avatar

送你三千万:千万要健康🏃‍♀️,千万要快乐🌻,千万要幸福💕

Derivative and Taylor expansion cheatsheet笔记

手机预览点这里 This browser does not support PDFs. Please download the PDF to view it: Download PDF.

Comps Part I Probability

总结outline: 3 axioms of prob. (第三点证明待补充) properties 2.1 commutativity P(A+B) = P(B+A) = P(A)+P(B) - P(AB) 2.2 associativity P(A+B+C) = P{(A+B)+C} 2.3 distributive laws (A+B)*C = (AC)+(BC); (A*B)+C = (A+C)*(B+C)[note: + means union; and * means intersection ] 2.4 inclusion-exclusion: P(A1+A2+A3+…+An) = inclusion of one at a time -/exclusion of two at

一些书籍清单

数理统计相关 🔗 Mathematical statistics by Keith Knight. [book], [solution] Introduction to Probability Models by Sheldon M. Ross eleventh edition. [book] Statistical Inference by George Casella & Roger L. Berger second edition [book] All of Statistics by Larry Wasserman[book] 贝叶斯相关 🔗 Bayesian Data Analysis by Andrew Gelman, John B. Carlin and others third edition [book]. [lecture] by Aki Vehtari large sample 相

Kaplan-Meier curve 计算关键点在于找对每个时间段的at-risk set

一生总要计算一次的KM curve重要总结: #1: 先写表格: 1)表格第一列为时间段,左闭右开,每个time interval 的下界为事件发生的时间点们,比如对于c

关于如何「生」的一些提案

前记: 听说一个人的痛苦之身都可以归咎在「生离死别」四字里。想想确实是这样的:生活、生计、离婚(开个玩笑)、永别,诸如此类,每个词都可以写一个

CHL5260 一上三年 一年只有一次 1/3

在🐸day做汇报倒是挺难忘的,明年见!!! 我的幻灯片

Bayesian methods笔记1

一些说明 🔗#1: Gibbs sampler: assume other params known, compute conditional prob. #2: 先specify data , 然后specify 模型 给模型的参数一个初始值,然后写prior,并给prior dis

continuity Thm & CLT笔记

CLT proof: using Taylor expansion only one realization( X1, X2, … Xn:a random sample of size n) standardized sample average (of n iid RVs) converge to standard normal distribution. or standardized sample sum converge to standard normal. $$Z ~ N(\mu,\sigma^2)$$, then $$Z^2 ~ chi(1)$$, by CLT, sum of n iid Z^2 follows Normal; while by defn, sum of n iid Z^2 follows chi(n).So we conclude that chi(n) converge to normal

证明一下survival likelihood

手机预览点这里 2024-04-05 更新 🔗 写likelihood第一步,想一下 what is Y. in survival analysis, the observed outcome, is observed T + status. where T is either censoring time(C_i) or event time (T~_i) 两个假设很重要: 1.

MGF笔记

RV: CDF/PDF/PMF/MGF used to describe the behavior of RV. 手机预览点这里 This browser does not support PDFs. Please download the PDF to view it: Download PDF.

已知E(X) and Var(X);PDF(X)未知,求E(Y), Var(Y) where Y= g(X) 可以用Delta method

2024-04-01 更新 🔗1.ideal: 如果我们知道X的PDF,那么就可以求Y = g(X)的Expectation & variance 2. approx. 如果我们只知道E(X) & var(X)

生存分析似然函数笔记

比较重要的点: 🧗‍♀️#1 :感兴趣的指标一直都是生存时间tilde T,它是一个latent variable,我们需要做一些假设(indepe

Computer Canada Setup Notes

参考资料看这里 「一定要在login node下安装R包!!」 🔗module spider r ## 可以看到有哪些可用的R版本 You will need to load all module(s) on any one of the lines below before the “mpfr/4.0.2” module

Jeffery prior notes

general rule: 通常根据研究目的来选择相应的prior (non-informative and informative)。 non-informative: 🔗 intended for use in situations where scientific objectivity is at a premium, for example, when presenting results to a regulator or in a scientific journal, and essentially means the Bayesian apparatus is

「回」阿省探亲记

前记: 圣诞假期去了给我强迫症状「添砖加瓦」的爱屯待了大半个月。见到了我爱的导师❤️(虽然我并没有表现出来),和我的新老朋友们。强迫症没有复发