High Dimensional Feature Selection algorithms with Interactions on Time-to-Event Outcome

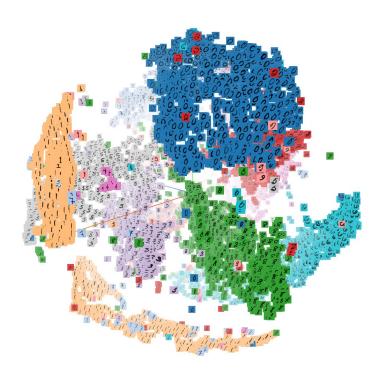
Lin Yu

Supervisor: Dr. Wei Xu

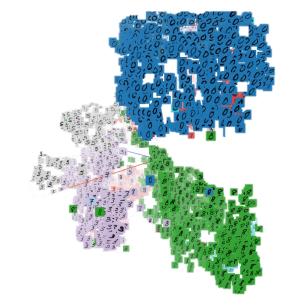
Biostatistics Department, University Health Network

2024-04-25

Background: Challenges of High Dimensional Data



Feature selection (e.g., LASSO, Ridge)



Low dimensional data

High dimensional data: model overfitting, generalizability

Image copyright: Visualize high dimensional data. (pinterest.com)

Research Question and Objective

Interactive effects not considered

Existing methods:

HDSI algorithms^{1,2,3} for continuous and binary cases

Research question: Is HDSI/RHDSI Robust? Can it be extended to different types of data?

Objective: Develop feature selection algorithm with **interactions** for **time-to-event outcome**

1. Jain R, Xu W. HDSI: High dimensional selection with interactions algorithm on feature selection and testing. PLOS ONE.

2. Jain R, Xu W. RHDSI: A novel dimensionality reduction based algorithm on high dimensional feature selection with interactions. Inf Sci. 2021 Oct 1;574:590–605.

3. Zhuang Z, Xu W, Jain R. High Dimensional Selection with Interactions Algorithm on Feature Selection for Binary Outcome.

1: Develop algorithms for model building and hyper parameters tuning

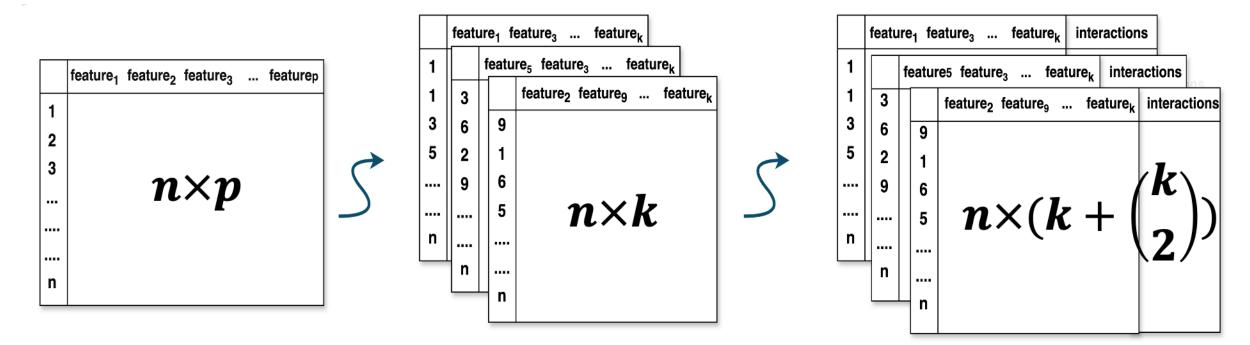
2: Conduct simulations with high dimensional features with both marginal and interactive effects

3: Implement the proposed algorithms into real clinical study

Method: Development of the HDSI-LASSO and HDSI-Ridge Algorithms

Step 1: Prepare Bootstrap Sets

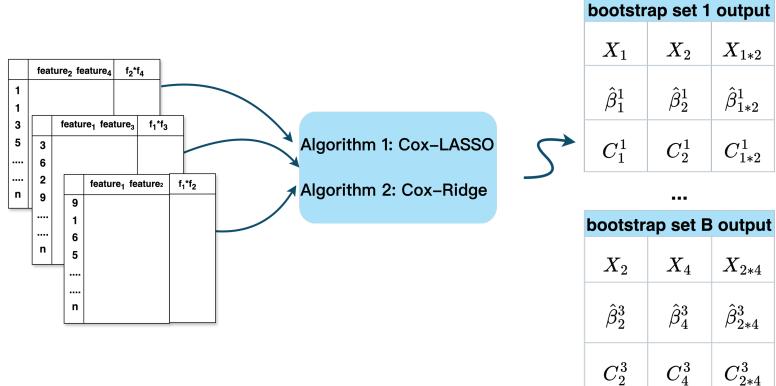
LANA SCHOOL OF PUBLIC HEALTH



B Bootstrap datasets with interactions

Method: Development of the HDSI-LASSO and HDSI-Ridge Algorithms

Step 2: Build model and select features



Input

OF PUBLIC HEALTH

Feature Selection Algorithm

C_2^3 C_4^3 **Output:**

- Coef. estimates($\hat{\beta}$)
- C-index(C)

