+ - 0:00:00
Notes for current slide
Notes for next slide

ECOPD Literature Review

Lin Yu

2023-02-28

1 / 28

The Workflow

2 / 28

The Workflow

Step 1: Identify eligible papers

  • 1.1 Search database (Pubmed)

  • 1.2 Manually review (Title/Abstract)

2 / 28

The Workflow

Step 1: Identify eligible papers

  • 1.1 Search database (Pubmed)

  • 1.2 Manually review (Title/Abstract)

Step 2: Data extraction

  • 2.1 Create data extraction template

  • 2.2 Full text review

2 / 28

The Workflow

Step 1: Identify eligible papers

  • 1.1 Search database (Pubmed)

  • 1.2 Manually review (Title/Abstract)

Step 2: Data extraction

  • 2.1 Create data extraction template

  • 2.2 Full text review

Step 3: Summarize findings

2 / 28

Step 1

Identify eligible papers

3 / 28

Pubmed: (COPD) AND (exacerbation) AND (prediction)

4 / 28

Pubmed: (COPD) AND (exacerbation) AND (prediction)

  • Search 1: Pulmonary Disease, Chronic Obstructive[MeSH Term]:
    • Chronic Obstructive Lung Disease
    • Chronic Obstructive Pulmonary Diseases
    • Chronic Obstructive Airway Disease
    • Chronic Obstructive Pulmonary Disease
    • Airflow Obstruction(s), Chronic
    • Chronic Airflow Obstruction(s)
    • COAD/COPD
4 / 28

Pubmed: (COPD) AND (exacerbation) AND (prediction)

  • Search 1: Pulmonary Disease, Chronic Obstructive[MeSH Term]:

    • Chronic Obstructive Lung Disease
    • Chronic Obstructive Pulmonary Diseases
    • Chronic Obstructive Airway Disease
    • Chronic Obstructive Pulmonary Disease
    • Airflow Obstruction(s), Chronic
    • Chronic Airflow Obstruction(s)
    • COAD/COPD
  • Search 2:Disease exacerbation[MeSH Term]:

    • Disease exacerbation
    • Progression, Disease
    • Clinical Course
    • Clinical Progression
    • Progression, Clinical
    • Disease Exacerbation
    • Exacerbation, Disease
4 / 28

Pubmed: (COPD) AND (exacerbation) AND (prediction)

  • Search 1: Pulmonary Disease, Chronic Obstructive[MeSH Term]:

    • Chronic Obstructive Lung Disease
    • Chronic Obstructive Pulmonary Diseases
    • Chronic Obstructive Airway Disease
    • Chronic Obstructive Pulmonary Disease
    • Airflow Obstruction(s), Chronic
    • Chronic Airflow Obstruction(s)
    • COAD/COPD
  • Search 2:Disease exacerbation[MeSH Term]:

    • Disease exacerbation
    • Progression, Disease
    • Clinical Course
    • Clinical Progression
    • Progression, Clinical
    • Disease Exacerbation
    • Exacerbation, Disease
  • Search 3:Prediction[Title/Abstract]: Forecast (prediction model/risk predicition)

4 / 28

Search Query

~1400 items returned

5 / 28

PRISMA flow diagram of studies through the review process

6 / 28

Step 2

Data Extraction

7 / 28
8 / 28

Step 3

Summarize Findings

9 / 28

3.1 Source of data: medical records, questionnaires, app/devices, COPDGene

10 / 28

11 / 28

3.2 Participants

mild/severe copd, non-copd patients

12 / 28

3.2 Participants

mild/severe copd, non-copd patients

3.3 Study design

## Setting Freq Prop(%)
## 1 CASE-CONTROL 1 2.27
## 2 CASE-CROSSOVER 1 2.27
## 3 CROSS-SECTIONAL 5 11.36
## 4 PROSPECTIVE 28 63.64
## 5 RETROSPECTIVE 9 20.45

the average follow-up time in prospective studies:1.35 yrs

12 / 28

3.2 Participants

mild/severe copd, non-copd patients

3.3 Study design

## Setting Freq Prop(%)
## 1 CASE-CONTROL 1 2.27
## 2 CASE-CROSSOVER 1 2.27
## 3 CROSS-SECTIONAL 5 11.36
## 4 PROSPECTIVE 28 63.64
## 5 RETROSPECTIVE 9 20.45

the average follow-up time in prospective studies:1.35 yrs

3.4 Outcome(s)

AECOPD occurrence/severity/COPD hospitalization/AECOPD readmission

12 / 28

3.5 Predictors

3.5.1 Demographic characteristics

  • Age; sex; BMI; smoking; etc

3.5.2 Sympton(s)/vital sign(s)

  • Blood pressure; dyspnea; cough

3.5.3 Lab report

  • Eosinophil; imaging; neutrophil/lymphocyte, eosinophil/neutrophil Creatinine/Serum Cystatin C; platelet/lymphocyte

3.5.4 Spirometry

  • FEV1%pred; inspiratory capacity/total lung capacity

3.5.5 Medication

13 / 28

3.5 Predictors

3.5.1 Demographic characteristics

  • Age; sex; BMI; smoking; etc

3.5.2 Sympton(s)/vital sign(s)

  • Blood pressure; dyspnea; cough

3.5.3 Lab report

  • Eosinophil; imaging; neutrophil/lymphocyte, eosinophil/neutrophil Creatinine/Serum Cystatin C; platelet/lymphocyte

