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Image copyright: Visualize high dimensional data. (pinterest.com)

Background: Challenges of High Dimensional Data

High dimensional data:
model overfitting, generalizability

Feature selection

(e.g., LASSO, Ridge)

Low dimensional data

https://www.pinterest.com/pin/13581236359074498/
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Research question: Is HDSI/RHDSI Robust? Can it be extended to different 
types of data?

Objective: Develop feature selection algorithm with interactions for
time-to-event outcome

Existing methods: 

HDSI algorithms1,2,3 for continuous and binary cases

Interactive effects not considered 

Research Question and Objective

1.  Jain R, Xu W. HDSI: High dimensional selection with interactions algorithm on feature selection and testing. PLOS ONE.
2. Jain R, Xu W. RHDSI: A novel dimensionality reduction based algorithm on high dimensional feature selection with interactions. Inf Sci. 2021 Oct 1;574:590–605.
3. Zhuang Z, Xu W, Jain R. High Dimensional Selection with Interactions Algorithm on Feature Selection for Binary Outcome.
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1: Develop algorithms for model building and hyper parameters 

tuning

2: Conduct simulations with high dimensional features with both 

marginal and interactive effects

3: Implement the proposed algorithms into real clinical study

Method Pipeline
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Step 1: Prepare Bootstrap Sets

Method: Development of the HDSI-LASSO and HDSI-Ridge Algorithms

Bootstrap dataset
with interactionsBootstrap datasetOriginal dataset B Bootstrap datasets
with interactions
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Step 2: Build model and select features

Input
Feature Selection

 Algorithm
Output:
• Coef. estimates(!𝜷)
• C-index(𝑪)

Criteria for feature selection

• Significance of 𝑋! 

(quantile includes 0)

• Cindex(𝑋!)	> cutoff	value

Method: Development of the HDSI-LASSO and HDSI-Ridge Algorithms

Pooled results:

• 2𝛽! = avg( 2𝛽!", 2𝛽!#, … 2𝛽!$)

• Cindex(𝑋!)= min(𝐶!", 𝐶!#,… 𝐶!$)
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1) Observed time T

T = min ( <𝑇, 𝐶)
%𝑻: The latent time had everyone’s 
survival time observed

𝑪: The censoring time

2) Observed status Y 

Y= ? event, 𝑇 = 	 <𝑇
censored, 𝑇 = 𝐶	

Copyright: taken from Prof. Kevin E. Thorpe’s lecture slides

Simulation Study Design 
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Step 1) Latent event time B𝑻 

• Survival function   

       S <𝑇 = 	1 − F <𝑇 ~	Unif	(0,1) 

Simulation Study Design 

Step 2) Censoring time 𝑪	

𝐶	~	Unif	(0, 𝑏)

Step 3) Compare B𝑻 and 𝑪 

T = min( <𝑇, 𝐶)

Y= ? event, 𝑇 = 	 <𝑇
censored, 𝑇 = 𝐶	

• Cox model 

       S <𝑇 𝑥 = exp −𝐻% <𝑇 exp 𝑍

𝐻%: cumulative baseline hazard

𝑍: linear predictor

•  Inverse of survival function 

       B𝑻 	= 𝑯𝟎
'𝟏(−𝒍𝒐𝒈 𝑺 exp(−𝒁))
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True model

 𝜆 𝑡 𝒙 = 𝜆% 𝑡 exp 𝑍

   = 𝜆% 𝑡 exp 	𝑋"+𝑋# + 0.75𝑋) − 0.75𝑋* +0.75𝑋+ +𝑋"𝑋# − 𝑋)𝑋*  

 𝑋!, 𝑋",… 𝑋#: continuous, generated from multinormal 

Simulation Study Design 

Samples
1000 for training；500 for testing (Event rate: ~ 40%)

True

• 5 marginal + 2 interactive

Features

Noisy

• 20 marginal + 298 interactive
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Simulation Study Results
True model: 5 true marginal, 2 true interactive features

Are all true effective features selected?
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Simulation Study Results
Noisy: 20 noisy marginal, 298 noisy interactive features

Are any noisy features selected?
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Real-World Study
Setting: relationship between gene expression profile & overall survival in 
lung cancer patients?

Summary statistics:

Event rate: 40%

Median survival time:  ~2 yrs 

Univariate analysis:  

• Age at diagnosis

• cancer stage

• Top 50 and 100 

significant genes
1: subjects who died or censored at the enrollment
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Model 1 : 50 marginal + 1225 interactive; Model 2: 100 marginal + 4950 interactive

Real-World Study Results

Summary:

• HDSI-Ridge selected 
more genes

• Marginal features: 
Both robust

• Interactive features: 
only HDSI-LASSO 
robust

• C-index: HDSI-
Ridge> HDSI-LASSO
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HDSI-LASSO:

• Selected less features

• Robust to the increase in the 

number of features( marginal and 

interactive)

• Slightly lower C-index

Discussion

HDSI-Ridge:

• Selected more features

• Only robust to the increase in 

the number of marginal 

features; Selected more noisy 

features

Limitations and future work:

• Corporate other algorithms into the HDSI framework

• Consider other simulation settings (e.g., different effect sizes) 
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