Pooled results:

•
$$\hat{\beta}_j = \operatorname{avg}(\hat{\beta}_j^1, \hat{\beta}_j^2, \dots \hat{\beta}_j^B)$$

• Cindex(X_i) = min($C_i^1, C_i^2, ..., C_i^B$)

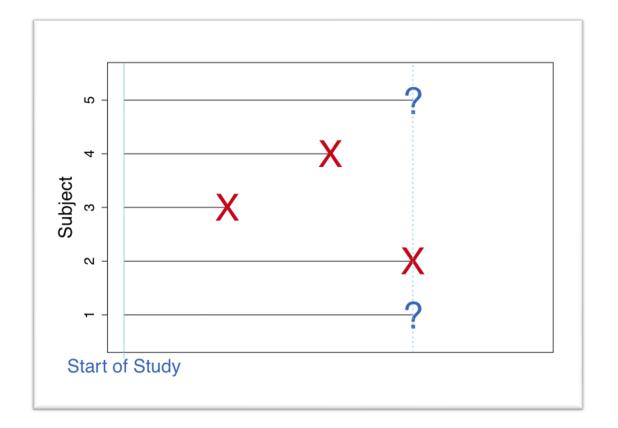
Criteria for feature selection

• Significance of X_i

(quantile includes 0)

 $Cindex(X_i) > cutoff value$ •

Simulation Study Design



Copyright: taken from Prof. Kevin E. Thorpe's lecture slides

1) Observed time T

 $T = \min(\tilde{T}, C)$

 \widetilde{T} : The latent time had everyone's survival time observed

C: The censoring time

2) Observed status Y

 $Y = \begin{cases} \text{event, } T = \tilde{T} \\ \text{censored, } T = C \end{cases}$

Simulation Study Design

Step 1) Latent event time \widetilde{T}

• Survival function

 $S(\tilde{T}) = 1 - F(\tilde{T}) \sim \text{Unif}(0,1)$

Cox model

 $S(\tilde{T}|x) = \exp[-H_0(\tilde{T})\exp(Z)]$

H₀: cumulative baseline hazard

Z: linear predictor

• Inverse of survival function

 $\widetilde{T} = H_0^{-1}(-log(S)\exp(-Z))$

Step 2) Censoring time *C* ~ Unif (0, *b*)

Step 3) Compare \tilde{T} and C

$$T = \min(\tilde{T}, C)$$

$$Y = \begin{cases} \text{event, } T = \tilde{T} \\ \text{censored, } T = C \end{cases}$$

Simulation Study Design

True model

 $\lambda(t|\mathbf{x}) = \lambda_0(t) \exp(Z)$

 $= \lambda_0(t) \exp(X_1 + X_2 + 0.75X_3 - 0.75X_4 + 0.75X_5 + X_1X_2 - X_3X_4)$

 X_1, X_2, \dots, X_5 : continuous, generated from multinormal

Samples

1000 for training; 500 for testing (Event rate: ~ 40%)