3.5.4 Spirometry

  • FEV1%pred; inspiratory capacity/total lung capacity

3.5.5 Medication

3.5.6 Air pollution/ behavior

  • PM2.5; six-minute walk

3.5.7 Biomarker(s)

  • Soluble urokinase-type plasminogen activator receptor

3.5.8 Indices

  • GOLD /CAT/mMRC
  • BCSS:breathlessness, cough and sputum scale
  • BODEX:BMI, airflow obstruction, dyspnea, previous exacerbation
  • BODE:BMI, airflow obstruction, dyspnea, exercise
  • ADO: age, dyspnea, and airflowobstruction
  • CODEXS : comorbidity, obstructive dyspnea, exacerbation
  • DOSE: Dyspnoea, Obstruction, Smoking, Exacerbation
13 / 28

3.6 Sample size

## [1] 327 68139 1066 60 24 162 345 1609 340 121 153 44
## [13] 22053 403 144 45722 73 212 9 6075 493 553 471 1711
## [25] 62 35 164 61 149 1033 127 62 98 206 95 168
## [37] 129 44 160 292 246 178 247 28 125 526 412 2380
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 9.00 97.25 173.00 3277.83 476.50 68139.00

14 / 28

3.7 Statistical method(s)

Heuristic

  • logistic regression
  • cox regression
  • generalized estimation equation
  • mixed-effect model
  • negative binomial regression
  • roc-threshold
15 / 28

3.7 Statistical method(s)

Heuristic

  • logistic regression
  • cox regression
  • generalized estimation equation
  • mixed-effect model
  • negative binomial regression
  • roc-threshold

Machine learning

  • random forest
  • bootstrap
  • classification tree
  • decision tree (dt)
  • naive bayes classifier
  • k-nearest neighbors (knn)
  • linear discrimint classifier
  • naive bayes (nb)
  • support vector machine
  • cart
15 / 28

3.8 Performance evaluation

16 / 28

Case study 1

18 / 28

Affiliations

  • The First Hospital of China Medical University, Shenyang, Liaoning
  • Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai
  • Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong
  • Peking University Third Hospital, Beijing
  • The Second Xiangya Hospital of Central South University, Changsha, Hunan
  • The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
  • The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan
19 / 28

20 / 28

Data collection (Download Detect.pdf)

Statistical method

  • Complete-case analysis strategy
  • AIC, BIC, adjusted R2, AUC
  • Stepwise logistic regression
  • Age,sex, exacerbation history over the past year were forced in the model
  • Overfitting issue: bootstrap

Results

GOLD classification, most recent exacerbation in the past 12 months, number of exacerbations that resulted in hospitalization in the past 12 months, phlegm color, respiratory rate, and chest tightness.

21 / 28

Case study 2

22 / 28

23 / 28

THANKS

25 / 28

backup slides

Duration

An overview of time duration

## [1] 2.9972603 0.7479452 1.0000000 0.7452055 3.1671233 1.8356164
## [7] 1.4986301 7.8356164 3.0000000 1.3260274 2.3369863 12.0054795
## [13] 7.0027397 2.4958904 0.4958904 1.9205479 2.1671233 0.4109589
## [19] 2.0000000 1.2465753 3.8328767 0.7424658 2.0000000 1.5780822
## [25] 1.9205479

Summary statistics:

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.411 1.247 1.921 2.652 2.997 12.005
26 / 28

References

[1] https://www.ncbi.nlm.nih.gov/mesh/

[2] Chmiel FP, Burns DK, Pickering JB, Blythin A, Wilkinson TM, Boniface MJ. Prediction of Chronic Obstructive Pulmonary Disease Exacerbation Events by Using Patient Self-reported Data in a Digital Health App: Statistical Evaluation and Machine Learning Approach. JMIR Med Inform. 2022 Mar 21;10(3):e26499. doi: 10.2196/26499. PMID: 35311685; PMCID: PMC8981014.

[3] https://mymhealth.com/mycopd

[4] Hawthorne G, Richardson M, Greening NJ, Esliger D, Briggs-Price S, Chaplin EJ, Clinch L, Steiner MC, Singh SJ, Orme MW. A proof of concept for continuous, non-invasive, free-living vital signs monitoring to predict readmission following an acute exacerbation of COPD: a prospective cohort study. Respir Res. 2022 Apr 26;23(1):102. doi: 10.1186/s12931-022-02018-5. PMID: 35473718; PMCID: PMC9044843.

27 / 28

[5] Huang H, Huang X, Zeng K, Deng F, Lin C, Huang W. Interleukin-6 is a Strong Predictor of the Frequency of COPD Exacerbation Within 1 Year. Int J Chron Obstruct Pulmon Dis. 2021 Oct 28;16:2945-2951. doi: 10.2147/COPD.S332505. PMID: 34737559; PMCID: PMC8560075.

[6] Adibi A, Sin DD, Safari A, Johnson KM, Aaron SD, FitzGerald JM, Sadatsafavi M. The Acute COPD Exacerbation Prediction Tool (ACCEPT): a modelling study. Lancet Respir Med. 2020 Oct;8(10):1013-1021. doi: 10.1016/S2213-2600(19)30397-2. Epub 2020 Mar 13. PMID: 32178776.

28 / 28

The Workflow

2 / 28
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow