Results - Simulation Data

Dummy example: study the association between medication status and fetal loss •

Covariate	How is data generated?
medication status (yes/no)	Bernoulli(p)
race (white; non-white)	Bernoulli(p)
weight, age	Normal(μ,σ)

• Outcome generated by:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4, \quad \beta \sim U(-1, 1)$$

1

Results - Simulation Settings

Dalla Lana School of Public Health

Results - Simulation Output

Key points

• Accuracy

GLORE > ODAL2 > ODAL1

Communication cost •

GLORE > ODAL2> ODAL1

Results - Real Clinical Study

Data

- Samples: ~35k •
- Ten sites: 10% to mimic local site
- Exposure(s): 100 medications
- Covariates: age, weight, race, BMI •

Results LOCAL POOLED(GLORE) ODAL1

4

Conclusion

In summary, ODAL2:

- Provides accurate estimates;
- Communication-efficient

In practice, tradeoff between accuracy and communication cost

Assess data complexity before choosing an algorithm!!

Number of sites •

Dimension of feature space •

5