Features

True

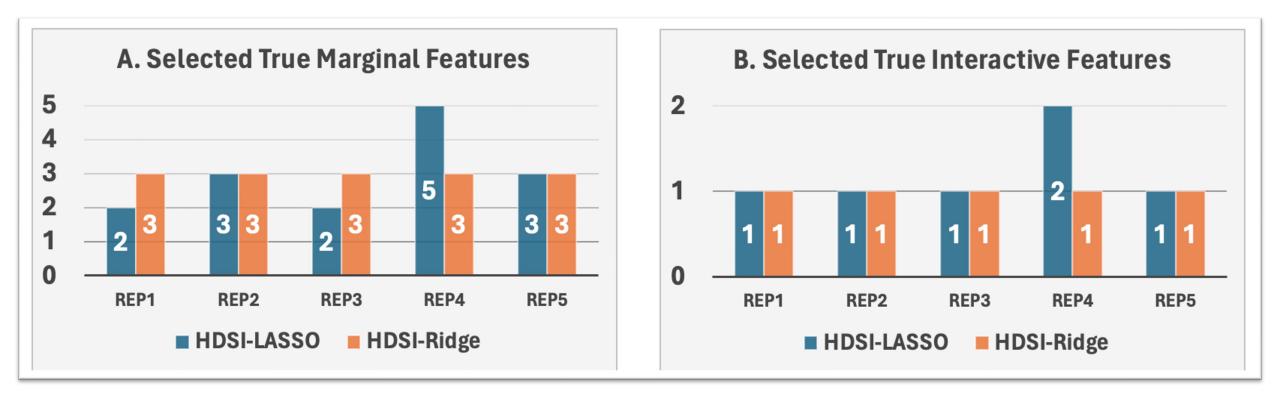
Noisy

• 5 marginal + 2 interactive

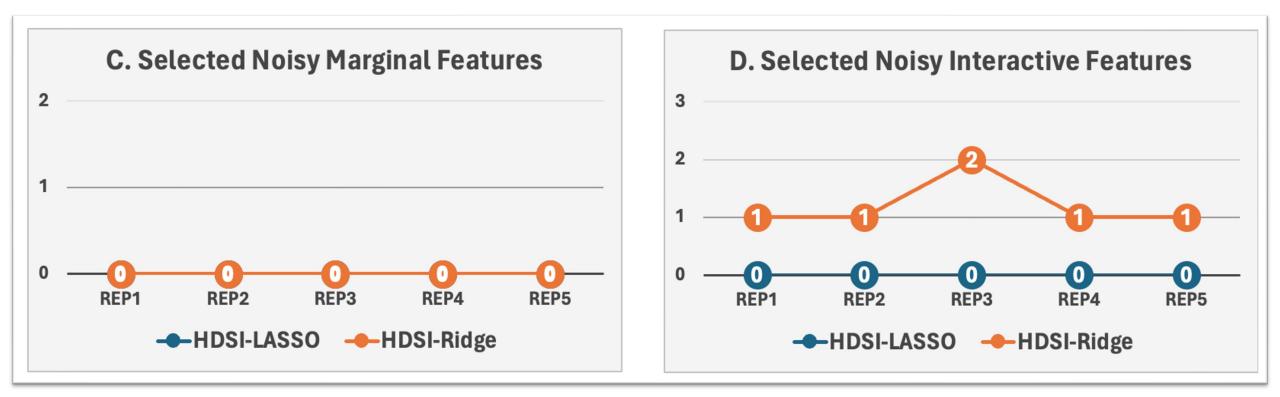
• 20 marginal + 298 interactive

True model: 5 true marginal, 2 true interactive features

Are all true effective features selected?

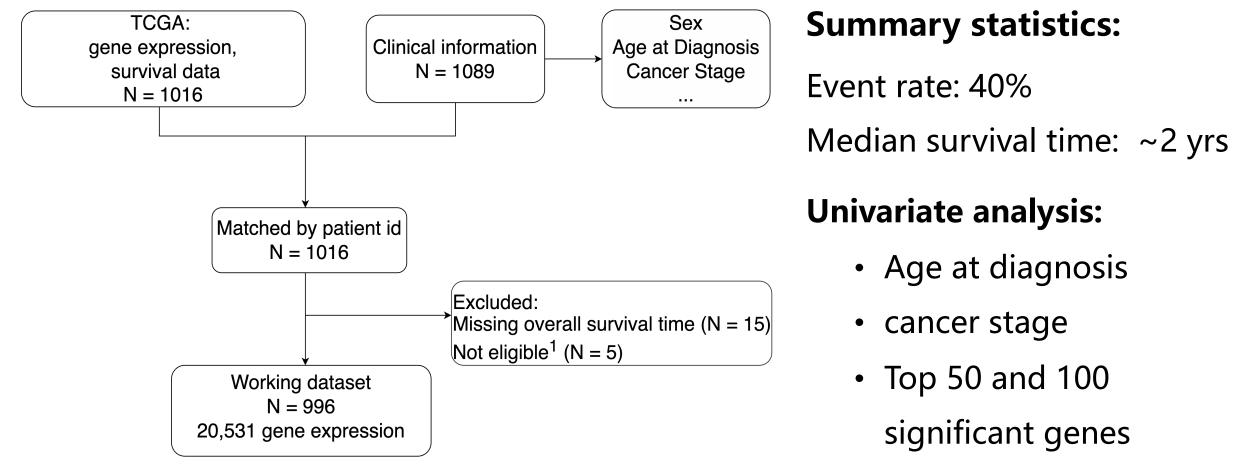


Noisy: 20 noisy marginal, 298 noisy interactive features **Are any noisy features selected?**



UNIVERSITY OF TORONTO DALLA LANA SCHOOL OF PUBLIC HEALTH

Setting: relationship between gene expression profile & overall survival in lung cancer patients?



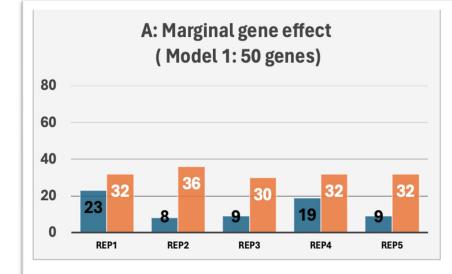
1: subjects who died or censored at the enrollment UNIVERSITY OF TORONTO DALLA LANA SCHOOL OF PUBLIC HEALTH

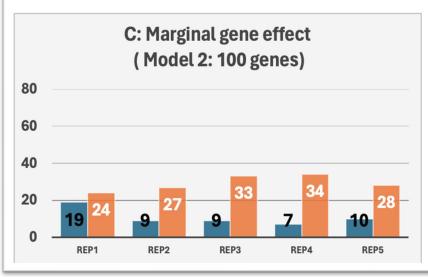
Real-World Study Results

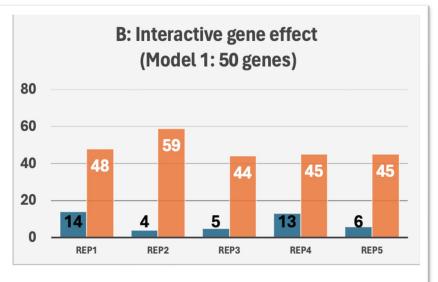
Model 1: 50 marginal + 1225 interactive; Model 2: 100 marginal + 4950 interactive

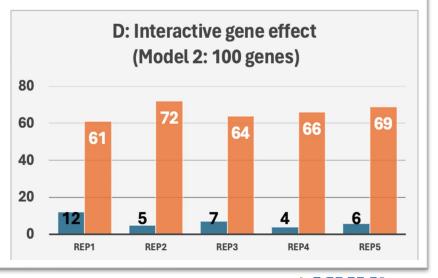
Summary:

- HDSI-Ridge selected
 more genes
- Marginal features: Both robust
- Interactive features: only HDSI-LASSO robust
- C-index: HDSI-Ridge> HDSI-LASSO









NIVERSITY OF TORONTO Alla lana school of public health

HDSI-LASSO HDSI-Ridge

HDSI-LASSO:

- Selected less features
- Robust to the increase in the number of features(marginal and interactive)
- Slightly lower C-index

HDSI-Ridge:

- Selected more features
- Only robust to the increase in the number of marginal

features; Selected more noisy

features

Limitations and future work:

- Corporate other algorithms into the HDSI framework
- Consider other simulation settings (e.g., different effect sizes)

1. Bender, R., Augustin, T., & Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. *Statistics in Medicine*, *24*(11), 1713–1723. https://doi.org/10.1002/sim.2059

 Ellrott, K., Bailey, M. H., Saksena, G., Covington, K. R., Kandoth, C., Stewart, C., Hess, J., Ma, S., Chiotti, K. E., McLellan, M., Sofia, H. J., Hutter, C., Getz, G., Wheeler, D., Ding, L., Caesar-Johnson, S. J., Demchok, J. A., Felau, I., Kasapi, M., ... Mariamidze, A. (2018). Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. *Cell Systems*, *6*(3), 271-281.e7. https://doi.org/10.1016/j.cels.2018.03.002

3. Jain, R., & Xu, W. (n.d.). HDSI: High dimensional selection with interactions algorithm on feature selection and testing. *PLOS ONE*.

4. The Cancer Genome Atlas Program (TCGA)—NCI (nciglobal,ncienterprise). (2022, May 13). [cgvMiniLanding]. https://www.cancer.gov/ccg/research/genome-sequencing/tcga

Theng, D., & Bhoyar, K. K. (2023). Feature selection techniques for machine learning: A survey of more than two decades of research. *Knowledge and Information Systems*. https://doi.org/10.1007/s10115-023-02010-5

5. Zhuang, Z., Xu, W., & Jain, R. (n.d.). *High Dimensional Selection with Interactions Algorithm on Feature Selection for Binary Outcome*.

Thank you 🕲

