z2k

2k2π2
.

c© 2000 by Chapman & Hall/CRC



9.9: Suppose that X1, · · · , Xn are i.i.d. Exponential random vari-
ables with parameter λ. Let X(1) < · · · < X(n) be the order
statistics and define the so-called normalized spacings (Pyke,
1965)

D1 = nX(1)

and Dk = (n− k + 1)(X(k) −X(k−1)) (k = 2, · · · , n).

According to Problem 2.26, D1, · · · , Dn are also i.i.d. Exponen-
tial random variables with parameter λ.
(a) Let X̄n be the sample mean of X1, · · · , Xn and define

Tn =
1

nX̄2
n

n∑
i=1

D2
i .

Show that
√
n(Tn − 2) →d N(0, 20).

(b) Why might Tn be a useful test statistic for testing the
null hypothesis that the Xi’s are Exponential? (Hint: Note that
D1 + · · · + Dn = nX̄; show that subject to a1 + · · · + an = k,
a2

1 + · · ·+ a2
n is minimized at ai = k/n.)
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